JP3214724B2 - Fixed-bed type three-dimensional electrode type electrolytic cell - Google Patents

Fixed-bed type three-dimensional electrode type electrolytic cell

Info

Publication number
JP3214724B2
JP3214724B2 JP09141292A JP9141292A JP3214724B2 JP 3214724 B2 JP3214724 B2 JP 3214724B2 JP 09141292 A JP09141292 A JP 09141292A JP 9141292 A JP9141292 A JP 9141292A JP 3214724 B2 JP3214724 B2 JP 3214724B2
Authority
JP
Japan
Prior art keywords
water
electrolytic cell
electrode
treated
fixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP09141292A
Other languages
Japanese (ja)
Other versions
JPH06121985A (en
Inventor
剛 高橋
浩幸 橋本
美奈 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP09141292A priority Critical patent/JP3214724B2/en
Publication of JPH06121985A publication Critical patent/JPH06121985A/en
Application granted granted Critical
Publication of JP3214724B2 publication Critical patent/JP3214724B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • C02F1/46114Electrodes in particulate form or with conductive and/or non conductive particles between them

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、微生物を含有する各種
被処理水の該微生物に起因する各種性能劣化を抑制する
ために前記被処理水を電気化学的に処理するための固定
床型三次元電極式電解槽に関し、より詳細には写真感光
材料処理工程において使用される写真処理液、あるいは
プール水、製紙洗浄水、熱交換器冷却水、飲料水、カッ
プ式自動販売機用貯水、養魚用水、薬剤希釈水、浴場水
及びガス洗浄塔用循環水等の微生物を含有しあるいは微
生物発生の可能性のある各種被処理水を固定床型三次元
電極電解槽を使用して電気化学的に処理することにより
前記各被処理水中の微生物の制菌、殺菌や滅菌を効果的
にかつ長期間安定した状態で行うための固定床型三次元
電極式電解槽に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fixed-bed tertiary-type tertiary water for electrochemically treating the water to be treated in order to suppress various performance deteriorations caused by the microorganisms. Regarding the former electrode type electrolytic cell, more specifically, photographic processing solution used in the photographic photosensitive material processing step, or pool water, papermaking washing water, heat exchanger cooling water, drinking water, water storage for cup type vending machines, fish farming Water to be treated that contains microorganisms such as service water, chemical dilution water, bath water, and circulating water for gas washing towers or that may generate microorganisms is electrochemically treated using a fixed-bed three-dimensional electrode electrolytic cell. The present invention relates to a fixed-bed type three-dimensional electrode type electrolytic cell for effectively controlling microorganisms in each of the waters to be treated, sterilizing and sterilizing them in a stable state for a long period of time.

【0002】[0002]

【従来技術】従来から各種用途に多種類の水溶液や他の
物質を溶解していない単独の水が使用されている。これ
らの水溶液等は溶質が適度な養分を提供し、あるいは該
水溶液の液温が繁殖に好ましい比較的高温度であると、
細菌等の微生物が繁殖して該微生物は前記水溶液等の性
能劣化を起こしたり、又製品に悪影響を与えたり、処理
装置内に浮遊したり蓄積して処理装置の機能を損なうこ
とが多い。そのため炭素質材料等から成る三次元電極を
設置した電解槽に前記水溶液等の被処理水を供給し、該
被処理水を電位の印加された前記電極に接触させて滅菌
を行う方法で提案されている。この被処理水の電解滅菌
法では比較的低い電圧及び電流下で効率良く滅菌を行う
ことが望ましく、そのためには前記被処理水が可能な限
り前記電極表面に接触することが必要である。この接触
効率を向上させるために前述の通り電極を多数の微細孔
を有する多孔質としたり、前記電極を複数個重ね合わせ
たりして構成された固定床型三次元電極式電解槽を使用
して水処理を行うことが提唱されている。
2. Description of the Related Art Conventionally, various kinds of aqueous solutions and single water in which other substances are not dissolved have been used for various purposes. These aqueous solutions and the like provide appropriate nutrients in the solute, or when the temperature of the aqueous solution is a relatively high temperature that is favorable for propagation,
Microorganisms such as bacteria proliferate, and the microorganisms often deteriorate the performance of the aqueous solution or the like, adversely affect products, float or accumulate in the processing apparatus, and often impair the function of the processing apparatus. Therefore, a method is proposed in which a water to be treated such as the aqueous solution is supplied to an electrolytic cell provided with a three-dimensional electrode made of a carbonaceous material or the like, and the water to be treated is brought into contact with the electrode to which an electric potential is applied, thereby performing sterilization. ing. In the electrolytic sterilization method of the water to be treated, it is desirable to perform sterilization efficiently at a relatively low voltage and current, and for that purpose, it is necessary that the water to be treated contacts the electrode surface as much as possible. In order to improve the contact efficiency, as described above, the electrode is made porous having a large number of micropores, or a fixed bed type three-dimensional electrode type electrolytic cell configured by laminating a plurality of the electrodes is used. It has been proposed to carry out water treatment.

【0003】この電解槽に微生物を含有する被処理水を
供給すると、層状の前記三次元電極の表面に接触し更に
該電極内の前記微細孔を通り十分に電圧が印加された電
極に接触し滅菌が行われて前記電極の他の表面から更に
下流側へ流れ、他の電極により同様に処理が行われ、十
分に滅菌された被処理水として電解槽から取り出され
る。
When water to be treated containing microorganisms is supplied to this electrolytic cell, it comes into contact with the surface of the layered three-dimensional electrode and further contacts the electrode to which a sufficient voltage has been applied through the micropores in the electrode. Sterilization is carried out and flows further downstream from the other surface of the electrode, the same treatment is carried out by the other electrode, and the water is taken out of the electrolytic cell as sufficiently sterilized water to be treated.

【0004】しかし不溶解懸濁成分を多く含有する被処
理水では、電極表面や該電極内の前記微細孔内面に前記
不溶解懸濁成分が付着する場合がある。この不溶解懸濁
成分の前記電極上への付着により、電極が被覆されて目
詰まりが生じ、被処理水と該電極の接触が阻害され、従
って滅菌効率が減少する。この不溶解懸濁成分はフィル
ターを設置して除去できるが、系内の圧力損失の増加及
びコスト増、メンテナンスの煩雑化等の問題が生ずる。
電解処理を継続するためには電解槽を分解して新たな目
詰まりのない電解槽と交換する必要があり、作業性の低
下と経済的な負担が生じる。
However, in water to be treated containing a large amount of insoluble suspended components, the insoluble suspended components may adhere to the surface of the electrode or the inner surface of the micropores in the electrode. The adhesion of the undissolved suspended components on the electrode causes the electrode to be covered and clogged, thereby inhibiting the contact between the electrode and the water to be treated, thereby reducing the sterilization efficiency. This insoluble suspended component can be removed by installing a filter, but causes problems such as an increase in pressure loss in the system, an increase in cost, and a complicated maintenance.
In order to continue the electrolytic treatment, it is necessary to disassemble the electrolytic cell and replace it with a new electrolytic cell without clogging, resulting in reduced workability and an economic burden.

【0005】[0005]

【発明が解決しようとする問題点】微生物を含有する被
処理水の電解処理は薬剤を使用しないため薬剤残留や高
価な薬剤を使用することに起因する欠点を有しない非常
に有用な方法であるが、効率を更に向上させるために三
次元多孔質電極を使用すると上述のように付随的ではあ
るが、処理効率の低下の一因となる電極の目詰まりとい
う問題点が生ずる。
Problems to be Solved by the Invention Electrolytic treatment of water to be treated containing microorganisms is a very useful method which does not use any chemicals and therefore does not have any drawbacks caused by residual medicines and the use of expensive chemicals. However, if a three-dimensional porous electrode is used to further improve the efficiency, as described above, there is a problem that the electrode is clogged, which is one of the causes of a decrease in processing efficiency.

