JPH06233983A - Three dimensional electrode-type electrolytic tank - Google Patents

Three dimensional electrode-type electrolytic tank

Info

Publication number
JPH06233983A
JPH06233983A JP3180430A JP18043091A JPH06233983A JP H06233983 A JPH06233983 A JP H06233983A JP 3180430 A JP3180430 A JP 3180430A JP 18043091 A JP18043091 A JP 18043091A JP H06233983 A JPH06233983 A JP H06233983A
Authority
JP
Japan
Prior art keywords
electrode
dimensional electrode
carbonaceous
electrolytic cell
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3180430A
Other languages
Japanese (ja)
Inventor
Nobutaka Goshima
伸隆 五嶋
Takeshi Takahashi
剛 高橋
Yoshito Sasaki
義人 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai Carbon Co Ltd
Konica Minolta Inc
Original Assignee
Tokai Carbon Co Ltd
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai Carbon Co Ltd, Konica Minolta Inc filed Critical Tokai Carbon Co Ltd
Priority to JP3180430A priority Critical patent/JPH06233983A/en
Publication of JPH06233983A publication Critical patent/JPH06233983A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To inhibit the deterioration of a carbonaceous three dimensional electrode to a minimum extent, and a the same time, make the electrode usable for oxygen generation electrolysis by forming a silicon carbide-coated layer on the positively polarizable surface of the carbonaceous there dimensional electrode of a three dimensional electrode-type electrolytic tank. CONSTITUTION:A silicon carbide-coated layer 7 is formed on the positively polarizable surface, that is, the surface where oxygen generates, of a carbonaceous three dimensional electrode 5 of a three dimensional electrode-type electrolytic tank 2. This coatd layer 7 prevents oxygen which generates due to electrolysis or during electrlytic treatment from coming into contact with the carbonaceous electrode 5. In addition, carbon dioxide is prevented from generating beyond a required generation level by inhibiting the desorption of carbon dioxide generated by chemical reaction between oxygen and the electrode 5. Consequently, it is possible to inhibit the deterioration of the carbonaceous three dimensional electrode to a minimum extent and utilize the electrode as an oxygen generation electrode.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、各種被処理水の処理や
各種電解液の電解に使用する三次元電極式電解槽に関
し、より詳細には微生物を含有する被処理水例えば養魚
用水の滅菌や性能向上あるいは写真処理液からの銀回収
等のガス発生を伴いながら電解液の電解処理又は電解を
行うのに適した炭素質三次元電極を使用する三次元電極
式電解槽に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a three-dimensional electrode type electrolytic cell used for treating various kinds of water to be treated and electrolyzing various electrolytes, and more specifically to sterilizing water to be treated containing microorganisms such as water for fish farming. The present invention also relates to a three-dimensional electrode type electrolytic cell using a carbonaceous three-dimensional electrode suitable for electrolytic treatment or electrolysis of an electrolytic solution while improving performance or generating gas such as silver recovery from a photographic processing solution.

【0002】[0002]

【従来技術】各種魚類資源として海や川に繁殖している
天然の魚類の他に最近では養殖場等における養殖魚類が
注目され、養殖魚が市場に数多く供給されている。養殖
場におけるこれら魚類の飼育の際には、養魚用水の多く
含まれる細菌類や黴類が魚類の成長を阻害したり死滅さ
せたりすることがあるが、細菌類等が少ない場合でも魚
類を汚染しあるいは魚類に付着してその商品価値を低下
させる。これらの悪影響を抑制するために殺菌剤等の防
黴剤が前記養魚用水へ多量に添加され、更に該防黴剤に
よる魚類の損傷を最小源に抑えるために抗生物質が投与
される。又抵抗力を高めるためビタミン剤等の多量の栄
養剤が魚類に投与され、その上に餌が与えられる。従っ
て飼育されている魚類は全体の摂取量に対する育成に必
要な餌の量が少ないため、養殖では必須とされる成育速
度が遅くなり、更に防黴剤が蓄積して成長が阻害された
りあるいは人体に有害な防黴剤で汚染された魚類が市場
に供給されることになる。更に養魚用水中には通常の水
と同様に8ppm程度の溶存酸素が存在し、魚類はこの
酸素を摂取して成育していく。多量の薬品の投与はこの
酸素の溶解量を減少させたり、溶存酸素と反応して溶存
酸素量を減少させて成長を阻害する。勿論養漁場用水以
外にもガス発生を伴う電解又は電解処理を必要とする被
処理水がある。
2. Description of the Related Art In addition to natural fish that breed in the sea and rivers as various fish resources, recently, farmed fish in farms and the like have attracted attention, and many farmed fish have been supplied to the market. When breeding these fish in aquaculture farms, bacteria and molds, which are abundant in the water for fish farming, may inhibit the growth of the fish or kill them, but even if there are few bacteria, the fish are contaminated. It adheres to fish or fish and reduces its commercial value. In order to suppress these adverse effects, a fungicide such as a bactericide is added to the water for fish culture in a large amount, and further, an antibiotic is administered in order to suppress the damage of the fish due to the fungicide to the minimum source. In addition, a large amount of nutrients such as vitamins is administered to fish in order to increase resistance, and food is provided on the fish. Therefore, the fish that are bred have a small amount of food required for rearing with respect to the total intake, so that the growth rate, which is essential in aquaculture, is slowed down, and further growth of the antifungal agent is inhibited or the growth of human body is inhibited. Fish that are contaminated with a mildew-proofing agent will be supplied to the market. Further, dissolved oxygen of about 8 ppm exists in the water for fish farming as in ordinary water, and fish ingest this oxygen to grow. Administration of a large amount of chemicals reduces the dissolved amount of this oxygen, or reacts with dissolved oxygen to reduce the dissolved oxygen amount and inhibits growth. Of course, in addition to water for fish farms, there is water to be treated that requires electrolysis or electrolysis with gas generation.

【0003】[0003]

【発明が解決すべき問題点】上述の防黴剤による魚類の
保護は、魚類自体の汚染の問題だけでなく、養魚用水の
量が莫大であるため使用する防黴剤の量も多くなり、そ
のコストが嵩むという問題も生じさせている。更に該防
黴剤の使用に付随して生ずる栄養剤のコストも莫大にな
り、魚類の成育には直接結びつかず、むしろ悪影響を生
じさせる前記防黴剤の使用を回避できれば低コストで人
体にも無害な魚類を短期間に成長させて商品化できるた
めその利点は多大のものがある。更に養魚用水の溶存酸
素濃度を上昇させることが出来れば、魚類の活動が活発
になりそれに応じて餌の摂取量が増加して前記魚類の成
育が著しく促進される。溶存酸素濃度を低コストで上昇
させることが出来れば通常の養殖魚よりサイズが大きく
商品価値の高い魚類を短期間に育成して市場に供給する
ことができる。
Problems to be Solved by the Invention The protection of fish by the above-mentioned antifungal agent is not only a problem of contamination of the fish itself, but also the amount of antifungal agent to be used is large because the amount of water for fish farming is huge. There is also a problem that the cost increases. Further, the cost of the nutritional supplement that accompanies the use of the fungicide also becomes enormous, and it is not directly connected to the growth of fish, but rather, the use of the fungicide which causes an adverse effect can be avoided at a low cost to the human body. The advantages are enormous because harmless fish can be grown and commercialized in a short period of time. Further, if the dissolved oxygen concentration of the fish culture water can be increased, the activity of the fish becomes active, and accordingly, the intake of food is increased and the growth of the fish is remarkably promoted. If the dissolved oxygen concentration can be increased at a low cost, it is possible to cultivate and supply to the market fish that are larger in size and have higher commercial value than ordinary cultured fish in a short period of time.

