JPH0688271A - Carbonaceous electrode type electrolytic cell - Google Patents

Carbonaceous electrode type electrolytic cell

Info

Publication number
JPH0688271A
JPH0688271A JP3189386A JP18938691A JPH0688271A JP H0688271 A JPH0688271 A JP H0688271A JP 3189386 A JP3189386 A JP 3189386A JP 18938691 A JP18938691 A JP 18938691A JP H0688271 A JPH0688271 A JP H0688271A
Authority
JP
Japan
Prior art keywords
electrode
carbonaceous
electrolytic cell
water
ferrite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3189386A
Other languages
Japanese (ja)
Inventor
Hiroyuki Hashimoto
浩幸 橋本
Takeshi Takahashi
剛 高橋
Mina Satou
美奈 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP3189386A priority Critical patent/JPH0688271A/en
Publication of JPH0688271A publication Critical patent/JPH0688271A/en
Pending legal-status Critical Current

Links

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

PURPOSE:To minimize the elution of carbonaceous electrodes as carbon dioxide by reaction with the gaseous oxygen generated by the carbonaceous electrodes and the deterioration of these electrodes at the time of using the carbonaceous electrodes in an oxygen generation electrolysis or electrolytic treatment. CONSTITUTION:The desorption of the carbon dioxide to be generated by forming ferrite coating layers 7 in a part or the whole of the positive polarization surfaces or anode surfaces of the carbonaceous electrodes 5 is suppressed, by which the further formation of the carbon dioxide is prevented and the ratio of the exposure of the carbonaceous electrodes 5 to water to be treated is suppressed to the required min. ratio. The formation of the ferrite coating layers 7 in a part of the carbonaceous electrodes 5 is executed by once forming the coating layers 7 in the whole of the positive polarization surfaces or the anode surfaces of the carbonaceous electrodes 5, then chipping off a part or using the ferrite particles of the particle sizes smaller than the hole diameters of the carbonaceous electrodes 5.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、各種被処理水の処理や
各種電解液の電解にあるいメッキ工業における電解メッ
キ浴用として使用できる炭素質電極式電解槽に関し、よ
り詳細には微生物を含有する被処理水例えば養魚用水の
滅菌や性能向上あるいは写真処理液からの銀回収等の酸
素ガス発生を伴いながら電解液の電解処理又は電解を行
い、あるいは耐性の高い陽極材料としてメッキを行うの
に適した炭素質三次元電極を使用する炭素質三次元電極
式電解槽に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a carbonaceous electrode type electrolytic cell which can be used as an electrolytic plating bath in the plating industry for treating various kinds of water to be treated or for electrolysis of various electrolytic solutions, and more specifically, containing a microorganism. For sterilization of water to be treated such as fish culture water, performance improvement, or electrolytic treatment or electrolysis of the electrolytic solution while generating oxygen gas such as silver recovery from the photographic processing solution, or plating as a highly resistant anode material A carbonaceous three-dimensional electrode type electrolytic cell using a suitable carbonaceous three-dimensional electrode.

【0002】[0002]

【従来技術】各種魚類資源として海や川に繁殖している
天然の魚類の他に最近では養殖場等における養殖魚類が
注目され、養殖魚が市場に数多く供給されている。養殖
場におけるこれら魚類の飼育の際には、養魚用水に多く
含まれる細菌類や黴類が魚類の成長を阻害したり死滅さ
せたりすることがあるが、細菌類等が少ない場合でも魚
類を汚染しあるいは魚類に付着してその商品価値を低下
させる。これらの悪影響を抑制するために殺菌剤等の防
黴剤が前記養魚用水へ多量に添加され、更に該防黴剤に
よる魚類の損傷を最小源に抑えるために抗生物質が投与
される。又抵抗力を高めるためビタミン剤等の多量の栄
養剤が魚類に投与され、その上に餌が与えられる。従っ
て飼育されている魚類は全体の摂取量に対する育成に必
要な餌の量が少ないため、養殖では必須とされる成育速
度が遅くなり、更に防黴剤が蓄積して成長が阻害された
りあるいは人体に有害な防黴剤で汚染された魚類が市場
に供給されることになる。更に養魚用水中には通常の水
と同様に8ppm程度の溶存酸素が存在し、魚類はこの
酸素を摂取して成育していく。多量の薬品の投与はこの
酸素の溶解量を減少させたり、溶存酸素と反応して溶存
酸素量を減少させて成長を阻害する。
2. Description of the Related Art In addition to natural fish breeding in the sea and rivers as various fish resources, recently, farmed fish in farms and the like have attracted attention, and many farmed fish have been supplied to the market. When breeding these fish in aquaculture farms, bacteria and fungi contained in aquaculture water may inhibit the growth of the fish or kill them, but even if the bacteria are low, the fish are contaminated. It adheres to fish or fish and reduces its commercial value. In order to suppress these adverse effects, a fungicide such as a bactericide is added to the water for fish culture in a large amount, and further, an antibiotic is administered in order to suppress the damage of the fish due to the fungicide to the minimum source. In addition, a large amount of nutrients such as vitamins is administered to fish in order to increase resistance, and food is provided on the fish. Therefore, the fish that are bred have a small amount of food required for rearing with respect to the total intake, so that the growth rate, which is essential in aquaculture, is slowed down, and further growth of the antifungal agent is inhibited or the growth of human body is inhibited. Fish that are contaminated with a mildew-proofing agent will be supplied to the market. Further, dissolved oxygen of about 8 ppm exists in the water for fish farming as in ordinary water, and fish ingest this oxygen to grow. Administration of a large amount of chemicals reduces the dissolved amount of this oxygen, or reacts with dissolved oxygen to reduce the dissolved oxygen amount and inhibits growth.

【0003】そして勿論養漁場用水以外にもガス発生を
伴う電解又は電解処理を必要とする被処理水がある。上
述の防黴剤による魚類の保護は、魚類自体の汚染の問題
だけでなく、養魚用水の量が莫大であるため使用する防
黴剤の量も多くなり、そのコストが嵩むという問題も生
じさせている。更に該防黴剤の使用に付随して生ずる栄
養剤のコストも莫大になり、魚類の成育には直接結びつ
かず、むしろ悪影響を生じさせる前記防黴剤の使用を回
避できれば低コストで人体にも無害な魚類を短期間に成
長させて商品化できるためその利点は多大のものがあ
る。
Of course, in addition to water for fish farms, there is water to be treated which requires electrolysis or electrolytic treatment with gas generation. The protection of fish by the above-mentioned antifungal agent causes not only the problem of contamination of the fish itself, but also the amount of antifungal agent to be used due to the enormous amount of water for fish farming, which causes a problem that the cost increases. ing. Further, the cost of the nutritional supplement that accompanies the use of the fungicide also becomes enormous, and it is not directly connected to the growth of fish, but rather, the use of the fungicide which causes an adverse effect can be avoided at a low cost to the human body. The advantages are enormous because harmless fish can be grown and commercialized in a short period of time.

【0004】更に養魚用水の溶存酸素濃度を上昇させる
ことができれば、魚類の活動が活発になりそれに応じて
餌の摂取量が増加して前記魚類の成育が著しく促進され
る。溶存酸素濃度を低コストで上昇させることができれ
ば通常の養殖魚よりサイズが大きく商品価値の高い魚類
を短期間に育成して市場に供給することができる。更に
養漁場用水以外の被処理水の防黴の場合にも防黴剤の使
用は同様の欠点を生じさせ、かつ溶存酸素量の増大が種
々の利点を生じさせることが多い。炭素質電極は被処理
水の処理だけでなく、酸素発生用電解、電解メッキ、水
電解等の電解反応の電極としても使用されている。
Further, if the dissolved oxygen concentration of the fish culture water can be increased, the activity of the fish becomes active, and the intake of the food increases accordingly, and the growth of the fish is significantly promoted. If the dissolved oxygen concentration can be increased at a low cost, it is possible to cultivate and supply to the market fish that are larger in size and have higher commercial value than ordinary cultured fish in a short period of time. Further, also in the case of antifungal treatment of water to be treated other than fish farm water, the use of antifungal agents causes similar drawbacks, and the increase in dissolved oxygen amount often causes various advantages. The carbonaceous electrode is used not only for treating water to be treated but also as an electrode for electrolytic reaction such as electrolysis for oxygen generation, electrolytic plating, and water electrolysis.