【発明の目的】本発明は、前述の従来技術の問題点を解
消し、目詰まりに起因する処理効率の低減を最小限に抑
制した固定床型三次元電極式電解槽を提供することを目
的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a fixed-bed three-dimensional electrode type electrolytic cell which solves the above-mentioned problems of the prior art and minimizes the reduction in processing efficiency due to clogging. And

【0006】[0006]

【問題点を解決するための手段】本発明は、微生物を含
む被処理水を接触させて該被処理水の電気化学的処理を
行うための三次元多孔質電極が設置された固定床型三次
元電極式電解槽において、前記三次元多孔質電極に該電
極の上流側と下流側を連通する貫通孔を形成したことを
特徴とする固定床型三次元電極式電解槽である。なお本
発明では電極表面上で実質的な酸化還元反応のような電
気化学反応を生起していないことがあるので本発明装置
は電気化学的処理装置というべきであるが、一般呼称に
従って電解槽と称する。以下本発明を詳細に説明する。
SUMMARY OF THE INVENTION The present invention relates to a fixed-bed type tertiary electrode provided with a three-dimensional porous electrode for contacting water to be treated containing microorganisms to perform electrochemical treatment of the water to be treated. A fixed bed type three-dimensional electrode type electrolytic cell, wherein a through-hole communicating the upstream side and the downstream side of the electrode is formed in the three-dimensional porous electrode in the original electrode type electrolytic cell. In the present invention, the apparatus of the present invention should be referred to as an electrochemical treatment apparatus because an electrochemical reaction such as a substantial oxidation-reduction reaction may not occur on the electrode surface. Name. Hereinafter, the present invention will be described in detail.

【0007】本発明に係わる固定床型三次元電極式電解
槽は、写真処理液等の被処理水中の微生物の制菌、殺菌
あるいは滅菌を行うために、固定床型三次元電極を収容
した固定床型三次元電極電解槽の前記固定床型三次元電
極に被処理水流通の抵抗を小さくするための貫通孔を形
成したことを特徴とするものである。本発明の微生物に
は、細菌(バクテリア)、菌、糸状菌(黴)、大腸菌、
酵母、変形菌、単細胞の藻類、原生動物、ウイルス等が
含まれる。又本発明における被処理水には、写真処理
液、プール水、製紙洗浄水、熱交換器冷却水、飲料水、
カップ式自動販売機用貯水、養魚用水、薬剤希釈水、浴
場水及びガス洗浄塔用循環水などが含まれる。前記被処
理水を固定床型三次元電極電解槽に供給すると、該被処
理水中の微生物は液流動によって前記電解槽の陽極や陰
極あるいは後述する誘電体等に接触しそれらの表面で高
電位のエネルギー供給を受け強力な酸化還元反応が微生
物細胞内で生じ、その活動が弱まったり微生物自身が死
滅して滅菌が行われると考えられる。
The fixed-bed type three-dimensional electrode type electrolytic cell according to the present invention is a fixed-bed type three-dimensional electrode-containing electrolytic cell for controlling, sterilizing or sterilizing microorganisms in water to be treated such as a photographic processing solution. The fixed bed type three-dimensional electrode of the floor type three-dimensional electrode electrolytic cell is characterized in that a through-hole for reducing the resistance of the flow of the water to be treated is formed. The microorganism of the present invention includes bacteria (bacteria), fungi, molds (fungi), Escherichia coli,
Includes yeast, deformed fungi, unicellular algae, protozoa, viruses and the like. The water to be treated in the present invention includes photographic processing solution, pool water, paper washing water, heat exchanger cooling water, drinking water,
Includes water storage for cup-type vending machines, fish farming water, chemical dilution water, bath water and circulating water for gas washing towers. When the water to be treated is supplied to the fixed-bed type three-dimensional electrode electrolytic cell, microorganisms in the water to be treated come into contact with an anode or a cathode of the electrolytic cell or a dielectric material described later by a liquid flow and have a high potential on their surface. It is considered that a strong redox reaction occurs in the microbial cells upon receiving the energy supply, and the activity is weakened or the microorganism itself is killed and sterilization is performed.

【0008】本発明の固定床型三次元電極式電解槽は、
一般に分極現象を生じ電極として機能する固定床型三次
元電極と給電用電極を含み、該固定床型三次元電極は前
述の使用する電解槽に応じた形状を有し、固定床型複極
式電解槽を使用する場合には、前記被処理水が透過可能
な多孔質材料、例えばフェルト状、織布状、多孔質ブロ
ック状等の形状を有する活性炭、グラファイト、炭素繊
維等の炭素系材料から、あるいは同形状を有するニッケ
ル、銅、ステンレス、鉄、チタン等の金属材料、更にそ
れら金属材料に貴金属のコーティングを施した材料から
形成された複数個の好ましくはフェルト状、織布状、多
孔質ブロック状、多孔板状、スポンジ状の誘電体を直流
電場内に置き、両端に設置した平板状又はエキスパンド
メッシュ状やパーフォレーティッドプレート状等の多孔
板体から成る給電用電極間に直流電圧あるいは10Hz以下
の交流電圧を印加して前記誘電体を分極させ該誘電体の
一端及び他端にそれぞれ陽極及び陰極を形成させて成る
固定床型三次元電極を収容した固定床型複極式電解槽と
することが可能であり、この他に単独で陽極としてある
いは陰極として機能する三次元材料を交互に短絡しない
ように設置しかつ電気的に接続して固定床型複極式電解
槽とすることもできる。
[0008] The fixed bed type three-dimensional electrode type electrolytic cell of the present invention comprises:
In general, it includes a fixed-bed type three-dimensional electrode that functions as an electrode that causes a polarization phenomenon and a power supply electrode, and the fixed-bed type three-dimensional electrode has a shape according to the electrolytic cell used above, and is a fixed-bed type bipolar electrode. When using an electrolytic cell, a porous material through which the water to be treated can pass, such as felt, woven cloth, activated carbon having a shape such as a porous block, graphite, carbon-based material such as carbon fiber, etc. Or a plurality of preferably felt-like, woven-like, and porous materials formed of a metal material having the same shape, such as nickel, copper, stainless steel, iron, and titanium, and a material obtained by coating the metal material with a noble metal. A block, perforated, or sponge-like dielectric is placed in a DC electric field, and the power is supplied from a perforated plate, such as a flat plate, expanded mesh, or perforated plate, installed at both ends. A fixed bed containing a fixed-bed type three-dimensional electrode formed by applying a DC voltage or an AC voltage of 10 Hz or less between the electrodes to polarize the dielectric and form an anode and a cathode at one end and the other end of the dielectric, respectively. It is also possible to use a fixed-bed type bipolar cell in which a three-dimensional material that functions as an anode or a cathode alone is installed so as not to be short-circuited alternately and electrically connected. It can also be a type electrolytic cell.