【0004】更に養漁場用水以外の被処理水の防黴の場
合にも防黴剤の使用は同様の欠点を生じさせ、かつ溶存
酸素量の増大が種々の利点を生じさせることが多い。こ
のようなガス発生を伴う電解処理又は電解に使用する電
解槽として表面積が莫大である三次元電極が広く使用さ
れているが、該三次元電極の材質としては安価で電極物
質としての性能に優れた炭素質材料が使用されている。
しかし該炭素質材料は酸素ガスと接触するとその表面の
炭素が該酸素ガスと反応して二酸化炭素として溶出して
消耗してしまうという欠点がある。
Further, in the case of antifungal treatment of treated water other than water for fish farms, the use of antifungal agents causes the same drawbacks, and the increase of dissolved oxygen amount often brings various advantages. A three-dimensional electrode having an enormous surface area is widely used as an electrolytic cell used for electrolytic treatment or electrolysis involving such gas generation. However, the material of the three-dimensional electrode is inexpensive and excellent in performance as an electrode substance. Carbonaceous material is used.
However, when the carbonaceous material comes into contact with oxygen gas, carbon on the surface thereof reacts with the oxygen gas and is eluted as carbon dioxide to be consumed.

【0005】[0005]

【発明の目的】本発明は、安価で電極物質としての活性
に優れるが、電解により生ずることの多い酸素ガスに対
する耐性に欠けるという性質を有する炭素質材料をその
三次元電極とする三次元電極式電解槽を提供することを
目的とする。
An object of the present invention is to provide a three-dimensional electrode type which uses a carbonaceous material, which is inexpensive and has excellent activity as an electrode material, but lacks resistance to oxygen gas, which is often generated by electrolysis, as its three-dimensional electrode. It is intended to provide an electrolytic cell.

【0006】[0006]

【問題点を解決するための手段】本発明は、炭素質三次
元電極を電極として収容した三次元電極式電解槽におい
て、前記炭素質三次元電極の陽分極する面に炭化珪素の
被覆層を形成したことを特徴とする三次元電極式電解槽
である。なお本発明では電極表面で実質的な酸化還元反
応のような電気化学反応を生起していないことがあるの
で本発明に係わる装置は電気化学的処理装置というべき
であるが、一般呼称に従って電解槽と称する。
According to the present invention, in a three-dimensional electrode type electrolytic cell containing a carbonaceous three-dimensional electrode as an electrode, a coating layer of silicon carbide is formed on a surface of the carbonaceous three-dimensional electrode which is positively polarized. It is a three-dimensional electrode type electrolytic cell characterized by being formed. In the present invention, since the electrochemical reaction such as substantial redox reaction may not occur on the surface of the electrode, the device according to the present invention should be called an electrochemical treatment device. Called.

【0007】以下本発明を詳細に説明する。本発明は、
安価で電極物質としての活性に優れるが、電解により生
ずることの多い酸素ガスに対する耐性に欠けるという炭
素質材料の特性に鑑み、該炭素質材料を酸素ガス発生を
伴う電解用としても僅かな炭素質材料の消耗を伴うのみ
で効率良く電解又は電解処理を行うことの出来る該炭素
質材料を三次元電極とする三次元電極式電解槽であり、
これは炭素質三次元電極の陽分極する側に炭化珪素の被
覆層を形成することにより達成することが出来る。本発
明に係わる電解槽は、炭素質三次元電極を有する三次元
電極式電解槽であり、複極式固定床型三次元電極式電解
槽、単極式固定床型三次元電極式電解槽及び複極式流動
床型三次元電極式電解槽等が含まれる。通常の電解や電
解処理では被処理水あるいは電解液が三次元電極等と接
触する機会が多いほど電解効率あるいは処理効率が上昇
する。従って電極等の表面積が大きい複極式固定床型等
の三次元電極電解槽を使用すると他の電解槽を使用する
場合よりも処理効率を上昇させることができ、これによ
り同一の処理効率を達成するために必要な装置サイズを
他の電解槽よりも小さくできる点で有利である。
The present invention will be described in detail below. The present invention is
In view of the characteristics of a carbonaceous material that is inexpensive and has excellent activity as an electrode substance, but lacks resistance to oxygen gas often generated by electrolysis, the carbonaceous material is a slight carbonaceous material for electrolysis involving oxygen gas generation. A three-dimensional electrode type electrolytic cell having a three-dimensional electrode of the carbonaceous material, which can efficiently perform electrolysis or electrolytic treatment only with the consumption of materials.
This can be achieved by forming a coating layer of silicon carbide on the anodic polarization side of the carbonaceous three-dimensional electrode. The electrolytic cell according to the present invention is a three-dimensional electrode type electrolytic cell having a carbonaceous three-dimensional electrode, and is a bipolar electrode fixed bed type three-dimensional electrode type electrolytic cell, a single electrode fixed bed type three-dimensional electrode type electrolytic cell and It includes a bipolar electrode fluidized bed type three-dimensional electrode type electrolytic cell and the like. In normal electrolysis or electrolytic treatment, the more often the water to be treated or the electrolytic solution comes into contact with the three-dimensional electrode or the like, the higher the electrolysis efficiency or treatment efficiency. Therefore, using a three-dimensional electrode electrolytic cell such as a bipolar fixed bed type with a large surface area such as electrodes can improve the processing efficiency compared to the case of using other electrolytic cells, thereby achieving the same processing efficiency. This is advantageous in that the device size required for this can be made smaller than other electrolytic cells.