【0005】[0005]

【発明が解決すべき問題点】このようなガス発生を伴う
電解処理又は電解に使用する電解槽として表面積が莫大
である三次元電極が広く使用されているが、該三次元電
極の材質としては安価で電極物質としての性能に優れた
炭素質材料が使用されている。しかし該炭素質材料は酸
素ガスと接触するとその表面の炭素が該酸素ガスと反応
して二酸化炭素として溶出して消耗してしまうという欠
点がある。本発明者らは、前記三次元電極の陽分極する
側に白金族金属酸化物被覆電極等を設置してガス発生を
白金族金属酸化物被覆電極上で生じさせて前記炭素質三
次元電極の溶出を防止するようにした電解槽を提案し
た。しかしこの電解槽では前記白金族金属酸化物被覆電
極のコストが高く経済的でないため、より安価に同等の
効果が生ずる炭素質三次元電極を使用する電解槽が要請
されている。
A three-dimensional electrode having a huge surface area is widely used as an electrolytic cell used for electrolytic treatment or electrolysis involving the generation of gas, and the material for the three-dimensional electrode is A carbonaceous material that is inexpensive and has excellent performance as an electrode material is used. However, when the carbonaceous material comes into contact with oxygen gas, carbon on the surface thereof reacts with the oxygen gas and is eluted as carbon dioxide to be consumed. The present inventors have installed a platinum group metal oxide-coated electrode or the like on the side of the three-dimensional electrode that is positively polarized to cause gas generation on the platinum group metal oxide-coated electrode and We have proposed an electrolytic cell designed to prevent elution. However, since the cost of the platinum group metal oxide-coated electrode is high and not economical in this electrolytic cell, an electrolytic cell using a carbonaceous three-dimensional electrode that produces the same effect at a lower cost is required.

【0006】[0006]

【発明の目的】本発明は、安価で電極物質としての活性
に優れるが電解により生ずることの多い酸素ガスに対す
る耐性に欠けるという性質を有する炭素質材料を該酸素
ガスに対する耐性を向上させた状態で使用できる炭素質
電極式電解槽を提供することを目的とする。
It is an object of the present invention to provide a carbonaceous material which is inexpensive and has excellent activity as an electrode substance but lacks resistance to oxygen gas which is often generated by electrolysis in a state where the resistance to oxygen gas is improved. An object is to provide a carbonaceous electrode type electrolytic cell that can be used.

【0007】[0007]

【問題点を解決するための手段】本発明は、炭素質電極
を電極として収容した炭素質電極式電解槽において、前
記炭素質電極の陽分極する面の一部あるいは全面にフェ
ライト被覆層を形成したことを特徴とする炭素質電極式
電解槽である。
According to the present invention, in a carbonaceous electrode type electrolytic cell containing a carbonaceous electrode as an electrode, a ferrite coating layer is formed on a part or the entire surface of the carbonaceous electrode which is positively polarized. It is a carbonaceous electrode type electrolytic cell characterized by the above.

【0008】以下本発明を詳細に説明する。本発明は、
安価で電極物質としての活性に優れるが、電解により生
ずることの多い酸素ガスに対する耐性に欠けるという炭
素質材料の特性に鑑み、該炭素質材料を酸素ガス発生を
伴う電解用として使用しても僅かな炭素質材料の消耗を
伴うのみで効率良く電解又は電解処理を行うことのでき
る該炭素質材料を電極として使用する炭素質電極式電解
槽であり、これは炭素質電極の陽分極する側にフェライ
ト被覆層を形成することにより達成することができる。
本発明に係わる電解槽は、炭素質電極を有する炭素質電
極式電解槽、好ましくは炭素質三次元電極式電解槽であ
り、複極式固定床型三次元電極式電解槽、単極式固定床
型三次元電極式電解槽及び通常の板状あるいは多孔板状
電極を有する電解槽等が含まれる。通常の電解や電解処
理では被処理水あるいは電解液が三次元電極等と接触す
る機会が多いほど電解効率あるいは処理効率が上昇す
る。従って電極等の表面積が大きい複極式固定床型等の
三次元電極電解槽を使用すると他の電解槽を使用する場
合よりも処理効率を上昇させることができ、これにより
同一の処理効率を達成するために必要な装置サイズを他
の電解槽よりも小さくできる点で有利である。
The present invention will be described in detail below. The present invention is
Although it is inexpensive and excellent in activity as an electrode substance, in view of the characteristic of the carbonaceous material that it lacks resistance to oxygen gas often generated by electrolysis, even if the carbonaceous material is used for electrolysis involving oxygen gas generation, it is slightly It is a carbonaceous electrode type electrolytic cell that uses as an electrode the carbonaceous material that can be efficiently electrolyzed or electrolyzed only with the consumption of various carbonaceous materials. This can be achieved by forming a ferrite coating layer.
The electrolytic cell according to the present invention is a carbonaceous electrode type electrolytic cell having a carbonaceous electrode, preferably a carbonaceous three-dimensional electrode type electrolytic cell, a bipolar electrode fixed bed type three-dimensional electrode type electrolytic cell, a single electrode type fixed electrode. It includes a floor type three-dimensional electrode type electrolytic cell and an electrolytic cell having a normal plate-shaped or perforated plate-shaped electrode. In normal electrolysis or electrolytic treatment, the more often the water to be treated or the electrolytic solution comes into contact with the three-dimensional electrode or the like, the higher the electrolysis efficiency or treatment efficiency. Therefore, using a three-dimensional electrode electrolytic cell such as a bipolar fixed bed type with a large surface area such as electrodes can improve the processing efficiency compared to the case of using other electrolytic cells, thereby achieving the same processing efficiency. This is advantageous in that the device size required for this can be made smaller than other electrolytic cells.

【0009】本発明の炭素質電極式電解槽における炭素
質電極は、板状、多孔板状、棒状の他に、前記被処理水
あるいは電解液が透過可能な多孔質三次元材料、例えば
フェルト状、織布状、多孔質ブロック状、多数の貫通孔
を形成した中実体等の形状を有する活性炭、グラファイ
ト、炭素繊維等の炭素質材料から形成されることが望ま
しく、該炭素質電極は単独で陽極として使用しても良い
が、好ましくは前記炭素質電極を電場内で分極させ陽陰
極に分極可能な誘電体として使用する。誘電体として使
用する場合該炭素質電極は直流又は交流電場内に置か
れ、両端に設置した平板状又はエキスパンドメッシュ状
やパーフォレーティッドプレート状等の多孔板体から成
る給電用陽陰極間に直流電圧や低周波交流電圧を印加し
て前記三次元電極を分極させ該三次元電極の一端及び他
端にそれぞれ正及び負の電荷が形成されて分極する。こ
の他に給電用陽極及び陰極とは別個に、単独で陽極とし
てあるいは陰極として機能する炭素質三次元材料を交互
に短絡しないように設置しかつ電気的に接続して複極型
固定床式電解槽とすることができる。なお前述の多数の
貫通孔を形成した中実体を三次元電極として使用する場
合には、流通する被処理水の移動を妨害しないようにそ
の開口率を10%以上95%以下好ましくは20%以上80%以
下とする。
The carbonaceous electrode in the carbonaceous electrode type electrolytic cell of the present invention may be a plate-shaped, porous plate-shaped or rod-shaped, as well as a porous three-dimensional material permeable to the water to be treated or the electrolytic solution, for example, a felt-shaped material. It is desirable that the carbonaceous electrode be formed of a carbonaceous material such as activated carbon, graphite, carbon fiber or the like having a shape such as a woven fabric shape, a porous block shape, or a solid body having a large number of through holes. Although it may be used as an anode, the carbonaceous electrode is preferably used as a dielectric substance which is polarized in an electric field and is polarizable to a cathode. When used as a dielectric, the carbonaceous electrode is placed in a direct current or alternating current electric field, and a direct current voltage is applied between the positive and negative electrodes for power supply composed of flat plate-shaped or expanded mesh-shaped or perforated plate-shaped porous plates installed at both ends. A low frequency AC voltage is applied to polarize the three-dimensional electrode, and positive and negative charges are formed at one end and the other end of the three-dimensional electrode to polarize the three-dimensional electrode. In addition to this, separate from the power supply anode and cathode, a carbonaceous three-dimensional material that functions alone as an anode or as a cathode is installed so as not to be short-circuited alternately and electrically connected to form a multipolar fixed bed electrolysis. It can be a tank. When using a solid body having a large number of through holes as described above as a three-dimensional electrode, the aperture ratio is 10% or more and 95% or less, preferably 20% or more so as not to interfere with the movement of the water to be treated. 80% or less.