【0009】又単極式固定床型電解槽を使用する場合に
は、前記した誘電体又は単独で陽極としてあるいは陰極
として機能する三次元材料各1個を隔膜を介してあるい
は介さずに電解槽内に設置し、あるいは複数の誘電体又
は前記三次元材料を同一の電解電位の状態で単一の電解
槽内に設置するようにする。いずれの形態の電極を使用
する場合でも、処理すべき被処理水が流れる電解槽内に
液が電極や誘電体や微粒子に接触せずに流通できる空隙
があると被処理水の処理効率が低下するため、電極等は
電解槽内の被処理水の流れが電極に接触せずにショート
パスしないように配置することが望ましい。
When a monopolar fixed-bed electrolytic cell is used, the above-mentioned dielectric or one of the three-dimensional materials which independently function as an anode or a cathode can be used with or without a diaphragm. Or a plurality of dielectrics or the three-dimensional material are placed in a single electrolytic cell at the same electrolytic potential. Regardless of which type of electrode is used, the efficiency of the water to be treated decreases if there is a gap in the electrolytic cell through which the water to be treated flows without allowing the liquid to come into contact with the electrode, dielectric or fine particles. Therefore, it is desirable to arrange the electrodes and the like so that the flow of the water to be treated in the electrolytic cell does not contact the electrodes and does not cause a short path.

【0010】前記電解槽内を隔膜で区画して陽極室と陰
極室を形成しても、隔膜を使用せずにそのまま通電を行
うこともできるが、隔膜を使用せずかつ電極の極間距離
あるいは誘電体と電極、又は誘電体相互の間隔を狭くす
る場合には短絡防止のため電気絶縁性のスペーサとして
例えば有機高分子材料で作製した網状スペーサ等を両極
間あるいは前記誘電体間等に挿入することができる。又
隔膜を使用する場合には流通する被処理水の移動を妨害
しないように多孔質例えばその開口率が10%以上95%以
下好ましくは20%以上80%以下のものを使用することが
望ましく、該隔膜は少なくとも前記被処理水が透過でき
る程度の孔径の微細孔を有していなければならない。前
記誘電体として活性炭、グラファイト、炭素繊維等の炭
素系材料を使用しかつ陽極から酸素ガスを発生させなが
ら被処理水を処理する場合には、前記誘電体が酸素ガス
により酸化され炭酸ガスとして溶解することがある。こ
れを防止するためには前記誘電体の陽分極する側にチタ
ン等の基材上に酸化イリジウム、酸化ルテニウム等の白
金族金属酸化物を被覆し通常不溶性金属電極として使用
される多孔質材料を接触状態で設置し、酸素発生が主と
して該多孔質材料上で生ずるようにすればよい。
Even if the anode chamber and the cathode chamber are formed by partitioning the inside of the electrolytic cell with a diaphragm, energization can be carried out without using a diaphragm, but without using a diaphragm and the distance between the electrodes. Alternatively, when the distance between the dielectric material and the electrode or between the dielectric materials is reduced, a net-like spacer made of an organic polymer material or the like is inserted as an electrically insulating spacer between both electrodes or between the dielectric materials to prevent a short circuit. can do. When a diaphragm is used, it is desirable to use a porous material having an opening ratio of 10% or more and 95% or less, preferably 20% or more and 80% or less, so as not to hinder the movement of the water to be circulated. The diaphragm must have at least micropores with a pore size that allows the water to be treated to permeate. When a carbon-based material such as activated carbon, graphite, or carbon fiber is used as the dielectric and water to be treated is treated while generating oxygen gas from the anode, the dielectric is oxidized by oxygen gas and dissolved as carbon dioxide. May be. In order to prevent this, a porous material which is usually used as an insoluble metal electrode by coating a platinum group metal oxide such as iridium oxide or ruthenium oxide on a base material such as titanium on the side where the dielectric material is positively polarized is used. What is necessary is just to install in a contact state, and to generate | occur | produce oxygen mainly on this porous material.

【0011】又電解槽に供給される被処理水の流量は、
該被処理水が効率的に電極等の表面と接触できるように
規定すればよく、完全な層流であると横方向の移動が少
なく電極、誘電体及び微粒子表面との接触が少なくなる
ため、乱流状態を形成するようにすることが好ましく、
500 以上のレイノルズ数を有する乱流とすることが特に
好ましい。そして前述の電解槽による処理のみでは所望
の滅菌効率が達成されない場合には、被処理水中に滅菌
剤を連続的あるいは間欠的に添加しより完全に滅菌を行
うようにしてもよい。この場合でも従来の滅菌剤単独に
よる滅菌処理と異なり僅少量の滅菌剤の添加でよいため
コスト的な負担が少なくかつ被処理水中に殆ど残留する
ことがなく、被処理水の組成変化等が生ずることが殆ど
ない。該滅菌剤は当初から被処理水中に溶解させても配
管中又は電解槽ないの被処理水に注入してもよい。
The flow rate of the water to be treated supplied to the electrolytic cell is as follows:
It suffices that the water to be treated is regulated so as to be able to efficiently contact the surface of the electrode or the like.Because complete laminar flow causes less lateral movement and less contact with the electrode, dielectric and fine particle surfaces, It is preferable to form a turbulent state,
Particularly preferred is a turbulent flow having a Reynolds number of 500 or more. If the desired sterilization efficiency is not achieved only by the treatment using the electrolytic cell described above, a sterilizing agent may be added to the water to be treated continuously or intermittently to perform more complete sterilization. Even in this case, unlike the conventional sterilization treatment using only a sterilizing agent, a small amount of sterilizing agent may be added, so that the cost burden is small and almost no residue remains in the water to be treated, and the composition of the water to be treated changes. There are few things. The sterilant may be dissolved in the water to be treated from the beginning or may be injected into the piping or the water without the electrolytic tank.

【0012】前記誘導体から成る固定床型三次元電極の
場合、その微細孔の平均開孔径は通常25〜125 μm程度
である。そしてこの微細孔は電極を上流側から下流側に
直線状に延びるのではなく大きく蛇行しているため、滅
菌処理により生ずる微細孔の死骸や不溶解懸濁成分によ
る目詰まりが生じ易くなっている。従って本発明では前
記固定床型三次元電極内に前記微細孔より径の大きい貫
通孔を形成する。この貫通孔は被処理水の流通を円滑に
するため、微細孔と異なり、被処理水の流通方向に対し
てほぼ平行に形成することが望ましい。該貫通孔の径が
大き過ぎると前記固定床型三次元電極と接触しない被処
理水の量が増加するため好ましくなく、又貫通孔の径が
小さ過ぎると抵抗の減少が僅かで電極の目詰まりが十分
に防止できないため好ましくなく、前記貫通孔の全断面
積が被処理水の流通方向に直角な三次元多孔質電極の
面積の0.05〜5.0 %となるように貫通孔の径及び数を決
定することが望ましく、該貫通孔の孔径は前記微細孔よ
り大きくする。
In the case of a fixed-bed type three-dimensional electrode comprising the above derivative, the average pore diameter of the fine pores is usually about 25 to 125 μm. Since the micropores meander rather than extend the electrode linearly from the upstream side to the downstream side, clogging of the micropores caused by the sterilization process due to dead bodies and insoluble suspended components is liable to occur. . Therefore, in the present invention, a through hole having a diameter larger than the fine hole is formed in the fixed bed type three-dimensional electrode. In order to facilitate the flow of the water to be treated, the through holes are desirably formed substantially parallel to the flow direction of the water to be treated, unlike the fine holes. If the diameter of the through-hole is too large, the amount of water to be treated that does not come into contact with the fixed-bed type three-dimensional electrode is undesirably increased. If the diameter of the through-hole is too small, the resistance is slightly reduced and the electrode is clogged. disconnection is not preferable because it can not sufficiently prevent the total cross-sectional area of the through holes of the orthogonal three-dimensional porous electrode in the flowing direction of the water to be treated
It is desirable to determine the diameter and the number of the through-holes so as to be 0.05 to 5.0% of the area , and the diameter of the through-holes is made larger than that of the fine holes.