【0008】本発明の三次元電極電解槽における炭素質
三次元電極は、前記被処理水あるいは電解液が透過可能
な多孔質材料、例えば粒状、球状、フェルト状、織布
状、多孔質ブロック状、多数の貫通孔を形成した中実体
等の形状を有する活性炭、グラファイト、炭素繊維等の
炭素質材料から、あるいは同形状を有する前記炭素質材
料に貴金属のコーティングを施した材料から形成された
複数個の誘電体から成ることが好ましい。該三次元電極
は直流又は交流電場内に置かれ、両端に設置した平板状
又はエキスパンドメッシュ状やパーフォレーティッドプ
レート状等の多孔板体から成る給電用陽陰極間に直流電
圧や低周波交流電圧を印加して前記三次元電極を分極さ
せ該三次元電極の一端及び他端にそれぞれ正及び負の電
荷が形成されて分極する。この他に給電用陽極及び陰極
とは別個に、単独で陽極としてあるいは陰極として機能
する炭素質三次元材料を交互に短絡しないように設置し
かつ電気的に接続して複極型固定床式電解槽とすること
ができる。なお前述の多数の貫通孔を形成した中実体を
三次元電極として使用する場合には、流通する被処理水
の移動を妨害しないようにその開口率を10%以上95%以
下好ましくは20%以上80%以下とする。
The carbonaceous three-dimensional electrode in the three-dimensional electrode electrolytic cell of the present invention is made of a porous material that is permeable to the water to be treated or the electrolytic solution, for example, granular, spherical, felt-like, woven cloth-like, porous block-like. , A plurality of carbonaceous materials such as solid carbon having a large number of through holes formed therein, such as solid carbon, graphite, carbon fiber or the like, or a material obtained by coating the carbonaceous material having the same shape with a noble metal It is preferably composed of a single dielectric. The three-dimensional electrode is placed in a direct current or alternating current electric field, and a direct current voltage or a low frequency alternating current voltage is applied between the positive and negative electrodes for power supply which are formed at the both ends and are made of a plate-shaped or expanded mesh-shaped or perforated plate-shaped porous plate. When applied, the three-dimensional electrode is polarized, and positive and negative charges are formed at one end and the other end of the three-dimensional electrode to polarize the three-dimensional electrode. In addition to this, separate from the power supply anode and cathode, a carbonaceous three-dimensional material that functions alone as an anode or as a cathode is installed so as not to be short-circuited alternately and electrically connected to form a multipolar fixed bed electrolysis. It can be a tank. When using a solid body having a large number of through holes as described above as a three-dimensional electrode, the aperture ratio is 10% or more and 95% or less, preferably 20% or more so as not to interfere with the movement of the water to be treated. 80% or less.

【0009】前記炭素質三次元電極として活性炭、グラ
ファイト、炭素繊維等の炭素系材料を使用して被処理水
を処理する場合には、前記三次元電極が陽極反応により
発生する酸素ガスにより酸化され炭酸ガスとして溶解し
易くなる。これを防止するために本発明では前記三次元
電極の陽分極する面に、炭化珪素の被覆層を形成する。
つまり固定床型三次元電極では給電用陰極ターミナルに
向かう面に炭化珪素被覆層を形成し、交流電圧が印加さ
れる場合には両給電用電極ターミナルに向かう両面に炭
化珪素被覆層を形成する。又流動床型三次元電極では給
電用陰極ターミナルに向かう面が一定しないため、前表
面に被覆層を形成することが好ましい。炭化珪素被覆層
の形成は例えば次の方法により行えば良い。第1に、市
販の炭化珪素微粉末を篩に掛けて径を揃えた後、高温で
前記炭素質三次元電極に溶射する方法、第2に、珪素源
及び炭素源を含む原料ガスを気相分解して前記炭素質三
次元電極表面に炭化珪素層を形成する化学蒸着法、第3
に、炭素質三次元電極と酸化珪素を反応させ(例えばS
iO2 +C→SiO+CO、SiO+C→SiC+C
O)て前記電極表面に炭化珪素層を被覆する方法等であ
る。
When the water to be treated is treated using a carbonaceous material such as activated carbon, graphite or carbon fiber as the carbonaceous three-dimensional electrode, the three-dimensional electrode is oxidized by oxygen gas generated by the anodic reaction. It becomes easy to dissolve as carbon dioxide. In order to prevent this, in the present invention, a coating layer of silicon carbide is formed on the surface of the three-dimensional electrode that undergoes positive polarization.
That is, in the fixed bed type three-dimensional electrode, the silicon carbide coating layer is formed on the surface facing the power feeding cathode terminal, and the silicon carbide coating layer is formed on both surfaces facing the both power feeding electrode terminals when an AC voltage is applied. Further, in the fluidized bed type three-dimensional electrode, the surface facing the power supply cathode terminal is not constant, so that it is preferable to form a coating layer on the front surface. The silicon carbide coating layer may be formed by the following method, for example. First, a commercially available silicon carbide fine powder is sieved to make the diameter uniform, and then the carbonaceous three-dimensional electrode is sprayed at a high temperature. Secondly, a source gas containing a silicon source and a carbon source is vaporized. A chemical vapor deposition method of decomposing to form a silicon carbide layer on the surface of the carbonaceous three-dimensional electrode;
The carbonaceous three-dimensional electrode is reacted with silicon oxide (for example, S
iO 2 + C → SiO + CO, SiO + C → SiC + C
O) to coat the surface of the electrode with a silicon carbide layer.

【0010】このように形成される炭化珪素被覆層は多
数の炭化珪素粉末(又は粒子)が前記炭素質三次元電極
表面に単一被覆層として吸着状態で担持されているもの
と推測され、隣接する炭化珪素粒子間に空間が存在して
該空間を通して被処理水あるいは電解液は前記炭素質三
次元電極に接触して電解又は電解処理される。前記炭化
珪素被覆層の存在により前記炭素質三次元電極と電解に
より発生する酸素ガスの反応により生成する二酸化炭素
の脱離が阻害されて、より以上の二酸化炭素の生成が抑
制されることにより前記炭素質三次元電極の溶出が効果
的に防止されるものと考えられる。より以上に前記炭素
質三次元電極の溶出を抑制するには該炭素質三次元電極
の炭化珪素被覆層が形成された面につまり前記炭素質三
次元電極の陽分極する側に、チタン等の基材上に酸化イ
リジウム、酸化ルテニウム等の白金族金属酸化物を被覆
し通常不溶性金属電極として使用される多孔質材料を接
触状態で設置し、酸素発生が主として該多孔質材料上で
生ずるようにすればよい。
The silicon carbide coating layer thus formed is presumed to have a large number of silicon carbide powders (or particles) adsorbed on the surface of the carbonaceous three-dimensional electrode as a single coating layer, and adjacent to each other. There is a space between the silicon carbide particles and the water to be treated or the electrolytic solution is brought into contact with the carbonaceous three-dimensional electrode through the space to be electrolyzed or electrolyzed. Due to the presence of the silicon carbide coating layer, desorption of carbon dioxide produced by the reaction of the carbonaceous three-dimensional electrode and oxygen gas generated by electrolysis is inhibited, and the production of more carbon dioxide is suppressed. It is considered that the elution of the carbonaceous three-dimensional electrode is effectively prevented. In order to further suppress the elution of the carbonaceous three-dimensional electrode, titanium or the like is added to the surface of the carbonaceous three-dimensional electrode on which the silicon carbide coating layer is formed, that is, the positively polarized side of the carbonaceous three-dimensional electrode. A platinum group metal oxide such as iridium oxide or ruthenium oxide is coated on a base material and a porous material which is usually used as an insoluble metal electrode is placed in contact with the base material so that oxygen generation mainly occurs on the porous material. do it.