【0010】このような炭素質電極を酸素ガス発生を伴
う電解あるいは電解処理反応の陽極あるいは前述の誘電
体として使用すると、該炭素質電極が酸素ガスと反応し
て一部が二酸化炭素として溶出し該炭素質電極の劣化が
生ずる。従って本発明では、陽極として使用される該炭
素質電極の表面、又は誘電体として使用される該炭素質
電極の陽分極する面の一部にフェライト被覆層を形成し
て前記炭素質電極の劣化を最小限に抑制する。なお交流
電圧が印加される場合には両極に向かう両面にフェライ
ト被覆を形成するようにする。前記炭素質電極にフェラ
イト層を形成する方法は特に限定されないが、フェライ
ト粒子を溶射したり蒸着させたりする方法を採用するこ
とができる。そして前記炭素質電極の全面にフェライト
層を形成すると炭素質材料の電極活性が失われるため少
なくとも一部の炭素質材料が表面に露出するよう前記フ
ェライト層を被覆することが必要であり、炭素質電極の
面積に対するフェライト被覆面積は30〜100 %とするこ
とが好ましく、30%未満であるフェライトによる炭素質
電極の保護機能が不十分になる。フェライト層の厚さ
は、電解液組成や電解条件によって異なるため一概に限
定できないが、通常50μm〜2μmの範囲とすることが
望ましい。
When such a carbonaceous electrode is used as an anode for electrolysis or electrolytic treatment reaction involving oxygen gas generation or as the above-mentioned dielectric, the carbonaceous electrode reacts with oxygen gas and a part is eluted as carbon dioxide. Deterioration of the carbonaceous electrode occurs. Therefore, in the present invention, a ferrite coating layer is formed on a part of the surface of the carbonaceous electrode used as an anode or the positively polarized surface of the carbonaceous electrode used as a dielectric to deteriorate the carbonaceous electrode. To minimize. When an AC voltage is applied, a ferrite coating is formed on both surfaces facing both electrodes. The method of forming the ferrite layer on the carbonaceous electrode is not particularly limited, but a method of spraying or vapor depositing ferrite particles can be adopted. When a ferrite layer is formed on the entire surface of the carbonaceous electrode, the electrode activity of the carbonaceous material is lost, so it is necessary to coat the ferrite layer so that at least a part of the carbonaceous material is exposed on the surface. The ferrite coating area with respect to the electrode area is preferably 30 to 100%, and the protection function of the carbonaceous electrode by the ferrite of less than 30% becomes insufficient. The thickness of the ferrite layer cannot be unconditionally limited because it depends on the composition of the electrolytic solution and the electrolytic conditions, but it is usually desirable to set it in the range of 50 μm to 2 μm.

【0011】そして例えば炭素質電極として多孔質の三
次元電極を使用しかつフェライト粒子として前記三次元
電極の孔径より小さい粒子を使用してフェライト被覆層
を形成すると、前記フェライト粒子が前記炭素質電極の
孔を閉塞し(例えば40μm径のフェライト粒子を孔径50
μmの炭素質電極上に溶射すると炭素質電極の孔の目詰
まりが生ずる)、かつ炭素質電極の表面を被覆して炭素
質電極の電極活性が完全に失われる。このような電極活
性の低下を抑制するためには、炭素質電極全面又は陽分
極する側に一旦フェライト被覆層を形成した後、該被覆
層の一部を溝状に削り取って炭素質材料を露出させて電
極活性を生じさせたり、炭素質電極の孔径より大径のフ
ェライト粒子を溶射又は蒸着することにより該フェライ
ト粒子を炭素質電極内部に進入させることなく、かつ炭
素質電極表面が部分的に露出するようにして電極を製造
することができる。
Then, for example, when a porous three-dimensional electrode is used as the carbonaceous electrode and particles having a pore size smaller than that of the three-dimensional electrode are used as the ferrite particles to form the ferrite coating layer, the ferrite particles become the carbonaceous electrode. Block the pores (for example, ferrite particles with a diameter of 40 μm
When spraying on the carbonaceous electrode of μm, the pores of the carbonaceous electrode are clogged), and the surface of the carbonaceous electrode is covered, and the electrode activity of the carbonaceous electrode is completely lost. In order to suppress such a decrease in electrode activity, a ferrite coating layer is once formed on the entire surface of the carbonaceous electrode or on the side that undergoes positive polarization, and then a part of the coating layer is cut into a groove shape to expose the carbonaceous material. To cause the electrode activity, or by spraying or vapor depositing ferrite particles having a diameter larger than the pore size of the carbonaceous electrode, without allowing the ferrite particles to enter the inside of the carbonaceous electrode, and the carbonaceous electrode surface is partially The electrode can be manufactured so that it is exposed.

【0012】更にフェライト粒子と水溶性物質例えば塩
化ナトリウムの混合物を炭素質電極に溶射した後、前記
塩化ナトリウムを溶出させることにより、前記炭素質電
極表面を露出させるようにすることもできる。又この他
に溶射面に格子状の金属例えばステンレス、銅、ニッケ
ル等を置いたままフェライト粒子の溶射を行い、該格子
状金属が存在しない部分にのみフェライト被覆層を形成
して他の部分の炭素質材料を露出させるようにすること
もできる。このように形成されるフェライト被覆層は多
数のフェライト粒子が前記炭素質電極表面に単一被覆層
として担持されているものと推測される。処理されるべ
き被処理水は隣接するフェライト粒子間の空間を通して
炭素質電極に接触し、又はフェライト粒子が存在しない
部分の炭素質電極にそのまま接触して被処理水の電解処
理等が行われる。そして該フェライト被覆層の存在によ
り該フェライト被覆層上で酸素ガス発生反応が生起する
ようになり、炭素質三次元電極上での酸素発生を抑制で
きるため、該炭素質三次元電極の溶出が効果的に防止さ
れるものと考えられる。
Further, the surface of the carbonaceous electrode can be exposed by spraying a mixture of ferrite particles and a water-soluble substance such as sodium chloride on the carbonaceous electrode and then eluting the sodium chloride. In addition to this, the ferrite particles are sprayed with a grid-shaped metal, such as stainless steel, copper, or nickel, placed on the sprayed surface, and the ferrite coating layer is formed only on the part where the grid-shaped metal does not exist, and the other parts are sprayed. It is also possible to expose the carbonaceous material. The ferrite coating layer thus formed is presumed to have a large number of ferrite particles carried on the surface of the carbonaceous electrode as a single coating layer. The water to be treated is brought into contact with the carbonaceous electrode through the space between the adjacent ferrite particles, or is brought into direct contact with the carbonaceous electrode in a portion where the ferrite particles are not present to perform electrolytic treatment of the water to be treated or the like. Then, the presence of the ferrite coating layer causes an oxygen gas generation reaction on the ferrite coating layer, and oxygen generation on the carbonaceous three-dimensional electrode can be suppressed, so that the elution of the carbonaceous three-dimensional electrode is effective. It is considered to be prevented.

【0013】より以上に前記炭素質電極の溶出を抑制す
るには該炭素質電極のフェライト被覆層が形成された面
に、チタン等の基材上に酸化イリジウム、酸化ルテニウ
ム等の白金族金属酸化物を被覆し通常不溶性金属電極と
して使用される多孔質材料を接触状態で設置し、酸素発
生が主として該多孔質材料上で生ずるようにすればよ
い。本発明の電解槽において、前記炭素質電極同士や該
炭素質電極と給電用電極ターミナルを接近させて電圧の
低下を意図する際には、短絡防止のため電気絶縁性のス
ペーサとして例えば有機高分子材料で作製した網状スペ
ーサ等を挿入することが好ましい。本発明の三次元電極
式電解槽はガス発生を伴う電解や電解処理は勿論、ガス
発生を伴わない電解や電解処理に使用することもでき
る。
To further suppress the elution of the carbonaceous electrode, a platinum group metal oxide such as iridium oxide or ruthenium oxide is formed on a base material such as titanium on the surface of the carbonaceous electrode on which the ferrite coating layer is formed. A porous material which is coated with a substance and which is usually used as an insoluble metal electrode may be placed in contact with each other so that oxygen generation mainly occurs on the porous material. In the electrolytic cell of the present invention, when the carbonaceous electrodes or the carbonaceous electrode and the power feeding electrode terminal are brought close to each other in order to reduce the voltage, an electrically insulating spacer such as an organic polymer is used to prevent a short circuit. It is preferable to insert a mesh spacer made of a material. The three-dimensional electrode type electrolytic cell of the present invention can be used not only for electrolysis or electrolysis treatment involving gas generation but also for electrolysis or electrolysis treatment without gas generation.