【0013】この貫通孔は被処理水流通の抵抗減少とい
う面から固定床型三次元電極内に被処理水の流通方向と
平行に形成することが望ましい。そしてのその径が大き
過ぎると前述の通り被処理水と電極との接触効率が低下
するため、貫通孔の断面積を大きくしたい場合には比較
的小径の貫通孔を複数個形成することが望ましい。処理
効率を向上させるために前記固定床型三次元電極を複数
個重なり合うように電解槽内に設置してもよい。この場
合に隣接する固定床型三次元電極の貫通孔の位置が一致
していると上流側の電極を通過した被処理水が直ちに下
流側の貫通孔に入り、固定床型三次元電極との接触効率
が低下するため、複数個の固定床型三次元電極を使用す
る場合にはその貫通孔同士の位置がずれるように電解槽
内に設置し、これにより貫通孔を流通する流速の速い被
処理水が上流側の電極の貫通孔から下流側の電極の貫通
孔に導かれても、両電極間で横方向に移動しその間に電
極表面に十分接触する機会を与えるすることが望まし
い。
This through-hole is desirably formed in the fixed-bed type three-dimensional electrode in parallel with the flow direction of the water to be treated from the viewpoint of reducing the resistance of the flow of the water to be treated. If the diameter is too large, the contact efficiency between the water to be treated and the electrode is reduced as described above. Therefore, when it is desired to increase the cross-sectional area of the through-hole, it is desirable to form a plurality of relatively small-diameter through-holes. . In order to improve the processing efficiency, a plurality of the fixed-bed type three-dimensional electrodes may be installed in the electrolytic cell so as to overlap with each other. In this case, if the positions of the through-holes of the adjacent fixed-bed type three-dimensional electrodes match, the water to be treated that has passed through the upstream-side electrode immediately enters the downstream-side through-hole, and the water with the fixed-bed-type three-dimensional electrode intersects. When a plurality of fixed-bed type three-dimensional electrodes are used, they are installed in the electrolytic cell so that the positions of the through-holes are shifted from each other. Even if the treated water is guided from the through-hole of the upstream electrode to the through-hole of the downstream electrode, it is desirable to provide an opportunity to move laterally between the two electrodes and to make sufficient contact with the electrode surface during that time.

【0014】前記固定床型三次元電極に貫通孔を形成す
ると、該貫通孔内を流通する被処理水の流速が微細孔内
を流通する被処理水の流速より大きくなり、全体的に被
処理水の通過抵抗は減少する。従って被処理水の固定床
型三次元電極内の流通が円滑になり、死滅微生物の蓄積
も減少し目詰まりが生じ難くなる。一方流速が速くなっ
たために被処理水と電極との接触効率は減少するが、目
詰まりが生じないため電極の交換及びそれに伴う電解槽
の分解や組立を行う必要がなくなり、全体的な作業性及
び経済性は大きく向上する。このように構成された電解
槽を使用しても死滅微生物やカルシウムやマグネシウム
の水酸化物等が固定床型三次元電極に付着する。これら
の付着物を除去するためには、前記三次元電極の極性を
反転させて付着した死滅微生物等を被処理水の水素イオ
ン濃度が高い陽極面上で再溶解させて電極表面から除去
し、これにより前記固定床型三次元電極の目詰まりを更
に抑制することができる。極性を反転させる時間的割合
は死滅微生物等の量等により異なり、前記死滅微生物等
は一回の極性反転で全てが除去される必要はない。通常
は極性を正方向とする通電と極性を逆方向と(反転)す
る通電の時間的割合を1:1から10:1の範囲で行うこ
とが望ましい。
When a through-hole is formed in the fixed-bed type three-dimensional electrode, the flow rate of the water to be processed flowing through the through-hole becomes greater than the flow rate of the water to be processed flowing through the fine holes, and the entire flow rate of the water to be processed is increased. Water passage resistance is reduced. Therefore, the flow of the to-be-treated water in the fixed-bed type three-dimensional electrode becomes smooth, the accumulation of dead microorganisms decreases, and clogging hardly occurs. On the other hand, the contact velocity between the water to be treated and the electrode is reduced due to the increased flow velocity, but the clogging does not occur, so there is no need to replace the electrode and disassemble or assemble the electrolytic cell. And economy is greatly improved. Even when the electrolytic cell configured as described above is used, dead microorganisms and hydroxides of calcium and magnesium adhere to the fixed-bed type three-dimensional electrode. In order to remove these deposits, the polarity of the three-dimensional electrode is reversed, and the dead microorganisms and the like that have adhered are redissolved on the anode surface having a high hydrogen ion concentration of the water to be treated and removed from the electrode surface, Thereby, clogging of the fixed-bed type three-dimensional electrode can be further suppressed. The time ratio for reversing the polarity varies depending on the amount of dead microorganisms and the like, and it is not necessary that all of the dead microorganisms and the like be removed by one polarity reversal. Normally, it is desirable that the time ratio between energization in which the polarity is in the positive direction and energization in which the polarity is reversed (inverted) is in the range of 1: 1 to 10: 1.

【0015】次に添付図面に基づいて本発明の電解槽の
好ましい例を説明するが、本発明の電解槽は、これらの
電解槽に限定されるものではない。図1は、本発明の電
解槽として使用可能な単極式固定床型電解槽の一例を示
す概略縦断面図である。底板中央に被処理水供給口1
を、又天板中央に被処理水取出口2をそれぞれ有する短
寸円筒状の電解槽本体3内の下部には、炭素質材料や金
属焼結体等から形成される短寸円柱形の多孔質固定床型
三次元陰極4が前記本体3の内壁と実質的に液流動の生
じないような僅かな間隙しか形成しないように収容さ
れ、かつ該陰極4には縦方向の多数の小径の貫通孔5が
形成されている。前記電解槽本体3は、長期間の使用又
は再度の使用にも耐え得る電気絶縁材料で形成すること
が好ましく、特に合成樹脂であるポリエピクロルヒドリ
ン、ポリビニルメタクリレート、ポリエチレン、ポリプ
ロピレン、ポリ塩化ビニル、ポリ塩化エチレン、フェノ
ール−ホルムアルデヒド樹脂、ポリアクリロニトリル樹
脂等が好ましく使用できる。
Next, preferred examples of the electrolytic cell of the present invention will be described with reference to the accompanying drawings, but the electrolytic cell of the present invention is not limited to these electrolytic cells. FIG. 1 is a schematic longitudinal sectional view showing an example of a monopolar fixed-bed electrolytic cell that can be used as the electrolytic cell of the present invention. Treatment water supply port 1 in the center of the bottom plate
In the lower part of the short cylindrical electrolytic cell body 3 having the water outlet 2 to be treated at the center of the top plate, a short cylindrical porous body formed of a carbonaceous material or a metal sintered body is provided. The fixed-bed type three-dimensional cathode 4 is accommodated so as to form a small gap with the inner wall of the main body 3 so that substantially no liquid flow occurs, and the cathode 4 has a large number of small-diameter penetrations in the vertical direction. A hole 5 is formed. The electrolytic cell main body 3 is preferably formed of an electrically insulating material that can withstand long-term use or re-use. Particularly, synthetic resins such as polyepichlorohydrin, polyvinyl methacrylate, polyethylene, polypropylene, polyvinyl chloride, and polyvinyl chloride Ethylene, phenol-formaldehyde resin, polyacrylonitrile resin and the like can be preferably used.