【0011】本発明の電解槽において、前記炭素質三次
元電極同士や該三次元電極と給電用電極ターミナルを接
近させて電圧の低下を意図する際には、短絡防止のため
電気絶縁性のスペーサとして例えば有機高分子材料で作
製した網状スペーサ等を挿入することが好ましい。本発
明の三次元電極式電解槽はガス発生を伴う電解又は電解
処理は勿論、ガス発生を伴わない電解処理に使用するこ
とも出来る。ガス発生を伴う電解又は電解処理用として
使用する場合には、発生する酸素ガスと水素ガスは通常
爆発限界内の混合比で発生するため、爆発の危険を回避
するために空気等の不活性ガスで希釈することが好まし
い。例えば電解槽出口に発生する電解ガスの分離手段と
分離後の該電解ガスを空気で希釈して電解ガス濃度が4
容量%以下になるよう希釈する手段を設置することが好
ましいが、電解槽の容量が比較的小さく発生するガス量
も少ない場合は、前記ガス分離手段は設置しなくてもよ
い。
In the electrolytic cell of the present invention, when the carbonaceous three-dimensional electrodes are brought close to each other or the three-dimensional electrodes and the feeding electrode terminal are intended to be lowered, an electrically insulating spacer is provided to prevent a short circuit. For example, it is preferable to insert a mesh spacer made of an organic polymer material. The three-dimensional electrode type electrolytic cell of the present invention can be used not only for electrolysis or electrolysis treatment involving gas generation but also for electrolysis treatment without gas generation. When used for electrolysis or electrolysis with gas generation, the generated oxygen gas and hydrogen gas are usually generated at a mixing ratio within the explosion limit, so an inert gas such as air is used to avoid the danger of explosion. It is preferable to dilute with. For example, the separation means for the electrolytic gas generated at the outlet of the electrolytic cell and the separated electrolytic gas are diluted with air so that the electrolytic gas concentration is 4%.
It is preferable to install a means for diluting so as to have a volume% or less, but if the capacity of the electrolytic cell is relatively small and the amount of generated gas is small, the gas separating means may not be installed.

【0012】本発明に係わる三次元電極式電解槽は、各
種用途に使用出来るが、微生物を含有する被処理水の滅
菌等の改質処理に好ましく使用することか出来る。例え
ば養魚用水は適度な温度を有しかつ栄養剤が添加されて
いて黴や細菌等が繁殖し易い環境にある。従来の電解又
は電気化学的処理では、黴や細菌類がイオン化しないた
め電極表面における酸化還元反応を受けて死滅する数は
極めて限定された数となり、完全に滅菌されることがな
く、電解又は電気化学的処理に強い耐性を有する菌がか
えって繁殖するといった状況が形成されているものと推
測される。本発明の電解槽より該被処理水に直流電圧や
低周波数の交流電圧を印加すると、該被処理水中のイオ
ン化しない黴や細菌類も液流動によって三次元電極式電
解槽の陽極や陰極あるいは後述する誘電体や粒子等の極
めて表面積の大きい三次元構造を有する三次元電極に充
分に接触しそれらの表面で酸化還元反応を受けてその細
胞が破壊されて死滅したりすると考えられる。従って従
来の殺菌剤や防黴剤を使用せずに同等の殺菌又は防黴効
果を生じさせることができる。
The three-dimensional electrode type electrolytic cell according to the present invention can be used for various purposes, but can be preferably used for modification treatment such as sterilization of water to be treated containing microorganisms. For example, fish culture water has an appropriate temperature and is supplemented with nutrients, and is in an environment where molds, bacteria and the like easily propagate. In the conventional electrolysis or electrochemical treatment, since the mold and bacteria are not ionized, the number of cells that are killed by the redox reaction on the electrode surface is extremely limited and is not completely sterilized. It is presumed that the situation is such that the bacteria that have strong resistance to chemical treatment are propagated instead. When a DC voltage or a low frequency AC voltage is applied to the water to be treated from the electrolytic cell of the present invention, non-ionized molds and bacteria in the water to be treated also flow through the anode or cathode of the three-dimensional electrode type electrolytic cell or as described later. It is considered that the three-dimensional electrode having a three-dimensional structure having an extremely large surface area, such as a dielectric or particle, is sufficiently brought into contact with the surface and undergoes a redox reaction to destroy and kill the cell. Therefore, an equivalent bactericidal or antifungal effect can be produced without using a conventional bactericide or antifungal agent.

【0013】更に被処理水が硬水であるとカルシウムイ
オンやマグネシウムイオン等の不純物が含有されてい
る。該被処理水を電解処理すると電解槽や三次元電極式
電解槽の陰極や三次元電極上で還元されてそれらの水酸
化物として該陰極上等に析出して被処理水から除去され
て例えば魚類等に悪影響を与えることがなくなる。一般
に前記養魚用水の電解処理操作では魚類の成育に好影響
を与える溶存酸素量を増加させるために、積極的に酸素
ガスを発生させながら電解処理を行うが、該酸素ガスに
より本発明の電解槽の炭素質三次元電極の表面は溶出し
易くなっているが、その表面に被覆された炭化珪素層に
より前述の通り溶出が抑制されて、効果的に酸素発生を
伴う電解あるいは電解処理を行うことが可能になる。
Further, when the water to be treated is hard water, it contains impurities such as calcium ions and magnesium ions. When the water to be treated is subjected to an electrolytic treatment, it is reduced on the cathode or the three-dimensional electrode of an electrolytic cell or a three-dimensional electrode type electrolytic cell and deposited as hydroxides on the cathode or the like to be removed from the water to be treated. It will not adversely affect the fish. Generally, in the electrolytic treatment operation of the fish culture water, in order to increase the amount of dissolved oxygen, which has a favorable effect on the growth of fish, the electrolytic treatment is performed while actively generating oxygen gas. The surface of the carbonaceous three-dimensional electrode is easily eluted, but the elution is suppressed as described above by the silicon carbide layer coated on the surface, and effective electrolysis or electrolytic treatment with oxygen generation is performed. Will be possible.

【0014】本発明では、給電用陽陰極ターミナル間に
印加される直流電圧又は低周波数交流電圧の値は特に限
定されず、電極表面でガス発生が生ずる高電流密度電解
処理が生ずる任意の値とすることが出来、交流電圧を使
用する場合の周波数は10ヘルツ以下とすることが望まし
い。本発明の電解槽によりガス発生を行いながら前記被
処理水の処理又は電解液の電解を行うと、分極した三次
元電極から発生する該酸素の一部がそのまま電解処理を
行っている養魚用水等の被処理水に溶解して溶存酸素濃
度を通常の値より高い値に上昇させ、かつ細菌類の死滅
により該細菌類が消費していた酸素の消費がなくなるた
め酸素濃度が更に上昇して魚類の成育等に好ましい酸素
濃度とすることができる。陽極電位が+0.2 から+1.5
V(vs.SHE)の範囲で養魚用水等の殺菌処理及び不純物除
去が出来るが、実質的な酸素ガス発生は+ 1.0V以上で
生ずるため、陽極電位を+ 1.0V以上、好ましくは+
1.2V以上とする。なお好ましい陰極電位は−0.5 V(v
s.SHE)より貴な範囲であり、この範囲で処理すべき養魚
用水等の殺菌処理及び不純物除去が出来る。+ 1.2V以
上の陽極電位で酸素ガス発生とともに若干量のオゾンガ
スの副生が伴い、両ガスは魚類の成育等に好影響を与え
る。
In the present invention, the value of the DC voltage or the low-frequency AC voltage applied between the positive and negative cathode terminals for power supply is not particularly limited, and may be any value that causes high current density electrolytic treatment in which gas generation occurs on the electrode surface. The frequency when using an AC voltage is preferably 10 Hz or less. When the treatment of the water to be treated or the electrolysis of the electrolytic solution is performed while the gas is generated by the electrolytic cell of the present invention, a part of the oxygen generated from the polarized three-dimensional electrode is subjected to the electrolytic treatment as it is. Dissolved in the water to be treated to raise the dissolved oxygen concentration to a value higher than the normal value, and the oxygen concentration consumed by the bacteria disappears due to the killing of the bacteria, so the oxygen concentration further increases and the fish The oxygen concentration can be set to be favorable for the growth of Anode potential is +0.2 to +1.5
V (vs.SHE) can be used for sterilization of water for fish farming and removal of impurities, but since substantial oxygen gas generation occurs at +1.0 V or higher, the anode potential is +1.0 V or higher, preferably +
1.2V or more. The preferred cathode potential is -0.5 V (v
s.SHE), which is a more noble range, and is capable of sterilizing and removing impurities such as fish culture water to be treated within this range. Oxygen gas is generated at an anode potential of +1.2 V or more and a small amount of ozone gas is generated as a by-product, and both gases have a favorable effect on the growth of fish.