【0014】ガス発生を伴う電解又は電解処理用として
使用する場合には、発生する酸素ガスと水素ガスは通常
爆発限界内の混合比で発生するため、爆発の危険を回避
するために空気等の不活性ガスで希釈することが好まし
い。例えば電解槽出口に発生する電解ガスの分離手段と
分離後の該電解ガスを空気で希釈して電解ガス濃度が4
容量%以下になるよう希釈する手段を設置することが好
ましいが、電解槽の容量が比較的小さく発生するガス量
も少ない場合は、前記ガス分離手段は設置しなくてもよ
い。本発明に係わる炭素質電極式電解槽は、各種用途に
使用できるが、微生物を含有する被処理水の滅菌等の改
質処理に好ましく使用することができる。例えば養魚用
水は適度な温度を有しかつ栄養剤が添加されていて黴や
細菌等が繁殖し易い環境にある。従来の電解又は電解処
理では、黴や細菌類がイオン化しないため電極表面にお
ける酸化還元反応を受けて死滅する数は極めて限定され
た数となり、完全に滅菌されることがなく、電解又は電
解処理に強い耐性を有する菌がかえって繁殖するといっ
た状況が形成されているものと推測される。
When used for electrolysis or electrolytic treatment involving gas generation, the oxygen gas and hydrogen gas that are generated are usually generated at a mixing ratio within the explosion limit. Therefore, in order to avoid the danger of explosion, air, etc. It is preferable to dilute with an inert gas. For example, the separation means for the electrolytic gas generated at the outlet of the electrolytic cell and the separated electrolytic gas are diluted with air to have an electrolytic gas concentration of 4
It is preferable to install a means for diluting so as to have a volume% or less, but if the capacity of the electrolytic cell is relatively small and the amount of generated gas is small, the gas separating means may not be installed. The carbonaceous electrode type electrolytic cell according to the present invention can be used for various purposes, but can be preferably used for modification treatment such as sterilization of water to be treated containing microorganisms. For example, fish culture water has an appropriate temperature and is supplemented with nutrients, and is in an environment where molds, bacteria and the like easily propagate. In the conventional electrolysis or electrolytic treatment, the number of molds and bacteria that do not ionize and receive the redox reaction on the electrode surface and die is extremely limited, and it is not completely sterilized. It is presumed that the situation is such that bacteria with strong resistance are instead propagated.

【0015】本発明の電解槽より該被処理水に直流電圧
や低周波数の交流電圧を印加すると、該被処理水中のイ
オン化しない黴や細菌類も液流動によって炭素質電極式
電解槽の陽極や陰極あるいは誘電体等の極めて表面積の
大きい炭素質電極特に炭素質三次元電極に充分に接触し
それらの表面で酸化還元反応を受けてその細胞が破壊さ
れて死滅したりすると考えられる。従って従来の殺菌剤
や防黴剤を使用せずに同等の殺菌又は防黴効果を生じさ
せることができる。更に被処理水が硬水であるとカルシ
ウムイオンやマグネシウムイオン等の不純物が含有され
ている。該被処理水を電解処理すると電解槽の陰極上で
還元されてそれらの水酸化物として該陰極上等に析出し
て被処理水から除去されて例えば魚類等に悪影響を与え
ることがなくなる。
When a direct current voltage or a low frequency alternating voltage is applied to the water to be treated from the electrolytic cell of the present invention, non-ionized molds and bacteria in the water to be treated are also subjected to liquid flow to form an anode of a carbonaceous electrode type electrolytic cell or It is considered that a carbonaceous electrode having a very large surface area such as a cathode or a dielectric material, especially a carbonaceous three-dimensional electrode, is sufficiently contacted with the surface thereof to undergo a redox reaction and the cell is destroyed and killed. Therefore, an equivalent bactericidal or antifungal effect can be produced without using a conventional bactericide or antifungal agent. Further, when the water to be treated is hard water, impurities such as calcium ions and magnesium ions are contained. When the water to be treated is electrolyzed, it is reduced on the cathode of the electrolytic cell and precipitated as hydroxides thereof on the cathode or the like to be removed from the water to be treated, thereby not adversely affecting, for example, fish.

【0016】一般に前記養魚用水の電解処理操作では魚
類の成育に好影響を与える溶存酸素量を増加させるため
に、積極的に酸素ガスを発生させながら電解処理を行う
が、該酸素ガスにより本発明の電解槽の炭素質電極の表
面は溶出し易くなっているが、その表面に被覆されたフ
ェライトにより前述の通り溶出が抑制されて、効果的に
酸素発生を伴う電解あるいは電解処理を行うことが可能
になる。本発明では、給電用陽陰極ターミナル間に印加
される直流電圧又は低周波数交流電圧の値は特に限定さ
れず、電極表面でガス発生が生ずる高電流密度電解処理
が生ずる任意の値とすることができ、交流電圧を使用す
る場合の周波数は10ヘルツ以下とすることが望ましい。
本発明の電解槽によりガス発生を行いながら前記被処理
水の処理又は電解液の電解を行うと、分極した三次元電
極から発生する該酸素の一部がそのまま電解処理を行っ
ている養魚用水等の被処理水に溶解して溶存酸素濃度を
通常の値より高い値に上昇させ、かつ細菌類の死滅によ
り該細菌類が消費していた酸素の消費がなくなるため酸
素濃度が更に上昇して魚類の成育等に好ましい酸素濃度
とすることができあるいは水電解による酸素ガス及び水
素ガス発生等の所定の電解反応を達成することができ
る。そして例えば陽極電位が+0.2 から+1.5 V(vs.SH
E)の範囲で養魚用水等の殺菌処理及び不純物除去ができ
るが、実質的な酸素ガス発生は+ 1.0V以上で生ずるた
め、陽極電位を+ 1.0V以上、好ましくは+ 1.2V以上
とする。なお好ましい陰極電位は−0.5 V(vs.SHE)より
貴な範囲であり、この範囲で処理すべき養魚用水等の殺
菌処理及び不純物除去ができる。+1.2 V以上の陽極電
位で酸素ガス発生とともに若干量のオゾンガスの副生が
伴い、両ガスは魚類の成育等に好影響を与える。
Generally, in the electrolytic treatment operation of the above-mentioned fish culture water, in order to increase the amount of dissolved oxygen which has a favorable effect on the growth of fish, the electrolytic treatment is carried out while actively generating oxygen gas. The surface of the carbonaceous electrode in the electrolysis cell is easy to elute, but the elution is suppressed by the ferrite coated on the surface as described above, and it is possible to effectively perform electrolysis or electrolytic treatment with oxygen generation. It will be possible. In the present invention, the value of the DC voltage or the low-frequency AC voltage applied between the positive and negative electrode terminals for power supply is not particularly limited, and may be any value that causes high current density electrolytic treatment in which gas generation occurs on the electrode surface. However, it is desirable that the frequency when using an AC voltage is 10 hertz or less.
When the treatment of the water to be treated or the electrolysis of the electrolytic solution is performed while the gas is generated by the electrolytic cell of the present invention, a part of the oxygen generated from the polarized three-dimensional electrode is subjected to the electrolytic treatment as it is. Dissolved in the water to be treated to raise the dissolved oxygen concentration to a value higher than the normal value, and the oxygen concentration consumed by the bacteria disappears due to the killing of the bacteria, so the oxygen concentration further increases and the fish It is possible to adjust the oxygen concentration to be suitable for growth and the like, or to achieve a predetermined electrolytic reaction such as generation of oxygen gas and hydrogen gas by water electrolysis. And, for example, the anode potential is +0.2 to +1.5 V (vs.SH
Although sterilization of water for fish farming and removal of impurities can be carried out within the range of E), since substantial oxygen gas generation occurs at +1.0 V or more, the anode potential is +1.0 V or more, preferably +1.2 V or more. The preferable cathode potential is in a range nobler than -0.5 V (vs. SHE), and sterilization treatment of fish-culture water to be treated and removal of impurities can be performed in this range. Oxygen gas is generated at an anode potential of +1.2 V or higher, and a small amount of ozone gas is produced as a by-product, and both gases have a favorable effect on the growth of fish.