【0016】このような構成から成る電解槽本体3は例
えば水道配管の途中や水道の蛇口に設置され、該本体3
にその被処理水供給口1から、微生物を含有する被処理
水を供給すると、該被処理水は前記陰極4の下面に接触
しかつ一部が該陰極4内の微細孔を浸透しかつ他の部分
が前記貫通孔5内を比較的速く透過して前記陰極4上面
に達する。この間に被処理水は炭素質材料等の前記陰極
4に接触して該被処理水中の微生物が死滅する。前記微
細孔の孔径は前記貫通孔5の孔径より小さく抵抗が大き
く流速が小さいため、該微細孔内に生じた死滅微生物は
被処理水とともに陰極4上面へ取り出され難く比較的速
く目詰まりが生ずる。一方前記貫通孔5の孔径は微細孔
の孔径より大きいため抵抗が小さく流速が速いため、該
貫通孔5内に生じた死滅微生物は被処理水とともに陰極
4上面へ取り出され、該貫通孔5が目詰まりすることは
殆どない。従って図1の電解槽3を使用して被処理水の
電解滅菌を行っても比較的孔径の大きい貫通孔5が目詰
まりすることは殆どなく、長期間に亘って陰極4の交換
を行うことなく処理を継続することができる。
The electrolytic cell main body 3 having such a structure is installed, for example, in the middle of a water supply pipe or at a water tap.
When treated water containing microorganisms is supplied from the treated water supply port 1 to the treated water, the treated water contacts the lower surface of the cathode 4 and partially penetrates the micropores in the cathode 4 and Portion penetrates through the through hole 5 relatively quickly and reaches the upper surface of the cathode 4. During this time, the water to be treated comes into contact with the cathode 4 such as a carbonaceous material, and the microorganisms in the water to be treated are killed. Since the diameter of the micropores is smaller than the diameter of the through-holes 5 and the resistance is large and the flow velocity is low, the dead microorganisms generated in the micropores are difficult to be taken out to the upper surface of the cathode 4 together with the water to be treated, and clogging occurs relatively quickly. . On the other hand, since the diameter of the through-hole 5 is larger than the diameter of the fine hole, the resistance is small and the flow rate is high, the dead microorganisms generated in the through-hole 5 are taken out to the upper surface of the cathode 4 together with the water to be treated. Almost no clogging. Therefore, even if electrolytic sterilization of the water to be treated is performed using the electrolytic cell 3 of FIG. 1, the through-hole 5 having a relatively large diameter hardly clogs, and the cathode 4 is replaced for a long period of time. Processing can be continued.

【0017】図2は、本発明の電解槽として使用可能な
単極式固定床型電解槽の他の例を示す概略縦断面図であ
る。底板中央に被処理水供給口11を、又天板中央に被処
理水取出口12をそれぞれ有する円筒状でその内壁面が陽
極としての機能を有する電解槽本体13内の内部には、そ
の上面に邪魔板14が該本体13の内上面との間に若干の間
隙が形成されるように一体的に設置された円柱形の多孔
質固定床型三次元陰極15が収容され、該陰極15にはその
下面中央から切込み16が切設され該切込み16は前記邪魔
板14の若干下方に達している。該陰極15には切込み16か
ら周囲に向かって横方向の貫通孔17が形成され、かつ前
記陰極15下面と前記本体13の内下面との間にはOリング
18が設置されて被処理水の該間隙への漏入を防止してい
る。このような構成から成る電解槽本体13にその被処理
水供給口11から、被処理水を供給すると、該被処理水は
前記Oリング18により本体13内下面と陰極15下面間の間
隙を透過することが抑止されるため、前記切込み16内を
上昇した後、一部が前記陰極15の微細孔を透過し他の部
分が前記貫通孔17を流通して該陰極15の外周面に達し更
に上昇して前記邪魔板14の上面の間隙を通って前記被処
理水取出口12から槽外に取り出される。図2の電解槽で
も、図1の電解槽と同様に貫通孔17の目詰まりが生ずる
ことがなく、長期間に亘って陰極15の交換を行うことな
く被処理水の電解滅菌処理を継続することができる。
FIG. 2 is a schematic longitudinal sectional view showing another example of a monopolar fixed bed type electrolytic cell which can be used as the electrolytic cell of the present invention. The inside of an electrolytic cell body 13 having a cylindrical shape having a treated water supply port 11 in the center of the bottom plate and a treated water outlet 12 in the center of the top plate, and having an inner wall surface functioning as an anode, has an upper surface. A baffle plate 14 accommodates a cylindrical porous fixed-bed type three-dimensional cathode 15 which is integrally installed such that a slight gap is formed between the baffle plate 14 and the inner upper surface of the main body 13. A cut 16 is cut from the center of the lower surface of the baffle, and the cut 16 extends slightly below the baffle plate 14. The cathode 15 has a through hole 17 formed in the lateral direction from the cut 16 toward the periphery, and an O-ring is provided between the lower surface of the cathode 15 and the inner lower surface of the main body 13.
18 is provided to prevent water to be treated from leaking into the gap. When water to be treated is supplied from the water supply port 11 to the electrolytic cell body 13 having such a configuration, the water to be treated passes through the gap between the inner lower surface of the body 13 and the lower surface of the cathode 15 by the O-ring 18. Because it is suppressed, after rising in the cut 16, a part of the perforation passes through the fine holes of the cathode 15, and the other part flows through the through hole 17 and reaches the outer peripheral surface of the cathode 15. It rises and passes through the gap on the upper surface of the baffle plate 14 and is taken out of the tank from the water outlet 12 for treatment. In the electrolytic cell of FIG. 2, similarly to the electrolytic cell of FIG. 1, clogging of the through holes 17 does not occur, and the electrolytic sterilization of the water to be treated is continued without replacing the cathode 15 for a long period of time. be able to.

【0018】図3は、本発明の電解槽として使用可能な
複極式固定床型電解槽の一例を示す概略縦断面図であ
る。上下にフランジ21を有する円筒形の電解槽本体22の
内部上端近傍及び下端近傍にはそれぞれメッシュ状の給
電用陽極ターミナル23と給電用陰極ターミナル24が設け
られている。該両電極ターミナル23、24間には複数個の
図示の例では3個のスポンジ状の固定床25が積層され、
かつ該固定床25間及び該固定床25と前記両電極ターミナ
ル23、24間に4枚のメッシュ状隔膜又はスペーサー26が
挟持されている。各固定床25は電解槽本体22の内壁に密
着し固定床25の内部を通過せず、固定床25と電解槽本体
22の側壁との間を流れる被処理水の漏洩流がなるべく少
なくなるように配置されている。
FIG. 3 is a schematic vertical sectional view showing one example of a bipolar fixed-bed type electrolytic cell usable as the electrolytic cell of the present invention. A meshed power supply anode terminal 23 and a power supply cathode terminal 24 are provided near the inner upper end and the lower end of a cylindrical electrolytic cell main body 22 having upper and lower flanges 21, respectively. A plurality of sponge-like fixed beds 25 are stacked between the two electrode terminals 23 and 24 in the illustrated example,
Further, four mesh diaphragms or spacers 26 are sandwiched between the fixed bed 25 and between the fixed bed 25 and the two electrode terminals 23 and 24. Each fixed bed 25 is in close contact with the inner wall of the electrolytic cell main body 22 and does not pass through the inside of the fixed bed 25.
It is arranged so that the leakage flow of the water to be treated flowing between the side walls of the pipe 22 is as small as possible.