【0015】処理すべき被処理水又は電解すべき電解液
が流れる本発明の電解槽内に該被処理水等が前記三次元
電極等に接触せずに流通できる比較的大きな空隙がある
と前記被処理水等の処理又は電解効率が低下するため、
前記三次元電極は電解槽内の前記被処理水等の流れがシ
ョートパスしないように配置することが望ましい。この
ような構成から成る三次元電極電解槽は、被処理水が養
漁場用水の場合には養殖場や釣堀等に近接して設置し、
該養殖場等の養魚用水の一部を循環させて前記電解槽等
で殺菌等の処理を行った後に前記養殖場に戻すようにし
て使用することができ、写真処理液からの銀回収の場合
には写真処理槽に近接して設置しかつ写真処理液を循環
させながら電解銀ガスを行うことが出来る。なお電解槽
に供給される被処理水や電解液が層流であると三次元電
極の表面と充分に接触することなく前記電解槽を通過す
ることがあるため、電解槽内を通過する被処理水等は10
0以上の特に好ましくは500 以上のレイノルズ数を有す
る乱流として、横方向の移動を十分に行わせながら前記
電解槽等を通過させることがより好ましい。
If there is a relatively large void in the electrolytic cell of the present invention through which the water to be treated or the electrolytic solution to be electrolyzed flows, the water to be treated can flow without contacting the three-dimensional electrodes. Since the treatment of water to be treated or the efficiency of electrolysis decreases,
It is desirable that the three-dimensional electrodes are arranged so that the flow of the water to be treated or the like in the electrolytic bath does not short-pass. When the water to be treated is water for fish farms, the three-dimensional electrode electrolyzer having such a configuration is installed close to a farm or fishing pond,
In the case of recovering silver from a photographic processing solution, it can be used by circulating a part of fish-culture water in the farm or the like and then returning it to the farm after performing sterilization or the like in the electrolytic bath or the like. It is possible to install electrolytic silver gas while being installed close to the photographic processing tank and circulating the photographic processing solution. If the water to be treated or the electrolytic solution supplied to the electrolytic bath is a laminar flow, it may pass through the electrolytic bath without sufficiently contacting the surface of the three-dimensional electrode. 10 for water
It is more preferable that the turbulent flow having a Reynolds number of 0 or more, particularly 500 or more, is passed through the electrolytic cell or the like while being sufficiently moved in the lateral direction.

【0016】なお電解槽を1回通過させるだけでは十分
に効果が生じない場合は処理済の被処理水や電解液を再
度電解槽を通すようにしてもよく、又養殖池の養魚用水
等を順に電解槽に供給して全体的な処理効率を上昇させ
るようにしてもよい。又本発明の電解槽では、該電解槽
に漏洩電流が生じ該漏洩電流が養魚場内の魚を感電死さ
せたりあるいは電解槽から被処理水や電解液を通して他
の金属製部材に流れ込み、該部材に溶出等の電気化学的
な腐食を生じさせることがある。そのため電解槽内の給
電用陽陰極ターミナルが相対しない該電極背面部及び/
又は前記電解槽の出入口配管内に、前記被処理水等より
導電性の高い部材をその一端を接地可能なように設置し
て前記漏洩電流を遮断することができる。
In addition, when the effect is not sufficiently obtained by passing the electrolytic cell only once, the treated water or electrolytic solution which has been treated may be passed through the electrolytic cell again. It may be sequentially supplied to the electrolytic cell to increase the overall processing efficiency. Further, in the electrolytic cell of the present invention, a leakage current is generated in the electrolytic cell, and the leakage current may cause electrocution of fish in the fish farm, or may flow from the electrolytic cell through the water to be treated or the electrolytic solution into another metal member, May cause electrochemical corrosion such as elution. Therefore, the positive and negative electrode terminals for feeding in the electrolytic cell do not face each other
Alternatively, a member having higher conductivity than the water to be treated or the like may be installed in the inlet / outlet pipe of the electrolytic cell so that one end thereof can be grounded to cut off the leakage current.