【0017】処理すべき被処理水又は電解すべき電解液
が流れる本発明の電解槽内に該被処理水等が前記炭素質
電極等に接触せずに流通できる比較的大きな空隙がある
と前記被処理水等の処理又は電解効率が低下するため、
前記炭素質電極は電解槽内の前記被処理水等の流れがシ
ョートパスしないように配置することが望ましい。この
ような構成から成る炭素質電極式電解槽は、被処理水が
養漁場用水の場合には養殖場や釣堀等に近接して設置
し、該養殖場等の養魚用水の一部を循環させて前記電解
槽等で殺菌等の処理を行った後に前記養殖場に戻すよう
にして使用することができ、写真処理液からの銀回収の
場合には写真処理槽に近接して設置しかつ写真処理液を
循環させながら電解銀回収を行うことができる。なお電
解槽に供給される被処理水が層流であると炭素質電極の
表面と充分に接触することなく前記電解槽を通過するこ
とがあるため、電解槽内を通過する被処理水等は100 以
上の特に好ましくは500 以上のレイノルズ数を有する乱
流として、横方向の移動を十分に行わせながら前記電解
槽等を通過させることがより好ましい。
If there is a relatively large void in the electrolytic cell of the present invention through which the water to be treated or the electrolytic solution to be electrolyzed flows, the water to be treated can flow without coming into contact with the carbonaceous electrode or the like. Since the treatment of water to be treated or the efficiency of electrolysis decreases,
It is desirable that the carbonaceous electrode is arranged so that the flow of the water to be treated or the like in the electrolytic cell does not short pass. When the water to be treated is water for fish farms, the carbonaceous electrode type electrolyzer having such a configuration is installed close to a fish farm or a fishing pond, and a part of the fish water for fish farms is circulated. It can be used by returning it to the aquaculture site after sterilization in the electrolytic bath etc., and in the case of silver recovery from the photographic processing liquid, install it close to the photographic processing bath and take a photograph. Electrolytic silver recovery can be performed while circulating the processing liquid. When the water to be treated supplied to the electrolytic cell is a laminar flow, it may pass through the electrolytic cell without sufficiently contacting the surface of the carbonaceous electrode. As a turbulent flow having a Reynolds number of 100 or more, particularly preferably 500 or more, it is more preferable to pass through the electrolytic cell or the like while sufficiently performing lateral movement.

【0018】なお電解槽を1回通過させるだけでは十分
に効果が生じない場合は処理済の被処理水を再度電解槽
を通すようにしてもよく、又養殖池の養魚用水等を順に
電解槽に供給して全体的な処理効率を上昇させるように
してもよい。又本発明の電解槽では、該電解槽に漏洩電
流が生じ該漏洩電流が養魚場内の魚を感電死させたりあ
るいは電解槽から被処理水や電解液を通して他の金属製
部材に流れ込み、該部材に溶出等の電気化学的な腐食を
生じさせることがある。そのため電解槽内の給電用陽陰
極ターミナルが相対しない該電極背面部及び/又は前記
電解槽の出入口配管内に、前記被処理水等より導電性の
高い部材をその一端を接地可能なように設置して前記漏
洩電流を遮断することができる。
If the effect is not sufficiently obtained by passing the electrolytic cell only once, the treated water which has been treated may be passed through the electrolytic cell again. To increase overall processing efficiency. Further, in the electrolytic cell of the present invention, a leakage current is generated in the electrolytic cell, and the leakage current may cause electrocution of fish in the fish farm, or may flow from the electrolytic cell through the water to be treated or the electrolytic solution into another metal member, May cause electrochemical corrosion such as elution. Therefore, a member having higher conductivity than the water to be treated or the like is installed so that one end thereof can be grounded in the back surface of the electrode and / or in the inlet / outlet pipe of the electrolytic cell where the positive and negative electrode terminals for feeding in the electrolytic cell do not face each other. Thus, the leakage current can be cut off.

【0019】次に添付図面に基づいて本発明に使用でき
る電解槽の好ましい例を説明するが、本発明方法に使用
される電解槽は、この電解槽に限定されるものではな
い。図1は、本発明の電解槽として使用可能な複極型固
定床式電解槽の一例を示す概略縦断面図である。上下に
フランジ1を有する円筒形の電解槽本体2の内部上端近
傍及び下端近傍にはそれぞれメッシュ状の給電用陽極タ
ーミナル3と給電用陰極ターミナル4が設けられてい
る。電解槽本体2は、長期間の使用又は再度の使用にも
耐え得る電気絶縁材料で形成することが好ましく、特に
合成樹脂であるポリエピクロルヒドリン、ポリビニルメ
タクリレート、ポリエチレン、ポリプロピレン、ポリ塩
化ビニル、ポリ塩化エチレン、フェノール−ホルムアル
デヒド樹脂等が好ましく使用できる。正の直流電圧を与
える前記給電用陽極ターミナル3は、例えば炭素材(例
えば活性炭、炭、コークス、石炭等)、グラファイト材
(例えば炭素繊維、カーボンクロス、グラファイト
等)、炭素複合材(例えば炭素に金属を粉状で混ぜ焼結
したもの等)、活性炭素繊維不織布(例えばKE−1000
フェルト、東洋紡株式会社)、又はこれに白金、白金、
パラジウムやニッケルを担持させた材料、更に寸法安定
性電極 (白金族酸化物被覆チタン材) 、白金被覆チタン
材、ニッケル材、ステンレス材、鉄材等から形成され
る。又給電用陽極ターミナル3に対向し負の直流電圧を
与える給電用陰極ターミナル4は、例えば白金、ステン
レス、チタン、ニッケル、ハステロイ、グラファイト、
炭素材、軟鋼あるいは白金族金属をコーティングした金
属材料等から形成されている。
Next, preferred examples of the electrolytic cell which can be used in the present invention will be explained based on the attached drawings, but the electrolytic cell used in the method of the present invention is not limited to this electrolytic cell. FIG. 1 is a schematic vertical sectional view showing an example of a bipolar electrode fixed bed type electrolytic cell that can be used as the electrolytic cell of the present invention. A cylindrical electrolytic cell body 2 having upper and lower flanges 1 is provided with a mesh-shaped power feeding anode terminal 3 and power feeding cathode terminal 4 near the upper end and the lower end, respectively. The electrolytic cell body 2 is preferably formed of an electrically insulating material that can withstand long-term use or re-use, and in particular, synthetic resins such as polyepichlorohydrin, polyvinyl methacrylate, polyethylene, polypropylene, polyvinyl chloride, and polychloroethylene. , Phenol-formaldehyde resin and the like can be preferably used. The power supply anode terminal 3 for applying a positive DC voltage is, for example, a carbon material (eg, activated carbon, charcoal, coke, coal, etc.), a graphite material (eg, carbon fiber, carbon cloth, graphite, etc.), a carbon composite material (eg, carbon). Metal powder mixed and sintered), activated carbon fiber non-woven fabric (eg KE-1000)
Felt, Toyobo Co., Ltd.), or platinum, platinum,
It is formed of a material supporting palladium or nickel, a dimensionally stable electrode (platinum group oxide-coated titanium material), a platinum-coated titanium material, a nickel material, a stainless material, an iron material, or the like. Further, the power supply cathode terminal 4 facing the power supply anode terminal 3 and applying a negative DC voltage is, for example, platinum, stainless steel, titanium, nickel, hastelloy, graphite,
It is formed of a carbon material, mild steel, a metal material coated with a platinum group metal, or the like.

【0020】前記両給電用電極ターミナル3、4間には
複数個の、図示の例では3個の固定床5詰まり三次元電
極が積層され、かつ該固定床5間及び該固定床5と前記
両給電用電極ターミナル3、4間に4枚の多孔質の隔膜
あるいはスペーサー6が挟持されている。各固定床5の
前記給電用陰極ターミナル4に向かう面にはフェライト
被覆層7が被覆され、該固定床5は電解槽本体2の内壁
に密着し固定床5の内部を通過せず、固定床5と電解槽
本体2の側壁との間を流れる被処理水等の漏洩流がなる
べく少なくなるように配置されている。隔膜を使用する
場合には該隔膜として織布、素焼板、粒子焼結ブラスチ
ック、多孔板、イオン交換膜等が用いられ、スペーサー
として電気絶縁性材料で製作された織布、多孔板、網、
棒状材等が使用される。このような構成から成る電解槽
2に養魚用水等の被処理水や電解液を図1に矢印で示す
ように下方から供給しながら通電を行うと、前記各固定
床5が図示の如く下面が正に上面が負に分極して固定床
5内及び固定床5間に電位が生じ、該電解槽内を流通す
る被処理水はこの電位により正又は負に分極された固定
床5に接触して酸素ガスが発生するととともに該被処理
水の改質処理が行われる。発生する酸素ガスが前記被処
理水中に溶解して電解槽2に供給される前の被処理水よ
り高濃度の溶存酸素ガスを有する被処理水として前記電
解槽2の上方から取り出される。前記フェライト被覆層
7の存在により酸素ガスによる前記固定床5の溶出が最
小限に抑制され、該固定床5を交換することなくつまり
煩雑な操作である電解槽の分解及び組み立てを行うこと
なく長期間に亘って被処理水の処理や電解液の電解を行
うことが可能になる。
A plurality of, in the illustrated example, three fixed beds 5 clogged three-dimensional electrodes are stacked between the power feeding electrode terminals 3 and 4, and between the fixed beds 5 and between the fixed floor 5 and the above. Four porous diaphragms or spacers 6 are sandwiched between the power feeding electrode terminals 3 and 4. The surface of each fixed bed 5 facing the cathode terminal 4 for power supply is coated with a ferrite coating layer 7, and the fixed bed 5 adheres to the inner wall of the electrolytic cell body 2 and does not pass through the inside of the fixed bed 5, The leakage flow of the water to be treated or the like flowing between the electrolytic cell 5 and the side wall of the electrolytic cell body 2 is arranged as small as possible. When a diaphragm is used, a woven cloth, a biscuit plate, a particle-sintered plastic, a porous plate, an ion exchange membrane, etc. are used as the diaphragm, and a woven cloth, a porous plate, a net made of an electrically insulating material is used as a spacer. ,
A rod-shaped material or the like is used. When electricity is supplied to the electrolyzer 2 having such a structure from below so that the water to be treated such as fish culture water and the electrolytic solution are supplied from below as shown by the arrow in FIG. The positive upper surface is negatively polarized to generate an electric potential in the fixed bed 5 and between the fixed beds 5, and the water to be treated flowing in the electrolyzer contacts the fixed bed 5 polarized positively or negatively by the electric potential. Oxygen gas is generated as a result, and at the same time, the water to be treated is reformed. The generated oxygen gas is dissolved in the water to be treated and is taken out from above the electrolyzer 2 as water to be treated having a higher concentration of dissolved oxygen gas than the water to be treated before being supplied to the electrolyzer 2. The presence of the ferrite coating layer 7 minimizes the elution of the fixed bed 5 due to oxygen gas, so that the fixed bed 5 is not replaced, that is, without disassembling and assembling the electrolytic cell, which is a complicated operation. It is possible to treat the water to be treated and electrolyze the electrolytic solution over a period of time.

【0021】図2は、図1の電解槽で使用可能な円柱状
の固定床型炭素質三次元電極を例示するものである。短
寸円柱状で炭素質材料から成る固定床5の陽分極する側
に該炭素質材料の孔径より大径の粒子径を有するフェラ
イト粒子の被覆層7が形成され、該隣接フェライト粒子
間の空間を通して電解槽内の被処理水は炭素質材料と接
触して電解処理が行われる。図3は、図1の電解槽で使
用可能な円柱状の固定床型炭素質三次元電極の他の例を
示すものである。固定床5の陽分極する側には一旦溶射
によりフェライト被覆層が形成された後、該フェライト
被覆層7の一部を格子形溝8状に削り取ることにより炭
素質材料が露出し、前記溝8により被処理水と炭素質材
料が接触して被処理水の電解処理が行われる。
FIG. 2 illustrates a cylindrical fixed bed type carbonaceous three-dimensional electrode usable in the electrolytic cell of FIG. A coating layer 7 of ferrite particles having a particle size larger than the pore size of the carbonaceous material is formed on the side of the fixed bed 5 made of a carbonaceous material having a short cylindrical shape and subject to positive polarization, and a space between the adjacent ferrite particles is formed. Through this, the water to be treated in the electrolytic cell is brought into contact with the carbonaceous material for electrolytic treatment. FIG. 3 shows another example of a cylindrical fixed bed type carbonaceous three-dimensional electrode usable in the electrolytic cell of FIG. A ferrite coating layer is once formed on the positively polarized side of the fixed bed 5 by thermal spraying, and then a part of the ferrite coating layer 7 is shaved into a lattice-shaped groove 8 to expose the carbonaceous material. Thus, the water to be treated and the carbonaceous material are brought into contact with each other, and the water to be treated is electrolyzed.

【0022】[0022]

【実施例】以下に本発明の電解槽を使用する被処理水の
電解処理の実施例を記載するが、該実施例は本発明を限
定するものではない。
EXAMPLES Examples of electrolytic treatment of water to be treated using the electrolytic cell of the present invention will be described below, but the examples do not limit the present invention.

【実施例1】透明な硬質ポリ塩化ビニル樹脂製の高さ 1
00mm、内径50mmのフランジ付円筒形である図1に示
した電解槽を、金魚を飼育している水槽の養魚水循環系
にフィルター及びポンプとともに設置した。該電解槽内
には、後述する方法で給電用陰極ターミナル側に厚さ0.
5 mmのフェライト被覆層を形成した、ポーラスカーボ
ンから成る直径50mm、厚さ10mmでそれぞれの重量が
26.4gである固定床5個を、開口率80%で直径50mm及
び厚さ 1.2mmのポリエチレン樹脂製隔膜6枚で挟み込
み、上下両端の隔膜にそれぞれ白金をその表面にメッキ
したチタン製である直径48mm厚さ 1.0mmのメッシュ
状給電用陽極ターミナル及び給電用陰極ターミナルを接
触させて設置した。
Example 1 Height made of transparent hard polyvinyl chloride resin 1
The electrolytic cell shown in FIG. 1 having a cylindrical shape with a flange of 00 mm and an inner diameter of 50 mm was installed in a fish culture water circulation system of a water tank for raising goldfish together with a filter and a pump. In the electrolytic cell, a thickness of 0.
Made of porous carbon with a 5 mm ferrite coating layer, the diameter is 50 mm and the thickness is 10 mm.
Two fixed beds of 26.4g are sandwiched between six polyethylene resin diaphragms with a diameter of 50mm and a thickness of 1.2mm with an opening ratio of 80%, and the diaphragms at the upper and lower ends are made of titanium with platinum plated on the surface. A 48 mm thick 1.0 mm mesh anode terminal for power supply and a cathode terminal for power supply were placed in contact with each other.

【0023】前記フェライト被覆層は、前記炭素質材料
(平均孔径100 μm)から成る固定床の陽分極側に、24
メッシュ、線径0.35mmのSUS304 製網を設置し、粒
子径150 〜200 μmのフェライト粒子を約8000〜8500℃
の水素ガスプラズマで溶射することにより形成した。水
槽の養魚用水を 0.5リットル/分の速度で前記電解槽に
供給し、かつ前記給電用電極ターミナル間に表1に示す
陽極及び陰極電圧を印加して前記養魚用水の処理を行っ
た。電解槽通過前後の養魚用水中の細菌数及び溶存酸素
濃度及び48時間電解後の各固定床の平均重量を表1上欄
に纏めた。
The ferrite coating layer is provided on the anodic polarization side of a fixed bed made of the carbonaceous material (average pore size 100 μm),
A SUS304 mesh with a mesh and wire diameter of 0.35 mm is installed, and ferrite particles with a particle diameter of 150 to 200 μm are placed at about 8000 to 8500 ° C.
Was formed by thermal spraying with a hydrogen gas plasma. The fish culture water in the water tank was supplied to the electrolytic cell at a rate of 0.5 liter / min, and the anode and cathode voltages shown in Table 1 were applied between the power feeding electrode terminals to perform the treatment of the fish culture water. The number of bacteria and the dissolved oxygen concentration in the fish culture water before and after passing through the electrolytic cell and the average weight of each fixed bed after 48-hour electrolysis are summarized in the upper column of Table 1.

【0024】[0024]

【表1】 [Table 1]

【0025】[0025]

【比較例1】固定床にフェライト被覆層を形成しなかっ
たこと以外は実施例1と同一条件で養魚用水の電解処理
を行い、電解槽通過前後の養魚用水中の細菌数及び溶存
酸素濃度及び48時間電解後の各固定床の平均重量を表1
下欄に纏めた。表1からフェライト被覆層を形成するこ
とにより滅菌効率や溶存酸素量にはさほど影響は生じな
いが、固定床の重量減少が殆どなく、安定した電解処理
を行うことができることが判る。
[Comparative Example 1] Electrolysis treatment of fish-cultured water was carried out under the same conditions as in Example 1 except that the ferrite coating layer was not formed on the fixed bed, and the number of bacteria and the dissolved oxygen concentration in the fish-cultured water before and after passing through the electrolytic cell and Table 1 shows the average weight of each fixed bed after electrolysis for 48 hours.
It is summarized in the bottom column. It can be seen from Table 1 that the formation of the ferrite coating layer does not significantly affect the sterilization efficiency and the amount of dissolved oxygen, but the weight of the fixed bed is hardly reduced and stable electrolytic treatment can be performed.

【0026】[0026]

【実施例2】固定床の陽分極側に50〜80μm(固定床の
孔径未満)のフェライト粒子を溶射してフェライト被覆
層を形成した後、該フェライト被覆層を溝状に削り取っ
て、該フェライト被覆層の前記固定床の陽分極面全体に
対する被覆率を10〜80%の範囲で変化させ、陽極電位を
1.2 Vに陰極電位を-0.5Vに固定し実施例1と同様に電
解槽通過前後の養魚用水中の細菌数及び溶存酸素濃度及
び48時間電解後の各固定床の平均重量を表2に纏めた。
表2から被覆率が30%未満であると電解後の固定床の重
量減少が比較的大きくなりフェライト被覆層の炭素質電
極保護機能が十分に果たされないことが判る。
Example 2 A ferrite coating layer was formed by spraying ferrite particles of 50 to 80 μm (less than the pore size of the fixed bed) on the anodic polarization side of the fixed bed, and then the ferrite coating layer was scraped off in a groove shape to obtain the ferrite. By changing the coverage of the coating layer over the anodic surface of the fixed bed in the range of 10 to 80%, the anodic potential is changed.
Table 2 summarizes the number of bacteria and the dissolved oxygen concentration in the fish culture water before and after passing through the electrolytic cell, and the average weight of each fixed bed after electrolysis for 48 hours in the same manner as in Example 1 with the cathode potential fixed to 1.2 V and -0.5 V. It was
From Table 2, it can be seen that if the coverage is less than 30%, the weight loss of the fixed bed after electrolysis is relatively large and the carbonaceous electrode protection function of the ferrite coating layer is not sufficiently fulfilled.

【0027】[0027]

【表2】 [Table 2]

【0028】[0028]

【実施例3】縦10cm、横5cm、厚さ0.5 cmのグラ
ファイト(空間率55%、重量23.2g)2個のうちの1個
に実施例1と同様の方法で厚さ37μmのフェライト被覆
層を形成した。フェライト被覆層を形成したポーラスカ
ーボンを陽極とし、又形成しないポーラスカーボンを陰
極として、陽イオン交換膜ナフィオン(商品名)で陽極
室及び陰極室に区画された縦12cm、横3cm、深さ10
cmの箱型の電解槽内に設置した。この電解槽に320 g
/リットルの塩化ナトリウム水溶液を加え、電流密度5
A/dm2 、電解電圧3.2 Vの条件で塩化ナトリウムの
電解による水酸化ナトリウムの製造を行い、陽極発生ガ
ス組成を測定した。電解初期の発生ガス組成は、塩素9
3.7%、酸素2.4 %、水素痕跡量(残部の二酸化炭素ガ
スや塩素ガスは炭酸イオン、次亜塩素酸イオン、塩素酸
イオン等として前記塩化ナトリウム水溶液中に溶解、以
下同様)であり、30日経過後の発生ガス組成は、塩素9
2.7%、酸素2.5%、水素痕跡量であった。フェライト被
覆層が劣化すると酸素発生量が増加するが、本実施例の
フェライト電極(陽極)では30日経過後も殆ど劣化が生
じていないことが判る。又30日経過後の陽極の重量は2
3.1gであり、重量減少は0.4 %であった。
[Example 3] A ferrite coating layer having a thickness of 37 µm was applied to one of two graphites having a length of 10 cm, a width of 5 cm, and a thickness of 0.5 cm (porosity 55%, weight 23.2 g) in the same manner as in Example 1. Was formed. Porous carbon on which a ferrite coating layer was formed was used as an anode, and porous carbon that was not formed was used as a cathode, and was divided into an anode chamber and a cathode chamber by a cation exchange membrane Nafion (trade name) 12 cm in length, 3 cm in width, and 10 in depth.
It was placed in a cm-shaped electrolytic cell. 320 g in this electrolytic cell
/ L sodium chloride aqueous solution was added, and the current density was 5
Sodium hydroxide was produced by electrolysis of sodium chloride under the conditions of A / dm 2 and electrolysis voltage of 3.2 V, and the composition of the gas generated from the anode was measured. The gas composition in the initial stage of electrolysis was 9 chlorine.
3.7%, oxygen 2.4%, trace amount of hydrogen (the remaining carbon dioxide gas and chlorine gas are dissolved in the sodium chloride aqueous solution as carbonate ion, hypochlorite ion, chlorate ion, etc., the same applies below), and after 30 days The composition of the gas generated after passing 9 chlorine
It was 2.7%, oxygen 2.5%, and trace amount of hydrogen. When the ferrite coating layer deteriorates, the amount of oxygen generated increases, but it can be seen that the ferrite electrode (anode) of this example hardly deteriorates after 30 days. The weight of the anode after 2 days is 2
It was 3.1 g, and the weight loss was 0.4%.

【0029】[0029]

【比較例2】グラファイト被覆層を形成しなかったこと
以外は実施例3と同様の条件で塩化ナトリウムの電解を
行い、陽極発生ガス組成を測定した。電解初期の発生ガ
ス組成は、塩素93.8%、酸素2.2 %、水素痕跡量であ
り、30日経過後の発生ガス組成は、塩素89.3%、酸素4.
7 %、水素痕跡量であり、又陽極の重量は21.2gであ
り、重量減少は8.6 %であった。炭素質電極にフェライ
ト被覆層を形成することにより、耐性が向上することが
判る。
Comparative Example 2 Sodium chloride was electrolyzed under the same conditions as in Example 3 except that the graphite coating layer was not formed, and the composition of the gas generated from the anode was measured. The gas composition at the beginning of electrolysis was 93.8% chlorine, 2.2% oxygen, and trace amount of hydrogen, and the gas composition after 30 days was 89.3% chlorine, 4.
The amount of trace hydrogen was 7%, the weight of the anode was 21.2 g, and the weight loss was 8.6%. It can be seen that the durability is improved by forming the ferrite coating layer on the carbonaceous electrode.

【0030】[0030]

【発明の効果】本発明の電解槽は、炭素質電極式電解槽
の炭素質電極の陽分極する面又は炭素質陽極表面の一部
又は全部にフェライト被覆層を形成したことを特徴とす
る炭素質電極式電解槽である (請求項1)。このフェラ
イト被覆層により電解又は電解処理時に前記炭素質電極
の陽分極面又は陽極面で発生することのある酸素ガスと
前記炭素質電極との間の反応で生ずる二酸化炭素の脱離
を抑制してより以上の二酸化炭素の発生を防止すること
ができる。
The electrolytic cell of the present invention is characterized by forming a ferrite coating layer on a part or all of the surface of the carbonaceous electrode of the carbonaceous electrode type electrolytic cell that undergoes positive polarization or the surface of the carbonaceous anode. It is a high-quality electrode type electrolytic cell (Claim 1). This ferrite coating layer suppresses the desorption of carbon dioxide generated by the reaction between the oxygen gas and the carbonaceous electrode that may occur on the anodic surface or the anode surface of the carbonaceous electrode during electrolysis or electrolytic treatment. Further generation of carbon dioxide can be prevented.

【0031】従って本発明の電解槽は例えば酸素ガスを
発生させながら電解又は電解処理を行う反応に使用して
も、前記炭素質電極の消耗を最小限に抑制しながら前記
反応を行わせることができ、安価で電極活性が高いとい
う炭素質電極の長所を生かしながら、酸素ガスにより劣
化しやすいという前記炭素質電極を欠点を極力抑制した
電解槽を提供することができる。前記フェライト被覆層
の形成には溶射法を使用することが望ましく(請求項
2)、該溶射法によるとほぼ均一厚さの被覆層を比較的
簡単に形成することができる。
Therefore, even when the electrolytic cell of the present invention is used for a reaction in which electrolysis or electrolytic treatment is performed while generating oxygen gas, for example, the reaction can be performed while minimizing the consumption of the carbonaceous electrode. Thus, it is possible to provide an electrolytic cell in which the disadvantages of the carbonaceous electrode, which is cheap and has high electrode activity, can be utilized while the disadvantages of the carbonaceous electrode, which is easily deteriorated by oxygen gas, are suppressed. It is desirable to use a thermal spraying method to form the ferrite coating layer (claim 2), and the thermal spraying method can relatively easily form a coating layer having a substantially uniform thickness.

【0032】そして本発明の電解槽の炭素質電極の陽分
極面又は陽極面の全部にフェライト被覆層を形成する
と、被処理水と電極活性のある炭素質電極との接触が阻
害されて前記被処理水の電解処理が行われなくなる。従
って前記炭素質電極はその一部が露出して被処理水と接
触できるようにしなければならない。そのためには例え
ばまず前記炭素質電極の陽分極面又は陽極面の全てにフ
ェライト被覆層を形成した後、該被覆層を溝状に削り取
って前記炭素質電極の一部を露出させたり(請求項
3)、あるいは比較的粒子径の大きい例えば炭素質電極
の孔径より大きい粒子径のフェライト粒子を被覆するこ
とにより(請求項4)、隣接するフェライト粒子間に空
間を生じさせて該空間を通して被処理水を炭素質電極に
接触させて電解処理を行うようにすることができる。そ
して前記フェライト被覆層の被覆率は30〜100 %である
ことが望ましく(請求項5)、被覆率が30%未満である
と炭素質電極の保護が不十分となる。
When a ferrite coating layer is formed on the entire anodic surface or anode surface of the carbonaceous electrode of the electrolytic cell of the present invention, the contact between the water to be treated and the carbonaceous electrode having an electrode activity is hindered, and the above-mentioned coating is performed. The electrolytic treatment of the treated water is stopped. Therefore, a part of the carbonaceous electrode must be exposed so that it can come into contact with the water to be treated. For that purpose, for example, first, a ferrite coating layer is formed on all of the anodic polarization surface or the anode surface of the carbonaceous electrode, and then the coating layer is shaved in a groove shape to expose a part of the carbonaceous electrode. 3) Alternatively, by coating ferrite particles having a relatively large particle size, for example, a particle size larger than the pore size of the carbonaceous electrode (Claim 4), a space is created between adjacent ferrite particles, and a treatment is performed through the space. It is possible to bring the water into contact with the carbonaceous electrode to carry out the electrolytic treatment. The ferrite coating layer preferably has a coverage of 30 to 100% (claim 5), and a coverage of less than 30% results in insufficient protection of the carbonaceous electrode.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の電解槽として使用可能な複極型固定床
式電解槽の一例を示す概略縦断面図。
FIG. 1 is a schematic vertical cross-sectional view showing an example of a bipolar electrode fixed bed type electrolytic cell that can be used as the electrolytic cell of the present invention.

【図2】図1の電解槽で使用可能な円柱状の固定床型炭
素質三次元電極を例示する概略斜視図。
FIG. 2 is a schematic perspective view illustrating a cylindrical fixed bed type carbonaceous three-dimensional electrode usable in the electrolytic cell of FIG.

【図3】図1の電解槽で使用可能な円柱状の固定床型炭
素質三次元電極の他の例を示す概略斜視図。
3 is a schematic perspective view showing another example of a cylindrical fixed bed type carbonaceous three-dimensional electrode usable in the electrolytic cell of FIG.

【符号の説明】[Explanation of symbols]

1・・フランジ 2・・電解槽本体 3・・・給電用陽
極ターミナル 4・・・給電用陰極ターミナル 5・・
・固定床 6・・・スペーサー 7・・・フェライト被
覆層 8・・・溝
1 ・ ・ Flange 2 ・ ・ Electrolyzer body 3 ・ ・ ・ Anode terminal for power supply 4 ・ ・ ・ Cathode terminal for power supply 5 ・ ・
・ Fixed floor 6 ・ ・ ・ Spacer 7 ・ ・ ・ Ferrite coating layer 8 ・ ・ ・ Groove

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成5年8月2日[Submission date] August 2, 1993

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】全図[Correction target item name] All drawings

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図1】 [Figure 1]

【図2】 [Fig. 2]

【図3】 [Figure 3]

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 炭素質電極を電極として収容した炭素質
電極式電解槽において、前記炭素質電極の陽分極面又は
陽極面の少なくとも一部にフェライト被覆層を形成した
ことを特徴とする炭素質電極式電解槽。
1. A carbonaceous electrode type electrolytic cell containing a carbonaceous electrode as an electrode, wherein a ferrite coating layer is formed on at least a part of the anodic surface or the anode surface of the carbonaceous electrode. Electrode type electrolytic cell.
【請求項2】 フェライト被覆層を溶射により形成した
請求項1に記載の電解槽。
2. The electrolytic cell according to claim 1, wherein the ferrite coating layer is formed by thermal spraying.
【請求項3】 炭素質電極のフェライト被覆層側に溝を
刻設した請求項1又は2に記載の電解槽。
3. The electrolytic cell according to claim 1, wherein a groove is formed on the ferrite coating layer side of the carbonaceous electrode.
【請求項4】 炭素質電極が多孔質三次元電極であり、
フェライト被覆層を構成するフェライト粒子の径を前記
炭素質電極の孔径より大きくした請求項1から3までの
いずれかに記載の電解槽。
4. The carbonaceous electrode is a porous three-dimensional electrode,
The electrolytic cell according to any one of claims 1 to 3, wherein the diameter of the ferrite particles forming the ferrite coating layer is larger than the pore diameter of the carbonaceous electrode.
【請求項5】 炭素質電極の陽分極面又は陽極面の30〜
100 %にフェライト被覆層を形成するようにした請求項
1から4までのいずれかに記載の電解槽。
5. A carbonaceous electrode having a anodic polarization surface or an anode surface of 30 to 30
The electrolytic cell according to any one of claims 1 to 4, wherein the ferrite coating layer is formed at 100%.
JP3189386A 1991-07-03 1991-07-03 Carbonaceous electrode type electrolytic cell Pending JPH0688271A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3189386A JPH0688271A (en) 1991-07-03 1991-07-03 Carbonaceous electrode type electrolytic cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3189386A JPH0688271A (en) 1991-07-03 1991-07-03 Carbonaceous electrode type electrolytic cell

Publications (1)

Publication Number Publication Date
JPH0688271A true JPH0688271A (en) 1994-03-29

Family

ID=16240447

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3189386A Pending JPH0688271A (en) 1991-07-03 1991-07-03 Carbonaceous electrode type electrolytic cell

Country Status (1)

Country Link
JP (1) JPH0688271A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019506292A (en) * 2016-01-22 2019-03-07 同▲済▼大学 Composite membrane separation method applied to desalination and recovery of sewage

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019506292A (en) * 2016-01-22 2019-03-07 同▲済▼大学 Composite membrane separation method applied to desalination and recovery of sewage

Similar Documents

Publication Publication Date Title
CN107509678B (en) Aquaculture system
US5256268A (en) Water treatment method and apparatus
CN106957092B (en) Method for electro-removing ammonia nitrogen by three-dimensional pulse
CN212532588U (en) Device for inactivating algae in ship ballast water by DSA anode electro-catalysis
JPH0688271A (en) Carbonaceous electrode type electrolytic cell
JPH06233983A (en) Three dimensional electrode-type electrolytic tank
JPH08164390A (en) Electrochemical treatment of water to be treated
JP3020553B2 (en) Fixed-bed type three-dimensional electrode type electrolytic cell
JPH03224683A (en) Electrochemical treatment of water to be treated
JP3214724B2 (en) Fixed-bed type three-dimensional electrode type electrolytic cell
JPH04118090A (en) Electrolytic treatment of water to be treated
JPH09314149A (en) Gasket for fixed bed type three dimensional electrode electrolytic bath, fixed bed type three dimensional electrode electrolytic bath, and water treatment method
JP3056511B2 (en) Treatment water treatment equipment
JP2002010724A (en) Method for decomposing ammonia in sea water and device therefor
JP2971571B2 (en) 3D electrode type electrolytic cell
CN203807293U (en) Integrated and comprehensive water-treating equipment utilizing electrified water
JPH0663558A (en) Electrochemical treating method of water to be treated
JP3178728B2 (en) 3D electrode type electrolytic cell
JPH0416280A (en) Electrochemical treatment of water containing microorganism
JPH0671268A (en) Electrochemical treatment of water to be treated
JP3020551B2 (en) Electrochemical treatment of treated water containing microorganisms
JP2922255B2 (en) Electrochemical treatment of treated water containing microorganisms
CN111995134A (en) Method and device for electrically catalyzing and inactivating algae in ship ballast water by DSA anode
JP3150355B2 (en) Bipolar three-dimensional electrode type electrolytic cell
JP3180318B2 (en) Electrochemical treatment of treated water containing microorganisms

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term