【0019】前記3個の固定床25のそれぞれには多数の
貫通孔27が形成され、上下に隣接する固定床25の貫通孔
27は互いにその形成箇所が横方向に千鳥状になってい
る。このような構成から成る電解槽に下方から矢印で示
すように被処理水を供給しながら通電を行うと、前記各
固定床25が図示の如く下面が正に上面が負に分極して各
固定床25の上面に多孔質陰極が形成され、前記被処理水
はこの多孔質陰極に接触して微生物の滅菌が行われる。
この電解槽に供給された前記被処理水は図1及び図2の
電解槽の場合と同様に一部が固定床25内の微細孔を透過
し他の部分が前記貫通孔27を流通し前記貫通孔27が目詰
まりすることがなく、長期間に亘って前記固定床25の交
換を行うことなく被処理水の電解滅菌処理を継続するこ
とができる。
A plurality of through holes 27 are formed in each of the three fixed floors 25, and the through holes of the fixed floor 25 adjacent vertically are formed.
27 are staggered in the horizontal direction. When current is supplied to the electrolytic cell having such a configuration while supplying water to be treated from below as indicated by the arrow, each fixed bed 25 is polarized such that its lower surface is positive and its upper surface is negative, as shown in the figure. A porous cathode is formed on the upper surface of the floor 25, and the water to be treated contacts the porous cathode to sterilize microorganisms.
The treated water supplied to the electrolytic cell is partially transmitted through the fine holes in the fixed bed 25 and the other part is circulated through the through holes 27 as in the electrolytic cells of FIGS. 1 and 2. Electrolytic sterilization of the water to be treated can be continued without exchanging the fixed bed 25 for a long period of time without clogging the through holes 27.

【0020】図4は、本発明の複極式固定床型電解槽の
他の例を示すもので、該電解槽は図3の電解槽の固定床
25の給電用陰極ターミナル24に向かう側つまり陽分極す
る側にメッシュ状の不溶性金属電極28を密着状態で設置
し、かつ図3の多数の小径の貫通孔27の代わりに、最上
位の固定床29aの左縁近傍に比較的大径の貫通孔30a
を、中間の固定床29bの右縁近傍に比較的大径の貫通孔
30bを、最下位の固定床29cの左縁近傍に比較的大径の
貫通孔30cを形成したものであり、他の部材は図3と同
一であるので同一符号を付して説明を省略する。
FIG. 4 shows another example of the bipolar fixed-bed type electrolytic cell of the present invention. The electrolytic cell is a fixed bed of the electrolytic cell of FIG.
A mesh-like insoluble metal electrode 28 is placed in close contact with the power supply cathode terminal 24 on the side of the power supply cathode terminal 24, that is, on the side to be positively polarized, and instead of the large number of small-diameter through holes 27 in FIG. A relatively large through hole 30a near the left edge of 29a
A relatively large diameter through hole near the right edge of the middle fixed floor 29b.
30b has a relatively large diameter through hole 30c formed near the left edge of the lowermost fixed floor 29c, and the other members are the same as those in FIG. .

【0021】直流電圧が印加された固定床29a〜cはそ
の両端部において最も大きく分極が生じ、ガス発生が伴
う場合には該両端部においてガス発生が生じ易い。従っ
て最も強く陽分極するつまり最も激しく酸素ガスが発生
する固定床29a〜cの給電用陰極ターミナル24に向かう
端部には最も速くかつ激しく酸化反応や電極基材の溶解
反応が生じる。図示の通りこの部分に不溶性金属電極28
を設置しておくと、該不溶性金属電極28の酸素発生過電
圧が固定床29a〜cを形成する炭素系材料の前記過電圧
より低いため殆どの酸素ガスが前記不溶性金属電極28か
ら発生し固定床29a〜cは殆ど酸素ガスと接触しなくな
るため、前記固定床29a〜cの溶解は効果的に抑制され
る。又該電解槽22に供給された被処理水は図3の場合と
同様に処理されるが、各固定床29a〜cに形成された貫
通孔30a〜cが最上位及び最下位の固定床29a及びcに
ついては左縁近傍に、又中間の固定床29bについては右
縁近傍に形成されているため、被処理水が貫通孔30a〜
cのみを流通しても隣接する固定床29a〜c間で被処理
水に横方向の流れが生じ、固定床29a〜cの上面及び下
面に接触するため処理が確実に行われる。
The fixed beds 29a to 29c to which a DC voltage is applied are most strongly polarized at both ends, and when gas is generated, gas is easily generated at both ends. Therefore, the fastest and most intense oxidation reaction and the dissolution reaction of the electrode base material take place at the ends of the fixed beds 29a to 29c, which are the most strongly anodic polarized, that is, generate the most intense oxygen gas, toward the power supply cathode terminal 24. As shown, the insoluble metal electrode 28
Is installed, most of the oxygen gas is generated from the insoluble metal electrode 28 because the oxygen generating overvoltage of the insoluble metal electrode 28 is lower than the overvoltage of the carbon-based material forming the fixed beds 29a to 29c. Cc hardly comes into contact with oxygen gas, so that the dissolution of the fixed beds 29a〜c is effectively suppressed. The water to be treated supplied to the electrolytic cell 22 is treated in the same manner as in the case of FIG. 3, but the through holes 30a to 30c formed in the fixed beds 29a to 29c have the uppermost and lowermost fixed beds 29a. And c are formed near the left edge, and the middle fixed floor 29b is formed near the right edge, so that the water to be treated passes through the through holes 30a to 30a.
Even if only c flows, the water to be treated flows laterally between the adjacent fixed beds 29a to 29c and contacts the upper and lower surfaces of the fixed beds 29a to 29c, so that the treatment is reliably performed.

【0022】[0022]

【実施例】以下に本発明装置を使用する被処理水処理の
実施例を記載するが、該実施例は本発明を限定するもの
ではない。
EXAMPLES Examples of the treatment of water to be treated using the apparatus of the present invention are described below, but the examples do not limit the present invention.

【実施例1】透明な硬質ポリ塩化ビニル樹脂製の高さ25
0 mm、内径205 mmのフランジ付円筒形である図3に
示した電解槽22を熱交換器に近接して設置し、この電解
槽と熱交換器のシステムを6個用意した。
Example 1 Transparent rigid polyvinyl chloride resin height 25
The electrolytic cell 22 shown in FIG. 3 which is a cylinder having a diameter of 0 mm and an inner diameter of 205 mm and shown in FIG. 3 was installed close to the heat exchanger, and six electrolytic cell and heat exchanger systems were prepared.

【0023】前記電解槽内には、孔径3mmの貫通孔を
0〜200 個形成した炭素繊維から成る直径200 mm、厚
さ10mmの多孔質固定床(東海カーボン株式会社製)10
個を、開口率80%で直径205 mm及び厚さ5mmのポリ
エチレン樹脂製隔膜11枚で挟み込み、上下両端の隔膜に
それぞれ白金をその表面にメッキしたチタン製である直
径200 mm、厚さ1mmのメッシュ状給電用陽極ターミ
ナル及び給電用陰極ターミナルを接触させて設置した。
熱交換器用冷却水を50リットル/分の速度で前記電解槽
に給電し、かつ前記給電用電極ターミナル間に60Vの直
流定電圧を印加し、各固定床の貫通孔の数を前記5個の
電解槽ごとに表1に示すように変化させて電解処理前後
の被処理水中の一般細菌コロニーを標準寒天培地による
直接塗抹法により培養しコロニー数を測定した。その結
果を表1に示した。
In the electrolytic cell, a porous fixed bed (manufactured by Tokai Carbon Co., Ltd.) having a diameter of 200 mm and a thickness of 10 mm made of carbon fiber formed with 0 to 200 through-holes having a hole diameter of 3 mm.
Each piece is sandwiched between 11 polyethylene resin membranes having an aperture ratio of 80% and having a diameter of 205 mm and a thickness of 5 mm. Platinum is plated on the upper and lower ends of the membrane by platinum on the surface thereof, each having a diameter of 200 mm and a thickness of 1 mm. The mesh-type power supply anode terminal and the power supply cathode terminal were placed in contact with each other.
The cooling water for the heat exchanger is supplied to the electrolytic cell at a rate of 50 liters / minute, and a DC constant voltage of 60 V is applied between the power supply electrode terminals. The general bacterial colonies in the water to be treated before and after the electrolytic treatment were cultivated by a direct smear method using a standard agar medium, and the number of colonies was measured by changing each electrolytic bath as shown in Table 1. The results are shown in Table 1.