【0017】次に添付図面に基づいて本発明に使用でき
る電解槽の好ましい例を説明するが、本発明方法に使用
される電解槽は、この電解槽に限定されるものではな
い。図1は、本発明の電解槽として使用可能な複極型固
定床式電解槽の一例を示す概略縦断面図である。上下に
フランジ1を有する円筒形の電解槽本体2の内部上端近
傍及び下端近傍にはそれぞれメッシュ状の給電用陽極タ
ーミナル3と給電用陰極ターミナル4が設けられてい
る。電解槽本体2は、長期間の使用又は再度の使用にも
耐え得る電気絶縁材料で形成することが好ましく、特に
合成樹脂であるポリエピクロルヒドリン、ポリビニルメ
タクリレート、ポリエチレン、ポリプロピレン、ポリ塩
化ビニル、ポリ塩化エチレン、フェノール−ホルムアル
デヒド樹脂等が好ましく使用できる。正の直流電圧を与
える前記給電用陽極ターミナル3は、例えば炭素材(例
えば活性炭、炭、コークス、石炭等)、グラファイト材
(例えば炭素繊維、カーボンクロス、グラファイト
等)、炭素複合材(例えば炭素に金属を粉状で混ぜ焼結
したもの等)、活性炭素繊維不織布(例えばKE−1000
フェルト、東洋紡株式会社)、又はこれに白金、白金、
パラジウムやニッケルを担持させた材料、更に寸法安定
性電極 (白金族酸化物被覆チタン材) 、白金被覆チタン
材、ニッケル材、ステンレス材、鉄材等から形成され
る。又給電用陽極ターミナル3に対向し負の直流電圧を
与える給電用陰極ターミナル4は、例えば白金、ステン
レス、チタン、ニッケル、ハステロイ、グラファイト、
炭素材、軟鋼あるいは白金族金属をコーティングした金
属材料等から形成されている。
Next, preferred examples of the electrolytic cell which can be used in the present invention will be explained based on the attached drawings, but the electrolytic cell used in the method of the present invention is not limited to this electrolytic cell. FIG. 1 is a schematic vertical sectional view showing an example of a bipolar electrode fixed bed type electrolytic cell that can be used as the electrolytic cell of the present invention. A cylindrical electrolytic cell body 2 having upper and lower flanges 1 is provided with a mesh-shaped power feeding anode terminal 3 and power feeding cathode terminal 4 near the upper end and the lower end, respectively. The electrolytic cell body 2 is preferably formed of an electrically insulating material that can withstand long-term use or re-use, and in particular, synthetic resins such as polyepichlorohydrin, polyvinyl methacrylate, polyethylene, polypropylene, polyvinyl chloride, and polychloroethylene. , Phenol-formaldehyde resin and the like can be preferably used. The power supply anode terminal 3 for applying a positive DC voltage is, for example, a carbon material (eg, activated carbon, charcoal, coke, coal, etc.), a graphite material (eg, carbon fiber, carbon cloth, graphite, etc.), a carbon composite material (eg, carbon). Metal powder mixed and sintered), activated carbon fiber non-woven fabric (eg KE-1000)
Felt, Toyobo Co., Ltd.), or platinum, platinum,
It is formed of a material supporting palladium or nickel, a dimensionally stable electrode (platinum group oxide-coated titanium material), a platinum-coated titanium material, a nickel material, a stainless material, an iron material, or the like. Further, the power supply cathode terminal 4 facing the power supply anode terminal 3 and applying a negative DC voltage is, for example, platinum, stainless steel, titanium, nickel, hastelloy, graphite,
It is formed of a carbon material, mild steel, a metal material coated with a platinum group metal, or the like.

【0018】前記両給電用電極ターミナル3、4間には
複数個の、図示の例では3個の固定床5詰まり三次元電
極が積層され、かつ該固定床5間及び該固定床5と前記
両給電用電極ターミナル3、4間に4枚の多孔質の隔膜
あるいはスペーサー6が挟持されている。各固定床5の
前記給電用陰極ターミナル4に向かう面には炭化珪素被
覆層7が被覆され、該固定床5は電解槽本体2の内壁に
密着し固定床5の内部を通過せず、固定床5と電解槽本
体2の側壁との間を流れる被処理水等の漏洩流がなるべ
く少なくなるように配置されている。隔膜を使用する場
合には該隔膜として織布、素焼板、粒子焼結ブラスチッ
ク、多孔板、イオン交換膜等が用いられ、スペーサーと
して電気絶縁性材料で製作された織布、多孔板、網、棒
状材等が使用される。このような構成から成る電解槽2
に養魚用水等の被処理水や電解液を図1に矢印で示すよ
うに下方から供給しながら通電を行うと、前記各固定床
5が図示の如く下面が正に上面が負に分極して固定床5
内及び固定床5間に電位が生じ、該電解槽内を流通する
被処理水はこの電位により正又は負に分極された固定床
5に接触して酸素ガスが発生するととともに該被処理水
の改質処理が行われる。発生する酸素ガスが前記被処理
水中に溶解して電解槽2に供給される前の被処理水より
高濃度の溶存酸素ガスを有する被処理水として前記電解
槽2の上方から取り出される。前記炭化珪素被覆層7の
存在により酸素ガスによる前記固定床5の溶出が最小限
に抑制され、該固定床5を交換することなくつまり煩雑
な操作である電解槽の分解及び組み立てを行うことなく
長期間に亘って被処理水の処理や電解液の電解を行うこ
とが可能になる。
A plurality of, in the illustrated example, three fixed beds 5 clogged three-dimensional electrodes are stacked between the power feeding electrode terminals 3 and 4, and between the fixed beds 5 and between the fixed beds 5 and the above. Four porous diaphragms or spacers 6 are sandwiched between the power feeding electrode terminals 3 and 4. The surface of each fixed bed 5 facing the cathode terminal 4 for power supply is coated with a silicon carbide coating layer 7, and the fixed bed 5 is in close contact with the inner wall of the electrolytic cell body 2 and does not pass through the inside of the fixed bed 5 and is fixed. The leakage flow of the water to be treated or the like flowing between the floor 5 and the side wall of the electrolytic cell body 2 is arranged as small as possible. When a diaphragm is used, a woven cloth, a biscuit plate, a particle-sintered plastic, a porous plate, an ion exchange membrane, etc. are used as the diaphragm, and a woven cloth, a porous plate, a net made of an electrically insulating material is used as a spacer. , Rod-shaped materials are used. Electrolytic cell 2 having such a structure
When water is supplied while supplying water to be treated such as fish farming water or an electrolytic solution from below as shown by the arrow in FIG. 1, each fixed bed 5 is polarized so that its lower surface is positive and its upper surface is negative as shown. Fixed floor 5
An electric potential is generated between the inside and the fixed bed 5, and the water to be treated flowing in the electrolytic cell comes into contact with the fixed bed 5 which is positively or negatively polarized by this potential to generate oxygen gas, and the water to be treated is also generated. A reforming process is performed. The generated oxygen gas is dissolved in the water to be treated and is taken out from above the electrolyzer 2 as water to be treated having a higher concentration of dissolved oxygen gas than the water to be treated before being supplied to the electrolyzer 2. The presence of the silicon carbide coating layer 7 minimizes the elution of the fixed bed 5 due to oxygen gas, without replacing the fixed bed 5, that is, without disassembling and assembling the electrolytic cell, which is a complicated operation. It becomes possible to treat the water to be treated and electrolyze the electrolytic solution for a long period of time.

【0019】図2は、本発明の複極型固定床式電解槽の
他の例を示すもので、該電解槽は第1図の電解槽の固定
床5の給電用陰極4に向かう側つまり陽分極する側にメ
ッシュ状の不溶性金属材料8を密着状態で設置したもの
であり、他の部材は図1と同一であるので同一符号を付
して説明を省略する。直流電圧が印加された固定床5は
その両端部において最も大きく分極が生じ、ガス発生が
伴う場合には該両端部において最も激しくガス発生が生
ずる。従って最も強く陽分極するつまり最も激しく酸素
ガスが発生する固定床5の給電用陰極4に向かう端部に
は最も速く溶解が生じる。図示の通りこの部分に不溶性
金属材料8を設置しておくと、該不溶性金属材料8の過
電圧が固定床5を形成する炭素系材料の過電圧より低い
ため殆どの酸素ガスが前記不溶性金属材料8から発生し
固定床5は殆ど酸素ガスと接触しなくなるため、前記固
定床5の溶出は図1の場合以上に効果的に抑制される。
又該電解槽2に供給された被処理水等は図1の場合と同
様に処理され改質が行われる。
FIG. 2 shows another example of the bipolar electrode fixed bed type electrolytic cell of the present invention, which is the side of the fixed bed 5 of the electrolytic cell shown in FIG. A mesh-shaped insoluble metal material 8 is installed in a close contact state on the side of positive polarization. Since other members are the same as those in FIG. 1, the same reference numerals are given and description thereof is omitted. The fixed bed 5 to which the DC voltage is applied is most polarized at both ends thereof, and when the gas is generated, the gas is most violently generated at the both ends. Therefore, dissolution occurs most rapidly at the end portion of the fixed bed 5 which is most strongly anodic polarized, that is, where oxygen gas is most intensely generated, toward the feeding cathode 4. As shown in the figure, when the insoluble metal material 8 is installed in this portion, most of the oxygen gas is removed from the insoluble metal material 8 because the overvoltage of the insoluble metal material 8 is lower than the overvoltage of the carbonaceous material forming the fixed bed 5. Since the fixed bed 5 is generated and almost does not come into contact with oxygen gas, the elution of the fixed bed 5 is more effectively suppressed than in the case of FIG.
Further, the water to be treated and the like supplied to the electrolytic cell 2 is treated and reformed in the same manner as in FIG.

【0020】[0020]

【実施例】以下に本発明の電解槽を使用する被処理水の
電解処理の実施例を記載するが、該実施例は本発明を限
定するものではない。実施例 透明な硬質ポリ塩化ビニル樹脂製の高さ 100mm、内径
50mmのフランジ付円筒形である図1に示した電解槽
を、金魚を飼育している水槽の養魚水循環系にフィルタ
ー及びポンプとともに設置した。該電解槽内には、後述
する給電用陰極ターミナル側に厚さ20μmの炭化珪素被
覆層を形成した、炭素繊維から成る直径50mm、厚さ10
mmでそれぞれの重量が約8.5 gである固定床5個を、
開口率80%で直径50mm及び厚さ 1.2mmのポリエチレ
ン樹脂製隔膜6枚で挟み込み、上下両端の隔膜にそれぞ
れ白金をその表面にメッキしたチタン製である直径48m
m厚さ 1.0mmのメッシュ状給電用陽極ターミナル及び
給電用陰極ターミナルを接触させて設置した。前記炭化
珪素被覆層は、ポーラスグラファイト電極(東洋カーボ
ン株式会社製G−505 )を化学蒸着装置内に装入して14
00℃に加熱した状態で、メチルトリクロロシラン15%、
水素85%の混合ガスを流通し30μmの炭化珪素被覆層を
形成した。水槽の養魚用水を 0.5リットル/分の速度で
前記電解槽に給電し、かつ前記給電用電極ターミナル間
に第1表に示す陽極及び陰極電圧を印加して前記養魚用
水の処理を行った。電解槽通過前後の養魚用水中の細菌
数及び溶存酸素濃度及び72時間電解後の各固定床の平均
重量を表1上欄に纏めた。なお電解処理開始前の養魚用
水中の初期菌数は384 コロニー/ミリリットルであっ
た。
EXAMPLES Examples of electrolytic treatment of water to be treated using the electrolytic cell of the present invention will be described below, but the examples do not limit the present invention. Example Made of transparent hard polyvinyl chloride resin, height 100 mm, inner diameter
The electrolytic cell shown in FIG. 1 having a cylindrical shape with a flange of 50 mm was installed together with a filter and a pump in a fish culture water circulation system of an aquarium for breeding goldfish. In the electrolytic cell, a silicon carbide coating layer having a thickness of 20 μm was formed on the side of a cathode terminal for power supply, which will be described later, and was made of carbon fiber and had a diameter of 50 mm and a thickness of 10 mm.
5 fixed beds, each of which is about 8.5 g in mm
It is sandwiched by six polyethylene resin diaphragms with a diameter of 50 mm and a thickness of 1.2 mm with an aperture ratio of 80%, and the diaphragms at the upper and lower ends are made of titanium with a platinum diameter of 48 m.
The mesh-shaped power feeding anode terminal and the power feeding cathode terminal having a thickness of 1.0 mm were placed in contact with each other. The silicon carbide coating layer was prepared by inserting a porous graphite electrode (G-505 manufactured by Toyo Carbon Co., Ltd.) into a chemical vapor deposition apparatus.
15% of methyltrichlorosilane in the state heated at 00 ℃,
A gas mixture of 85% hydrogen was circulated to form a 30 μm silicon carbide coating layer. The aquaculture water in the aquarium was fed to the electrolytic bath at a rate of 0.5 l / min, and the anode and cathode voltages shown in Table 1 were applied between the feeding electrode terminals to treat the aquaculture water. The number of bacteria and the dissolved oxygen concentration in the fish culture water before and after passing through the electrolytic cell and the average weight of each fixed bed after 72-hour electrolysis are summarized in the upper column of Table 1. The initial number of bacteria in the fish culture water before the start of electrolytic treatment was 384 colonies / ml.

【0021】比較例 固定床に炭化珪素被覆層を形成しなかったこと以外は実
施例と同一条件で養魚用水の電解処理を行い、電解槽通
過前後の養魚用水中の細菌数及び溶存酸素濃度及び72時
間電解後の各固定床の平均重量を表1下欄に纏めた。な
お電解処理開始前の養魚用水中の初期菌数は367 コロニ
ー/ミリリットルであった。表1から炭化珪素被覆層を
形成することにより滅菌効率や溶存酸素量にはさほど影
響は生じないが固定床の重量減少を効果的に抑制出来る
ことが判る。
Comparative Example Electrolytic treatment of fish culture water was carried out under the same conditions as in Example except that a silicon carbide coating layer was not formed on the fixed bed, and the number of bacteria and the dissolved oxygen concentration in the fish culture water before and after passing through the electrolytic cell and The average weight of each fixed bed after 72 hours of electrolysis is summarized in the lower column of Table 1. The initial number of bacteria in the fish culture water before the start of electrolytic treatment was 367 colonies / ml. It can be seen from Table 1 that by forming the silicon carbide coating layer, the sterilization efficiency and the amount of dissolved oxygen are not so affected, but the weight reduction of the fixed bed can be effectively suppressed.

【0022】[0022]

【表1】 [Table 1]

【0023】[0023]

【発明の効果】本発明の電解槽は、三次元電極式電解槽
の炭素質三次元電極の陽分極する面に炭化珪素の被覆層
を形成したこと三次元電極式電解槽である (請求項
1)。この炭化珪素被覆層により電解又は電解処理時に
発生することのある酸素ガスと前記炭素質三次元電極と
の間の反応で生ずる二酸化炭素の脱離を抑制してより以
上の二酸化炭素の発生を防止することが出来る。従って
本発明の電解槽は例えば積極的に酸素ガスを発生させな
がら改質処理を行うことが望ましい養魚用水の処理用と
して好適である(請求項2)。更に三次元電極の陽分極
する側に不溶性金属材料を密着状態で設置すると(請求
項3)、陽極反応である酸素発生反応が前記不溶性金属
材料上で起こり前記三次元電極上では殆ど生じないた
め、該三次元電極と酸素ガスとの接触機会が大幅に減少
して前記三次元電極の消耗が抑制出来る。
The electrolytic cell of the present invention is a three-dimensional electrode type electrolytic cell in which a coating layer of silicon carbide is formed on the positively polarized surface of the carbonaceous three-dimensional electrode of the three-dimensional electrode type electrolytic cell. 1). This silicon carbide coating layer suppresses the desorption of carbon dioxide generated by the reaction between the oxygen gas and the carbonaceous three-dimensional electrode that may occur during electrolysis or electrolytic treatment, and prevents further generation of carbon dioxide. You can do it. Therefore, the electrolytic cell of the present invention is suitable, for example, for treating fish-cultivating water in which it is desirable to carry out the reforming treatment while actively generating oxygen gas (claim 2). Furthermore, if an insoluble metal material is placed in close contact with the positive polarization side of the three-dimensional electrode (Claim 3), an oxygen generating reaction, which is an anodic reaction, occurs on the insoluble metal material and hardly occurs on the three-dimensional electrode. The chance of contact between the three-dimensional electrode and oxygen gas is greatly reduced, and the consumption of the three-dimensional electrode can be suppressed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の電解槽として使用可能な複極型固定床
式電解槽の一例を示す縦断面図
FIG. 1 is a vertical cross-sectional view showing an example of a bipolar electrode fixed bed type electrolytic cell that can be used as the electrolytic cell of the present invention.

【図2】同じく他の複極型固定床式電解槽の一例を示す
縦断面図
FIG. 2 is a vertical cross-sectional view showing an example of another bipolar electrode fixed-bed electrolytic cell

【符号の説明】[Explanation of symbols]

1・・フランジ 2・・電解槽本体 3・・・給電用陽
極ターミナル 4・・・給電用陰極ターミナル 5・・
・固定床 6・・・スペーサー 7・・・炭化珪素被
覆槽 8・・・不溶性金属材料
1 ・ ・ Flange 2 ・ ・ Electrolyzer body 3 ・ ・ ・ Anode terminal for power supply 4 ・ ・ ・ Cathode terminal for power supply 5 ・ ・
・ Fixed bed 6 ・ ・ ・ Spacer 7 ・ ・ ・ Silicon carbide coating tank 8 ・ ・ ・ Insoluble metal material

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成5年8月2日[Submission date] August 2, 1993

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】全図[Correction target item name] All drawings

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図1】 [Figure 1]

【図2】 [Fig. 2]

フロントページの続き (72)発明者 佐々木 義人 東京都中央区日本橋2丁目10番1号東洋カ ーボン株式会社内Front Page Continuation (72) Inventor Yoshito Sasaki 2-10-1 Nihonbashi, Chuo-ku, Tokyo Toyo Carbon Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 炭素質三次元電極を電極として収容した
三次元電極式電解槽において、前記炭素質三次元電極の
陽分極する面に炭化珪素の被覆層を形成したことを特徴
とする三次元電極式電解槽。
1. A three-dimensional electrode type electrolytic cell containing a carbonaceous three-dimensional electrode as an electrode, wherein a coating layer of silicon carbide is formed on a surface of the carbonaceous three-dimensional electrode which is positively polarized. Electrode type electrolytic cell.
【請求項2】 養魚用水の電解処理用である請求項1に
記載の電解槽。
2. The electrolytic cell according to claim 1, which is for electrolytic treatment of fish culture water.
JP3180430A 1991-06-26 1991-06-26 Three dimensional electrode-type electrolytic tank Pending JPH06233983A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3180430A JPH06233983A (en) 1991-06-26 1991-06-26 Three dimensional electrode-type electrolytic tank

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3180430A JPH06233983A (en) 1991-06-26 1991-06-26 Three dimensional electrode-type electrolytic tank

Publications (1)

Publication Number Publication Date
JPH06233983A true JPH06233983A (en) 1994-08-23

Family

ID=16083122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3180430A Pending JPH06233983A (en) 1991-06-26 1991-06-26 Three dimensional electrode-type electrolytic tank

Country Status (1)

Country Link
JP (1) JPH06233983A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008023494A (en) * 2006-07-25 2008-02-07 Nippon Corrosion Engineering Co Ltd Seawater electrolyzer
WO2010102672A1 (en) * 2009-03-12 2010-09-16 Sicce Spa Carbon dioxide generator particularly for aquariums and the like
CN103371122A (en) * 2012-04-25 2013-10-30 大韩民国(国立水产科学院) Apparatus for controlling algal blooms and killing pathogens in fish tank

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008023494A (en) * 2006-07-25 2008-02-07 Nippon Corrosion Engineering Co Ltd Seawater electrolyzer
WO2010102672A1 (en) * 2009-03-12 2010-09-16 Sicce Spa Carbon dioxide generator particularly for aquariums and the like
CN103371122A (en) * 2012-04-25 2013-10-30 大韩民国(国立水产科学院) Apparatus for controlling algal blooms and killing pathogens in fish tank
JP2013226116A (en) * 2012-04-25 2013-11-07 Republic Of Korea (National Fisheries Research & Development Inst) Green algae generation control and pathogenic bacteria extinction device in water tank
US8887668B2 (en) 2012-04-25 2014-11-18 Republic Of Korea (National Fisheries Research And Development Institute) Apparatus for controlling algal blooms and killing pathogens in fish tank

Similar Documents

Publication Publication Date Title
CN107509678B (en) Aquaculture system
CN106957092B (en) Method for electro-removing ammonia nitrogen by three-dimensional pulse
CN210796095U (en) High-magnetization hydrogen-rich multifunctional water dispenser
JPH06233983A (en) Three dimensional electrode-type electrolytic tank
JPH08164390A (en) Electrochemical treatment of water to be treated
JPH0688271A (en) Carbonaceous electrode type electrolytic cell
JPH03224683A (en) Electrochemical treatment of water to be treated
JP3040549B2 (en) High purity water production method
JP3020553B2 (en) Fixed-bed type three-dimensional electrode type electrolytic cell
JP3056511B2 (en) Treatment water treatment equipment
JPH04118090A (en) Electrolytic treatment of water to be treated
JP3214724B2 (en) Fixed-bed type three-dimensional electrode type electrolytic cell
JP3014427B2 (en) Treatment of treated water
CN203807293U (en) Integrated and comprehensive water-treating equipment utilizing electrified water
JP3020551B2 (en) Electrochemical treatment of treated water containing microorganisms
JPH0663558A (en) Electrochemical treating method of water to be treated
US20220064031A1 (en) Hybrid water treatment system for red tide removal and perchlorate control and water treatment method using the same
JP2971571B2 (en) 3D electrode type electrolytic cell
CN1164512A (en) Seal washer for ternery electrode electric tank and said electrode electric tank and water treatment method
JPH0671268A (en) Electrochemical treatment of water to be treated
CN111995134A (en) Method and device for electrically catalyzing and inactivating algae in ship ballast water by DSA anode
JPH05309362A (en) Treatment of object water for treatment and multiple-electrodes-type electrolytic bath for treatment of object water for treatment
JPH05329483A (en) Treatment of water to be treated and bipolar electrolytic cell used therefor
JP3664274B2 (en) Electrolytic treatment method of water to be treated
JP2922255B2 (en) Electrochemical treatment of treated water containing microorganisms