【0024】[0024]

【表1】 [Table 1]

【0025】表1から10〜200 個の3mm径の貫通孔を
形成した固定床を使用した場合、つまり貫通孔の全断面
積を被処理水の流通方向に直角な三次元多孔質電極断面
の0.05〜5.0 %とした場合に長期間低菌数状態を維持
できることが判る。貫通孔の数が零であると固定床の目
詰まりが生ずるため、被処理水が固定床と接触できない
ため、1カ月経過時で滅菌処理ができない状態になって
いると推測され、一方貫通孔の数が300 個であるとつま
り5.0 %以上であると時間経過に伴って固定床の目詰ま
りが生じ始めると被処理水が貫通孔のみを流通して固定
床と接触しないため、微生物のコロニー数が増加するも
のと推測される。
From Table 1, when a fixed bed having 10 to 200 3 mm-diameter through-holes is used, that is, the total cross-sectional area of the through-holes is defined by the cross-section of the three-dimensional porous electrode perpendicular to the flow direction of the water to be treated.
It can be seen that a low bacterial count can be maintained for a long period of time when the content is 0.05 to 5.0%. If the number of through-holes is zero, clogging of the fixed bed occurs, so that it is estimated that sterilization cannot be performed after one month because the water to be treated cannot contact the fixed bed. If the number of cells is 300, that is, if it is 5.0% or more, the clogging of the fixed bed begins to occur over time, and the water to be treated flows only through the holes and does not come into contact with the fixed bed. It is estimated that the number will increase.

【0026】[0026]

【実施例2】固定床数に形成した貫通孔の数を25個に固
定し、孔径を表2に示す通り、1mm、2mm、3m
m、5mm及び20mmとしたこと以外は実施例1の電解
槽と同一の電解槽を使用して同一条件で被処理水の処理
を行った。その結果を表2に示した。
Example 2 The number of through holes formed in the fixed bed number was fixed to 25, and the hole diameter was 1 mm, 2 mm, 3 m as shown in Table 2.
The water to be treated was treated under the same conditions using the same electrolytic cell as the electrolytic cell of Example 1 except that m, 5 mm and 20 mm were used. The results are shown in Table 2.

【0027】[0027]

【表2】 表2から、固定床に形成する貫通孔の全断面積の電極
面積に対する比は0.05〜5.0 %が望ましいことが判る。
[Table 2] From Table 2, it can be seen that the electrode cross- section of the total cross-sectional area of the through hole formed in the fixed floor is shown.
It can be seen that the ratio to the area is desirably 0.05 to 5.0%.

【0028】[0028]

【実施例3】固定床に形成した貫通孔の数を1個に固定
し、孔径を表3に示す通り5mm、20mm、40mm及び
60mmとし固定床の貫通孔位置が千鳥状になるように配
置した(図4参照)こと以外は実施例1の電解槽と同一
の電解槽を使用して同一条件で被処理水の処理を行っ
た。その結果を表3に示した。
Example 3 The number of through holes formed in the fixed bed was fixed to one, and the hole diameters were 5 mm, 20 mm, 40 mm and 40 mm as shown in Table 3.
The treatment of the water to be treated was carried out under the same conditions using the same electrolytic cell as in Example 1 except that the fixed bed was 60 mm and the through holes in the fixed bed were arranged in a staggered manner (see FIG. 4). Was. Table 3 shows the results.

【0029】[0029]

【発明の効果】本発明は、微生物を含む被処理水を接触
させて該被処理水の電気化学的処理を行うための三次元
多孔質電極が設置された固定床型三次元電極式電解槽に
おいて、前記三次元多孔質電極に該電極の上流側と下流
側を連通する貫通孔を形成したことを特徴とする固定床
型三次元電極式電解槽である(請求項1)。通常の固定
床型三次元電極式電解槽を使用して被処理水の電解滅菌
処理を行うと三次元電極の多孔質であり滅菌で生じた死
滅微生物が前記電極の微細孔を閉塞して目詰まりを生じ
させて微生物と電極との接触を阻害し、滅菌効率を大き
く減少させる。
According to the present invention, there is provided a fixed-bed type three-dimensional electrode type electrolytic cell provided with a three-dimensional porous electrode for contacting water to be treated containing microorganisms to perform an electrochemical treatment of the water to be treated. 3. The fixed-bed type three-dimensional electrode type electrolytic cell according to claim 1, wherein a through-hole communicating the upstream side and the downstream side of the electrode is formed in the three-dimensional porous electrode. When the water to be treated is subjected to electrolytic sterilization using a normal fixed-bed type three-dimensional electrode-type electrolytic cell, the three-dimensional electrode is porous, and dead microorganisms generated by sterilization close the micropores of the electrode. It causes clogging and inhibits contact between the microorganisms and the electrodes, greatly reducing sterilization efficiency.

【0030】[0030]

【表3】 [Table 3]

【0031】これに対し上述の構成を有する本発明の固
定床型三次元電極式電解槽では、固定床型三次元電極に
被処理水の流通方向の貫通孔を形成している。該貫通孔
の存在により前記固定床型三次元電極内を透過する被処
理水の抵抗が減少して貫通孔内を被処理水が比較的速い
速度で流通し該貫通孔内で発生する死滅微生物等を運び
去るため該貫通孔に目詰まりが生ずることが殆どなくな
る。該貫通孔により微生物と電極との接触効率は減少す
るが、電解槽の分解及び組立と新しい固定床型三次元電
極を必要とする電極の目詰まりを回避できる。換言する
と本発明の固定床型三次元電極式電解槽は被処理水と電
極との接触効率を部分的に犠牲にして、前記電極の目詰
まりを防止するようにしているのである。
On the other hand, in the fixed-bed type three-dimensional electrode type electrolytic cell of the present invention having the above-described structure, a through-hole is formed in the fixed-bed type three-dimensional electrode in the flow direction of the water to be treated. Due to the presence of the through-hole, the resistance of the water to be treated passing through the fixed-bed type three-dimensional electrode is reduced, and the water to be treated flows through the through-hole at a relatively high speed, and the dead microorganisms generated in the through-hole. Therefore, clogging of the through hole hardly occurs. Although the through-holes reduce the efficiency of contact between the microorganisms and the electrodes, they can avoid disassembly and assembly of the electrolytic cell and clogging of the electrodes which requires a new fixed-bed type three-dimensional electrode. In other words, the fixed-bed type three-dimensional electrode type electrolytic cell of the present invention prevents clogging of the electrode by partially sacrificing the contact efficiency between the water to be treated and the electrode.

【0032】この貫通孔は該貫通孔の全断面積を被処理
水の流通方向に直角な三次元多孔質電極の断面積の0.05
〜5.0 %としたときに(請求項2)特に望ましい結果を
得ることができる。そして電解槽としては複極式固定床
型三次元電極式電解槽を使用すると(請求項3)、固定
床の表面積が莫大になり、処理効率が飛躍的に増加す
る。
The through-hole has a cross-sectional area of 0.05% of the cross-sectional area of the three-dimensional porous electrode perpendicular to the flow direction of the water to be treated.
Particularly desirable results can be obtained when it is set to ~ 5.0% (claim 2). When a bipolar fixed bed type three-dimensional electrode type electrolytic bath is used as the electrolytic bath (claim 3), the surface area of the fixed bed becomes enormous, and the processing efficiency is dramatically increased.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の電解槽として使用可能な単極式固定床
型電解槽の一例を示す概略縦断面図。
FIG. 1 is a schematic vertical sectional view showing an example of a monopolar fixed-bed electrolytic cell that can be used as an electrolytic cell of the present invention.

【図2】本発明の電解槽として使用可能な単極式固定床
型電解槽の他の例を示す概略縦断面図。
FIG. 2 is a schematic longitudinal sectional view showing another example of a monopolar fixed-bed electrolytic cell that can be used as the electrolytic cell of the present invention.

【図3】本発明の電解槽として使用可能な複極式固定床
型電解槽の一例を示す概略縦断面図。
FIG. 3 is a schematic longitudinal sectional view showing an example of a bipolar fixed-bed type electrolytic cell that can be used as the electrolytic cell of the present invention.

【図4】本発明の電解槽として使用可能な複極式固定床
型電解槽の他の例を示す概略縦断面図。
FIG. 4 is a schematic longitudinal sectional view showing another example of a bipolar fixed-bed electrolytic cell that can be used as the electrolytic cell of the present invention.

【符号の説明】[Explanation of symbols]

3・・・電解槽本体 4・・・固定床型三次元陰極 5
・・・貫通孔 6・・・陽極 13・・・電解槽本体 15
・・・固定床型三次元陰極 17・・・貫通孔 22・・・電解槽本体 25・・・固定床 27・・・貫通孔
29a〜c・・・固定床 30a〜c・・・貫通孔
3 ・ ・ ・ Electrolyzer main body 4 ・ ・ ・ Fixed floor type 3D cathode 5
・ ・ ・ Through hole 6 ・ ・ ・ anode 13 ・ ・ ・ electrolyzer main body 15
・ ・ ・ Fixed bed type three-dimensional cathode 17 ・ ・ ・ Through hole 22 ・ ・ ・ Electrolyzer main body 25 ・ ・ ・ Fixed floor 27 ・ ・ ・ Through hole
29a-c: fixed floor 30a-c: through hole

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平4−18980(JP,A) 特開 平4−78486(JP,A) 米国特許3919062(US,A) (58)調査した分野(Int.Cl.7,DB名) C02F 1/46 C02F 1/48 C25B 9/00 C25B 11/00 ────────────────────────────────────────────────── (5) References JP-A-4-18980 (JP, A) JP-A-4-78486 (JP, A) US Patent 3,910,962 (US, A) (58) Fields investigated (Int .Cl. 7 , DB name) C02F 1/46 C02F 1/48 C25B 9/00 C25B 11/00

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 微生物を含む被処理水を接触させて該被
処理水の電気化学的処理を行うための三次元多孔質電極
が設置された固定床型三次元電極式電解槽において、前
記三次元多孔質電極に該電極の上流側と下流側を連通す
直線状の貫通孔を形成したことを特徴とする固定床型
三次元電極式電解槽。
1. A fixed-bed type three-dimensional electrode type electrolytic cell provided with a three-dimensional porous electrode for contacting water to be treated containing microorganisms to perform electrochemical treatment of the water to be treated, A fixed-bed three-dimensional electrode type electrolytic cell, wherein a linear through-hole communicating the upstream side and the downstream side of the electrode is formed in the original porous electrode.
【請求項2】 貫通孔の全断面積を被処理水の流通方向
に直角な三次元多孔質電極の断面積の0.05〜5.0%とし
た請求項1に記載の固定床型三次元電極式電解槽。
2. The fixed bed type three-dimensional electrode type electrolysis according to claim 1, wherein the total cross-sectional area of the through-hole is 0.05 to 5.0% of the cross-sectional area of the three-dimensional porous electrode perpendicular to the flow direction of the water to be treated. Tank.
【請求項3】 電解槽が複極式固定床型三次元電極式電
解槽である請求項1に記載の電解槽。
3. The electrolytic cell according to claim 1, wherein the electrolytic cell is a bipolar fixed bed type three-dimensional electrode type electrolytic cell.
JP09141292A 1992-03-18 1992-03-18 Fixed-bed type three-dimensional electrode type electrolytic cell Expired - Fee Related JP3214724B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09141292A JP3214724B2 (en) 1992-03-18 1992-03-18 Fixed-bed type three-dimensional electrode type electrolytic cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09141292A JP3214724B2 (en) 1992-03-18 1992-03-18 Fixed-bed type three-dimensional electrode type electrolytic cell

Publications (2)

Publication Number Publication Date
JPH06121985A JPH06121985A (en) 1994-05-06
JP3214724B2 true JP3214724B2 (en) 2001-10-02

Family

ID=14025669

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09141292A Expired - Fee Related JP3214724B2 (en) 1992-03-18 1992-03-18 Fixed-bed type three-dimensional electrode type electrolytic cell

Country Status (1)

Country Link
JP (1) JP3214724B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104341026A (en) * 2013-07-29 2015-02-11 黄明科 Three-dimensional electrode electrocatalytic oxidation sewage treatment equipment

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI473651B (en) 2010-11-25 2015-02-21 Asahi Kasei Chemicals Corp Silica shaped body, method for producing the same, and production method of propylene using
CN111747489A (en) * 2020-08-12 2020-10-09 中国石油化工股份有限公司 Electrochemical reactor and wastewater treatment device
CN115583695A (en) * 2022-10-28 2023-01-10 北京石油化工学院 Prevent three-dimensional electric Fenton reactor of short circuit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104341026A (en) * 2013-07-29 2015-02-11 黄明科 Three-dimensional electrode electrocatalytic oxidation sewage treatment equipment

Also Published As

Publication number Publication date
JPH06121985A (en) 1994-05-06

Similar Documents

Publication Publication Date Title
JPH10151463A (en) Water treatment method
JP5913693B1 (en) Electrolytic device and electrolytic ozone water production device
JPH10151464A (en) Drinking water supplying apparatus
CN103663838A (en) Integrated and comprehensive water treatment equipment for electrochemical water
WO2001083378A1 (en) Method and apparatus for clarification treatment of water
JP3214724B2 (en) Fixed-bed type three-dimensional electrode type electrolytic cell
JP2971511B2 (en) Electrochemical treatment method for water to be treated
JP3180318B2 (en) Electrochemical treatment of treated water containing microorganisms
JP3150370B2 (en) Electrolytic treatment method for treated water containing microorganisms
JP3664274B2 (en) Electrolytic treatment method of water to be treated
JP3573385B2 (en) Electrolyzer for electrolytic treatment of water to be treated
JP3220355B2 (en) Electrochemical treatment method for water to be treated
JP3040549B2 (en) High purity water production method
JP3056511B2 (en) Treatment water treatment equipment
JPH0663558A (en) Electrochemical treating method of water to be treated
JP3020551B2 (en) Electrochemical treatment of treated water containing microorganisms
JP2000005755A (en) Treatment of water and device therefor
JPH09314149A (en) Gasket for fixed bed type three dimensional electrode electrolytic bath, fixed bed type three dimensional electrode electrolytic bath, and water treatment method
JPH0788474A (en) Production of high purity water
JPH09299955A (en) Electrolytic cell and treatment of water using the same
JPH09225466A (en) Water treatment
JPH1043765A (en) Electrolyte cell for electrolytic treatment of water to be treated
JPH09117768A (en) Electrolytic treatment of water to be treated
JPH09117767A (en) Electrolytic treatment of water to be treated
JPH0671268A (en) Electrochemical treatment of water to be treated

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees