JPH03224681A - Electrochemical treatment of liquid to be treated - Google Patents

Electrochemical treatment of liquid to be treated

Info

Publication number
JPH03224681A
JPH03224681A JP10911690A JP10911690A JPH03224681A JP H03224681 A JPH03224681 A JP H03224681A JP 10911690 A JP10911690 A JP 10911690A JP 10911690 A JP10911690 A JP 10911690A JP H03224681 A JPH03224681 A JP H03224681A
Authority
JP
Japan
Prior art keywords
electrolytic cell
treated
liquid
water
pool water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10911690A
Other languages
Japanese (ja)
Inventor
Nobutaka Goshima
伸隆 五嶋
Shigeharu Koboshi
重治 小星
Haruo Hakamata
袴田 晴夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP10911690A priority Critical patent/JPH03224681A/en
Publication of JPH03224681A publication Critical patent/JPH03224681A/en
Pending legal-status Critical Current

Links

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

PURPOSE:To efficiently sterilize pool water, etc., and to improve performance by supplying liquid to be treated to a double electrode type three-dimensional electrode type electrolytic cell at >=1/hour space velocity and bringing the liquid to be treated into contact with three-dimensional electrodes, thereby making the electrochemical treatment of the liquid. CONSTITUTION:The rear surfaces of respective fixed beds 5 are polarized positive and the front surfaces negative and a potential is generated in and between the fixed beds 5 when the electrodes are energized while the pool water or washing water for paper making or the like is supplied from below to the electrolytic cell as shown by arrows. The pool water or the like flowing in the electrolytic cell comes into contact with the fixed beds 5 polarized positive or negative by this potential, by which the reforming treatment, such as sterilizing of underwater fungi and bacteria, in the pool water, etc., is executed. This water is taken out of the upper part of the electrolytic cell. to be inoculated in the pool, etc. Plural pieces of the fixed beds 5 are laminated between an anode 3 for power feeding and a cathode 4 for power feeding and the respective fixed beds 5 are tightly adhered to the inside walls of the electrolytic cell body 2.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、比較的大量に使用される水、例えばプール水
や製紙処理水の滅菌や性能向上のための電気化学的処理
方法に関し、より詳細には大工の水処理を必要とする前
記プール水や製紙処理水を大量の水処理に適した三次元
電極式電解槽を使用して電気化学的に処理するごとによ
り滅菌や性能向上を行うための方法に関する。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to an electrochemical treatment method for sterilizing and improving the performance of water used in relatively large amounts, such as pool water and paper processing water. In detail, the pool water and paper manufacturing water that require carpenter's water treatment are electrochemically treated using a three-dimensional electrode type electrolytic cell suitable for large-volume water treatment, thereby sterilizing and improving performance. Regarding the method for.

(従来技術) 夏季スポーツとして最も一般的な水泳の人気は衰えるこ
となく、幅広い年齢層の人々に親しまれている。そして
遠隔地の海水浴場に遠出するごとなく、水泳を楽しむた
めにプールが利用されている。
(Prior Art) Swimming, the most common summer sport, remains popular and is enjoyed by people of a wide range of age groups. Pools are now being used to enjoy swimming, rather than having to travel to remote beaches.

このプールに使用されるプール水には人体に有害な細菌
類が数多(生息し、又該プール水は利用者の眼などに直
接接触して疾患を生じさせることがあるため、プール水
には薬剤を投入して事前に殺菌を行って疾患の発生を防
止している。しかしながら前記薬剤として殺菌効果の強
い次亜塩素酸やトリへロメタン等の塩素系試薬が使用さ
れている。該塩素系試薬はそれ自体あるいは分解物が刺
激性を有し、該試薬により殺菌等の効果が生じても、該
試薬による眼の痛みや皮膚のかぶれ等の副作用が発生し
、特に抵抗力の弱い幼児の場合は大きな問題となってい
る。又ブールに使用されるプール水の量は莫大なもので
あり、使用する薬剤のコストも大きな負担となっている
The pool water used for this pool is inhabited by a large number of bacteria that are harmful to the human body, and the pool water can cause diseases if it comes into direct contact with the eyes of users. In order to prevent the occurrence of diseases, chemicals are introduced and sterilized in advance.However, chlorine-based reagents such as hypochlorous acid and trihalomethane, which have a strong sterilizing effect, are used as the chemicals.The chlorine The system reagents themselves or their decomposition products are irritating, and even if the reagents have a sterilizing effect, they can cause side effects such as eye pain and skin irritation, especially for young children who have a weak immune system. In addition, the amount of pool water used in the boules is enormous, and the cost of the chemicals used is also a big burden.

又近年の情報化社会の進展により各種紙類特に高質紙の
需要が増大している。この紙類は製紙用バルブから各種
工程を経て製造されるが、この工程の中に製紙前のバル
ブを洗浄して不要な成分を洗い流す工程がある。該バル
ブは適度な温度に維持されかつ適度な養分を含むため、
黴や細菌が繁殖し易くこの黴や細菌が多量に最終製品中
に残存すると、紙類の褪色等の性能の劣化が生ずる。従
ってこの洗浄工程で使用される莫大な量の洗浄水中には
、防黴剤や殺菌剤が含有され最終製品の性能劣化を極力
防止するようにしている。しかしこの方法では、防黴剤
や殺菌剤のコストが高くなるだけでなく前記防黴剤や殺
菌剤が製品中に残存して黴や細菌類に起因する性能劣化
とは別の性能劣化を来すことがあるという問題点がある
Furthermore, with the recent development of the information society, the demand for various types of paper, especially high-quality paper, is increasing. This paper is manufactured from a papermaking valve through various processes, including a step of cleaning the valve before papermaking to wash away unnecessary components. Since the bulb is maintained at a moderate temperature and contains proper nutrients,
Mold and bacteria easily breed, and if large amounts of mold and bacteria remain in the final product, performance deterioration such as discoloration of the paper will occur. Therefore, the enormous amount of washing water used in this washing process contains antifungal agents and bactericidal agents to prevent deterioration of the performance of the final product as much as possible. However, with this method, not only does the cost of the anti-mold agent and bactericide increase, but also the anti-mold agent and bactericide remain in the product, causing performance deterioration that is different from the deterioration caused by mold and bacteria. The problem is that it can sometimes occur.

(発明が解決しようとする問題点) このようにプール水や製紙洗浄水等の大量使用される水
の従来の殺菌及び防黴方法は、薬剤投入によるものであ
り、この方法では水量が多い分大量の薬剤を必要とする
ため処理コス1−が莫大になり、更に投入された薬剤が
処理済水に残存し、黴や細菌のもたらず以外の不都合を
もたらすことがあるため、薬剤使用に依らない水処理方
法が要請されている。更に該プール水や製紙洗浄水以外
にも滅菌処理等を必要とする比較的大量に使用される多
くの被処理液がある。
(Problems to be Solved by the Invention) As described above, the conventional method for sterilizing and preventing mold from water that is used in large quantities, such as pool water and paper washing water, involves the injection of chemicals. Since a large amount of chemicals are required, the treatment cost is enormous, and the chemicals added may remain in the treated water, causing problems other than mold and bacteria. There is a need for a water treatment method that does not rely on water. Furthermore, in addition to the pool water and paper manufacturing washing water, there are many liquids to be treated that are used in relatively large quantities and require sterilization.

(発明の目的) 本発明は、薬剤を使用することなくしかも比較的簡単に
大量の被処理液を処理できる電気化学的な方法を提供す
ることを目的とする。
(Objective of the Invention) An object of the present invention is to provide an electrochemical method capable of processing a large amount of liquid to be processed relatively easily and without using chemicals.

(問題点を解決するための手段) 本発明は、被処理液を1/時以上の空間速度で複極式三
次元電極式電解槽に供給し、該被処理液を前記三次元電
極と接触させて電気化学的に処理する被処理液の電気化
学的処理方法である。なお本発明では電極表面で実質的
な酸化還元反応のような電気化学反応を生起していない
ことがあるので本発明方法に使用される槽は電気化学的
処理装置というべきであるが、一般呼称に従って電解槽
と称する。
(Means for Solving the Problems) The present invention supplies a liquid to be treated to a bipolar three-dimensional electrode type electrolytic cell at a space velocity of 1/hour or more, and brings the liquid to be treated into contact with the three-dimensional electrode. This is an electrochemical treatment method for a liquid to be treated. In addition, in the present invention, since an electrochemical reaction such as a substantial redox reaction may not occur on the electrode surface, the tank used in the method of the present invention should be called an electrochemical processing device, but the general name is Accordingly, it is called an electrolytic cell.

以下本発明の詳細な説明する。The present invention will be explained in detail below.

本発明は、プール水又は製紙洗浄水等の滅菌処理を必要
とする被処理液を1/時以上の空間速度で二次元電極式
電解槽に供給し、該電解槽に電圧を印加し電解によるガ
スを伴いあるいは伴わずに前記プール、製紙洗浄水等の
滅菌等を行うことを特徴とするものである。前記電圧印
加によりプール水等が改質される理由は必ずしも明確で
はないが、次のように推測することができる。
The present invention involves supplying a liquid to be treated that requires sterilization, such as pool water or paper manufacturing washing water, to a two-dimensional electrode type electrolytic cell at a space velocity of 1/hour or more, applying a voltage to the electrolytic cell, and performing electrolysis. This method is characterized in that the pool, paper manufacturing washing water, etc. are sterilized with or without gas. Although the reason why pool water or the like is modified by the voltage application is not necessarily clear, it can be inferred as follows.

製紙洗浄水は適度な温度と適度な養分を有するため、黴
や細菌等が繁殖し易い環境にあり、又プール水や本発明
の対象とする他の被処理液にも大腸菌等の数多くの細菌
が生息している。
Paper manufacturing washing water has an appropriate temperature and appropriate nutrients, so it is an environment where mold and bacteria can easily breed, and pool water and other treated liquids that are the subject of the present invention also contain many bacteria such as Escherichia coli. is inhabited.

本発明によりプール水や製紙洗浄水等に電圧を印加する
と、該ブール水等中の黴や細菌類は液流動によって三次
元電極式電解槽の陽極や陰極あるいは後述する誘電体や
粒子等の三次元電極に接触しそれらの表面で強力な酸化
ぶ元反応を受けてその活動が弱まったり自身が死滅した
りすると考えられる。従って従来の殺菌剤や防黴剤を使
用せずに同等の殺菌又は防黴効果を生じさせることがで
きる。
According to the present invention, when a voltage is applied to pool water, paper manufacturing washing water, etc., mold and bacteria in the pool water, etc. are transferred to the anode and cathode of a three-dimensional electrode electrolytic cell, or to the tertiary electrodes such as dielectrics and particles described later. It is thought that when it comes into contact with the original electrode, it undergoes a strong oxidation reaction on the surface, which weakens its activity or kills itself. Therefore, it is possible to produce the same bactericidal or antifungal effect without using conventional bactericidal or antifungal agents.

本発明では、陽陰極間に印加される単電解摺電圧はIV
以上で7V以下であることが好ましく、該電圧の値に応
じて電流が流れ電極表面でガス発生が生ずる電解処理、
あるいは電流が流れず電極表面でガス発生が生じない電
気化学的処理のいずれかにより滅菌処理が行われるが、
本発明方法を実施する際には、実際に効率良く処理が行
われていることを確認するため電流を流し、僅かのガス
を発生させながら電解処理することが望ましい。
In the present invention, the single electrolytic sliding voltage applied between the anode and cathode is IV
Electrolytic treatment in which the voltage is preferably 7 V or less, and a current flows according to the voltage value and gas generation occurs on the electrode surface;
Alternatively, sterilization can be performed by electrochemical treatment, which does not involve the flow of current and does not generate gas on the electrode surface.
When carrying out the method of the present invention, it is desirable to conduct the electrolytic treatment while passing an electric current and generating a small amount of gas in order to confirm that the treatment is actually being carried out efficiently.

前記被処理液の滅菌効率は咳被処理液の電極への接触効
率に依存するが、比較的大量の被処理液を滅菌処理する
場合に従来の板状や多孔状の電極を使用しても該電極の
表面積が十分大きくなく、満足すべき滅菌効率を(ゴる
ごとか出来ない。従って本発明では比較的大層の被処理
液つまり1/時以上の空間速度で電解槽に供給される被
処理液の処理を電極表面積が非常の大きい三次元′rr
、極を有する三次元電極式電解槽を使用して行い、該比
較的大量の被処理液の滅菌処理を高効率で行うようにす
る。
The sterilization efficiency of the liquid to be treated depends on the contact efficiency of the cough liquid to the electrode, but when sterilizing a relatively large amount of liquid to be treated, conventional plate-shaped or porous electrodes may be used. The surface area of the electrode is not large enough, making it impossible to achieve satisfactory sterilization efficiency. Therefore, in the present invention, a relatively large layer of the liquid to be treated, that is, a liquid supplied to the electrolytic cell at a space velocity of 1/hour or more, is difficult to achieve. The treatment solution is processed using a three-dimensional electrode with a very large surface area.
A three-dimensional electrode type electrolytic cell having electrodes is used to sterilize the relatively large amount of liquid to be treated with high efficiency.

本発明における空間速度は〔被処理液の供給速度(ff
/時)〕÷〔電解槽の容積(7り 〕で定義され、本発
明における空間速度1以上とは電解槽の容積と等しいか
あるいはより以上の量の被処理1夜が1時間で該電解槽
に供給されることを意味する。
The space velocity in the present invention is [supply rate of liquid to be treated (ff
/hour)] ÷ [Volume of electrolytic cell (7 ri)], and in the present invention, a space velocity of 1 or more means that an amount of treated material equal to or greater than the volume of the electrolytic cell can be electrolyzed in one hour. It means that it is supplied to the tank.

水電解により発生するガスつまり酸素ガスと水素ガスは
通常爆発限界内の混合比で発生ずるため、爆発の危険を
回避するために空気等の不活性ガスで希釈することが望
ましく、例えば電解槽出口に発生する電解ガスの分離手
段と分離後の該TL電解ガス空気で希釈して電解ガス濃
度が4容量%以下になるよう希釈する手段を設置するこ
とができる。
The gases generated by water electrolysis, that is, oxygen gas and hydrogen gas, are usually generated at a mixing ratio within the explosive limit, so it is desirable to dilute them with an inert gas such as air to avoid the risk of explosion. It is possible to install means for separating the electrolytic gas generated during the separation and means for diluting the separated TL electrolytic gas with air so that the electrolytic gas concentration becomes 4% by volume or less.

本発明により処理される水はプール水や製紙洗浄水等で
あり、これらは大計に処理する必要があるため処理に必
要な電力量は処理コストの大部分を占めることが多い。
The water treated by the present invention is pool water, paper manufacturing washing water, etc., and since these need to be treated in large amounts, the amount of electricity required for treatment often accounts for a large portion of the treatment cost.

電力量は、C電力〕=〔電圧〕×〔電流〕で表され、T
L流が流れずガスが発生しない場合には電力量は雪であ
るが、ガス発生が生ずる程度の電流が流れると処理すべ
き水量が莫大であるため消費電力量も莫大になる。従っ
て極力ガス発生を伴わない電気化学的処理を行うことが
電力消費量を低下させるうえで重要である。
The amount of power is expressed as C power] = [voltage] x [current], and T
When the L flow does not flow and no gas is generated, the amount of electric power is small, but if a current flows that causes gas to be generated, the amount of water to be treated is enormous, so the amount of power consumed is also enormous. Therefore, it is important to perform electrochemical processing that does not involve gas generation as much as possible in order to reduce power consumption.

通常の電解槽における電解電圧は、〔陽極ターミナルと
陽極間の抵抗による電圧降下〕十〔陽極の理論電解電圧
〕+〔陽極の過電圧〕モ〔単′TL解摺電圧(溶液抵抗
)による電圧降下〕−←[陰極の理論電解電圧]−←〔
陰極の過電圧]+〔陰極ターミナルと陰極間の抵抗によ
る電圧降下〕により表される。これらのうち理論電解電
圧と過電圧は変化することがなく、ターミナルと電極間
の抵抗も導線を太くするといったことで減少させること
ができるが有効な方法ではなく、電解電圧を減少させる
ためには単電解摺電圧を小さくすることが最も望ましい
。単電解摺電圧を減少させる手段としては、溶液の導電
率を上昇させる、両電極間の距離を小さくするといった
方法があるが、プール水や製紙洗浄水等に食塩水を添加
して導電率を上昇させることは現実的ではない。従って
本発明では両電極間の極間距離を小さくして単電解摺電
圧を小さくすることが好ましい。
The electrolysis voltage in a normal electrolytic cell is [voltage drop due to resistance between the anode terminal and anode] 10 [theoretical electrolysis voltage of the anode] + [overvoltage of the anode] ]−←[Theoretical electrolysis voltage of cathode]−←[
Cathode overvoltage] + [voltage drop due to resistance between cathode terminal and cathode] Of these, the theoretical electrolytic voltage and overvoltage do not change, and the resistance between the terminal and the electrode can be reduced by making the conductor thicker, but this is not an effective method, and the only way to reduce the electrolytic voltage is to It is most desirable to reduce the electrolytic sliding voltage. There are methods to reduce the single electrolytic sliding voltage, such as increasing the conductivity of the solution and reducing the distance between the two electrodes. It is not realistic to raise it. Therefore, in the present invention, it is preferable to reduce the distance between the two electrodes to reduce the single electrolytic sliding voltage.

本発明に使用する電解槽は、複極型固定床式三次元電極
電解槽とする。本発明で処理すべき水量は莫大で例えば
1時間当たり数トンとなるため、単位体積当たりの処理
能力の高い電解槽である複極型固定床式電解槽の使用が
必須となり、該電解槽の使用により処理すべきプール水
や製紙洗浄水等との接触面積を増大させることができ、
これにより装置サイズを小さくし、か・つ電解の効率を
上げることができる点で有利である。
The electrolytic cell used in the present invention is a bipolar fixed bed three-dimensional electrode electrolytic cell. Since the amount of water to be treated in the present invention is enormous, for example, several tons per hour, it is essential to use a bipolar fixed bed electrolytic cell that has a high processing capacity per unit volume. When used, the contact area with pool water, paper manufacturing washing water, etc. to be treated can be increased.
This is advantageous in that the device size can be reduced and the efficiency of electrolysis can be increased.

本発明の三次元電極電解槽における三次元電極は、前記
プール水や製紙洗浄水等が透過可能な多孔質材料、例え
ば粒状、球状、フェルト状、織布状、多孔質ブロック状
、多数の1通孔を形成した中実体等の形状を有する活性
炭、グラファイト、炭素繊維等の炭素系材料から、ある
いは同形状を有するニッケル、銅、ステンレス、鉄、チ
タン等の金属材料、更にそれら金属材料に貴金属のコー
ティングを施した材料から形成された複数個の誘電体か
ら成ることが好ましく、該二次元電極は直流電場内に置
かれ、両端に設置した平板状又は工キスバンドメソシュ
状やバーフォレーティソドプレート状等の多孔板体から
成る給電用陽陰極間に直流電圧を印加して前記誘電体を
分極させ該誘電体の一端及び他端にそれぞれ正及び負の
電荷が形成されて分極する。この他に給電用陽極及び陰
極とは別個に、単独で陽極としであるいは陰極としてR
能する三次元材料を交互に短絡しないように設置しかつ
電気的に接続して?電極型固定床弐電解槽とすることが
できろ。なお前述の多数の貫通孔を形成した中実体を三
次元電極として使用する場合には、?、+L通するプー
ル水等の移動を妨害しないようにその間口率を10%以
上95%以下好ましくは20%以上80%以下とし、a
通孔のサイズは前記被処理液が透過出来る程度の孔径の
微細孔とすることが好ましい。
The three-dimensional electrode in the three-dimensional electrode electrolytic cell of the present invention is made of a porous material through which the pool water, paper manufacturing washing water, etc. can permeate, such as granular, spherical, felt, woven fabric, porous block, or a large number of porous materials. Carbon-based materials such as activated carbon, graphite, carbon fiber, etc. that have the shape of a solid body with through holes, or metal materials such as nickel, copper, stainless steel, iron, titanium, etc. that have the same shape, and precious metals in these metal materials. Preferably, the two-dimensional electrode is made of a plurality of dielectric bodies made of a material coated with A direct current voltage is applied between the anode and cathode for power supply made of a porous plate body, etc. to polarize the dielectric, and positive and negative charges are formed at one end and the other end of the dielectric, respectively, and the dielectric is polarized. In addition to this, R
Is it possible to install and electrically connect three-dimensional materials that can function alternately so that they do not short-circuit? It can be made into an electrode type fixed bed electrolytic cell. In addition, when using the aforementioned solid body with a large number of through holes as a three-dimensional electrode, what happens? , +L, so as not to obstruct the movement of pool water, etc. passing through, the porosity ratio should be 10% or more and 95% or less, preferably 20% or more and 80% or less, and a
It is preferable that the size of the through hole is a micropore having a diameter that allows the liquid to be treated to pass therethrough.

前記誘電体として活性炭、グラファイト、炭素繊維等の
炭素系材料を使用しかつ陽極から酸素ガスを発生させな
がらプール水等を処理する場合には、前記誘電体が酸素
ガスにより酸化され炭酸ガスとして溶解し易くなる。こ
れを防止するためには前記誘電体の陽分極する側にチタ
ン等の基材上に酸化イリジウム、酸化ルテニウム等の白
金族全屈酸化物を被覆し通常不溶性全屈電極として使用
されろ多孔質材料を接触状態で設置し、酸素発止が主と
して該多孔質材料上で生ずるようにすればよい。
When a carbon-based material such as activated carbon, graphite, or carbon fiber is used as the dielectric and pool water is treated while generating oxygen gas from the anode, the dielectric is oxidized by the oxygen gas and dissolved as carbon dioxide. It becomes easier to do. To prevent this, a platinum group totally flexible oxide such as iridium oxide or ruthenium oxide is coated on a base material such as titanium on the anodic polarization side of the dielectric, and a porous material is usually used as an insoluble totally flexible electrode. The materials may be placed in contact such that oxygen evolution occurs primarily on the porous material.

前記誘電体又は給電用陽陰極間外の陽極及び陰極を接近
さ−Uて電圧の低下を意図する際には、短絡防止のため
電気絶縁性のスペーサとして例えば有機高分子材オ′1
で作製した網状スペーサ等を挿入することが好ましい。
When it is intended to lower the voltage by bringing the anode and cathode close to each other between the dielectric material or the power feeding anode and cathode, an electrically insulating spacer such as an organic polymer material may be used to prevent short circuits.
It is preferable to insert a net-like spacer or the like made in .

処理すべきプール水等が流れる電解槽内に該プール水等
が前記誘電体や陽極又は陰極にに接触せずに流通できる
比較的大きな空隙があるとプール水等の処理効率が低下
するため、前記誘電体等は電解槽内のプール水等の流れ
がショートパスしないように配置することが望ましい。
If there is a relatively large gap in the electrolytic cell through which the pool water, etc. to be treated flows, through which the pool water, etc. can flow without coming into contact with the dielectric, the anode or the cathode, the treatment efficiency of the pool water, etc. will decrease. It is desirable that the dielectric material etc. be arranged so that the flow of pool water, etc. in the electrolytic cell does not take a short path.

このような構成から成る電解槽は、プールに近接さ−U
、あるいは製紙工程や他の用途の工程の要所に設置して
、プール水の一部を循環させて前記電解槽で殺菌処理し
た後にプールに戻し、あるいは製紙洗浄水等の全部又は
一部を前記電解槽で処理した後に前記!I!紙工程の洗
浄水等として使用することができる。
An electrolytic cell with such a configuration is located close to the pool.
Alternatively, it can be installed at important points in the paper manufacturing process or other processes to circulate part of the pool water and return it to the pool after being sterilized in the electrolytic cell, or to circulate all or part of the paper manufacturing washing water, etc. After the treatment in the electrolytic bath! I! It can be used as washing water in paper processing.

なお電解槽に供給されるプール水等が層流であると誘電
体等の表面と充分に接触することなく前記電解槽を通過
することがあるため、電解槽内をIA過ずンコブール水
等は500以上のレイノルズ数を有する乱流として、横
方向の移動を充分に行わせてながら前記電解槽を通過さ
せることが好ましい。
Note that if the pool water, etc. supplied to the electrolytic cell is a laminar flow, it may pass through the electrolytic cell without making sufficient contact with the surface of the dielectric material, etc. It is preferable that the turbulent flow has a Reynolds number of 500 or more and is passed through the electrolytic cell while sufficiently moving in the lateral direction.

又本発明の電解槽では該電解槽に漏洩電流が生じ該漏洩
T、、流が電解槽から処理すべきプール水や製紙洗浄水
等を通して池の金属製部材例えばプールの内壁や製紙工
程の各種槽内等に流れ込み、該部材に溶出等の電気化学
的な腐食を生じさせたりプールの利用者を感電させたり
することがある。
In addition, in the electrolytic cell of the present invention, a leakage current occurs in the electrolytic cell, and the leakage current T flows from the electrolytic cell through pool water to be treated, paper manufacturing washing water, etc., to metallic members of the pond, such as the inner wall of the pool, and various parts of the paper manufacturing process. It may flow into the tank or the like, causing electrochemical corrosion such as elution to the members or electrocuting pool users.

そのため電解槽内の給電用陽陰極が相対しない該電極背
面部及び/又は前記電解槽の出入口配管内に、プール水
等より導電性の高い部材をその一端を接地可能なように
設置して前記漏洩電流を遮断することができる。
Therefore, a member with higher conductivity than pool water, etc. is installed at the back of the electrode where the power feeding anode and cathode do not face each other in the electrolytic cell and/or in the inlet/outlet piping of the electrolytic cell so that one end thereof can be grounded. Leakage current can be cut off.

次に添付図面に基づいて本発明に使用できる電解槽の好
ましい例を説明するが、本発明方法に使用される電解槽
は、この電解槽に限定されろものではない。
Next, a preferred example of an electrolytic cell that can be used in the present invention will be described based on the accompanying drawings, but the electrolytic cell used in the method of the present invention is not limited to this electrolytic cell.

第1図は、本発明の電解槽として使用可能な複極型固定
床式電解槽の一例を示す概略縦断面図である。
FIG. 1 is a schematic longitudinal sectional view showing an example of a bipolar fixed bed electrolytic cell that can be used as the electrolytic cell of the present invention.

上下にフランジ1を有する円筒形の電解槽本体2の内部
上端近傍及び下端近傍にはそれぞれメソシュ状の給電用
陽極3と給電用陰極4が設けられている。電解槽本体2
は、長期間の使用又は再度の使用にも耐え得る電気絶縁
材料で形成することが好ましく、特に合成樹脂であるポ
リエビク1コルヒドリン、ポリビニルメタクリレ−1・
、ポリエチレン、ポリプロピレン、ポリ塩化ビニル、ポ
リ塩化エチレン、フェノール−ホルムアルデヒド樹脂等
が好ましく使用できる。正の直流電圧を与える前記給電
用陽極3は、例えば炭素材(例えば活性炭、炭、コーク
ス、石炭等)、グラファイト材(例えば炭素繊維、カー
ボンクロス、グラファイト等)、炭素複合材(例えば炭
素に金属を粉状で混ぜ焼結したもの等)、活性炭素繊維
不織布(例えばK E −1000フエルト、東洋紡株
式会社)、又はこれに白金、白金、バラジウトやニッケ
ルを担持させた材料、更に寸法安定性電極(白金族酸化
物被覆チタン材)、白金被覆チタン材、ニッケル材、ス
テンレス材、鉄材等から形成される。又給電用開極3に
対向し負の直流電圧をり、える給電用陰極4は、例えば
白金、ステンレス、チタン、ニッケル、ハステロイ、グ
ラフアイI・、炭素材、軟鋼あるいは白金族金属をコー
ティングした金属材料等から形成されている。
A mesoche-shaped power feeding anode 3 and a power feeding cathode 4 are provided near the upper and lower ends of a cylindrical electrolytic cell body 2 having flanges 1 on the upper and lower sides, respectively. Electrolytic cell body 2
is preferably made of an electrically insulating material that can withstand long-term use or reuse, and is particularly made of synthetic resins such as polyevik-1 corhydrin and polyvinyl methacrylate-1.
, polyethylene, polypropylene, polyvinyl chloride, polyethylene chloride, phenol-formaldehyde resin, etc. can be preferably used. The power feeding anode 3 that provides a positive DC voltage is made of, for example, a carbon material (such as activated carbon, charcoal, coke, coal, etc.), a graphite material (such as carbon fiber, carbon cloth, graphite, etc.), or a carbon composite material (such as carbon and metal). (mixed and sintered in powder form, etc.), activated carbon fiber nonwoven fabric (e.g. K E-1000 felt, Toyobo Co., Ltd.), or materials in which this supports platinum, platinum, baradium, or nickel, and dimensionally stable electrodes. (platinum group oxide coated titanium material), platinum coated titanium material, nickel material, stainless steel material, iron material, etc. The power supply cathode 4, which faces the power supply opening 3 and receives a negative DC voltage, is coated with, for example, platinum, stainless steel, titanium, nickel, Hastelloy, Grapheye I, carbon material, mild steel, or platinum group metal. It is formed from a metal material or the like.

前記再給電用電極3.4間には複数個の、図示の例では
3個の固定床5が積層され、かつ該固定床5間及び該固
定床5と前記再給電用電極3.4間に4枚の多孔質の隔
膜あるいはスペーサー6が挟持されている。各固定床5
は電解槽本体2の内壁に密着し固定床5の内部をJ過せ
ず、固定床5と電解槽本体2の側壁との間を流れる写真
処理液の漏洩流がなるべく少なくなるように配置されて
いる。隔膜を使用する場合には該隔膜として織布、素焼
板、粒子焼結プラスチック、多孔板、・イオン交換膜等
が用いられ、スペーサーとして電気絶縁性材料で製作さ
れた織布、多孔板、網、棒状材等が使用される。
A plurality of fixed beds 5, three in the illustrated example, are stacked between the repowering electrodes 3.4, and between the fixed beds 5 and between the fixed beds 5 and the repowering electrodes 3.4. Four porous diaphragms or spacers 6 are sandwiched between them. Each fixed bed 5
is placed in close contact with the inner wall of the electrolytic cell main body 2 so as not to pass through the inside of the fixed bed 5, and so that the leakage flow of the photographic processing solution flowing between the fixed bed 5 and the side wall of the electrolytic cell main body 2 is minimized. There is. When a diaphragm is used, a woven fabric, an unglazed plate, a particle sintered plastic, a porous plate, an ion exchange membrane, etc. are used as the diaphragm, and a woven fabric, a perforated plate, or a mesh made of an electrically insulating material are used as the spacer. , rod-shaped materials, etc. are used.

このような構成から成る電解槽に下方から矢印で示すよ
うにプール水や製紙洗浄水等を供給しながら通電を行う
と、前記各固定床5が図示の如く下面が正に上面が負に
分極して固定床5内及び固定床5間に電位が生じ、該電
解槽内を流通するプール水等はこの電位により正又は負
に分極された固定床5に接触して該プール水中の黴や細
菌の殺菌等の改質処理が行われて該電解槽の上方から取
り出され、殺菌された前記プール水はプールに循環され
、!!紙紙滓浄水場合には製紙工程に供給されろ。
When the electrolytic cell configured as described above is energized while supplying pool water, paper manufacturing washing water, etc. from below as shown by the arrow, each of the fixed beds 5 is polarized with the lower surface being positively polarized and the upper surface being negatively polarized as shown in the figure. As a result, a potential is generated within the fixed bed 5 and between the fixed beds 5, and the pool water flowing through the electrolytic cell comes into contact with the fixed bed 5, which is polarized positively or negatively due to this potential, and mold and other substances in the pool water are generated. After undergoing a reforming process such as sterilization of bacteria, the pool water is taken out from above the electrolytic cell, and the sterilized pool water is circulated into the pool. ! If paper slag is purified water, it will be supplied to the paper manufacturing process.

第2図は、本発明に使用できる複極型固定床式電解槽の
他の例を示すもので、該電解槽は第1図の電解槽の固定
床5の給電用陰極4に向かう側つまり陽分極する側にメ
ソシュ状の不溶性金属材料7を密着状態で設置したもの
であり、他の部材は第1図と同一・であるので同一符号
を付して説明を省略する。
FIG. 2 shows another example of a bipolar fixed bed electrolytic cell that can be used in the present invention. A mesoche-like insoluble metal material 7 is installed in close contact with the side to be positively polarized, and since the other members are the same as those in FIG. 1, they are given the same reference numerals and their explanation will be omitted.

直流電圧が印加された固定床5はその両端部において最
も大きく分極が生じ、ガス発生が伴う場合には該両端部
において最も激しくガス発生が生ずる。従って最も強く
陽分極するつまり最も激しく酸素ガスが発生する固定床
5の給電用陰極4に向かう端部には最も速く溶解が生じ
る。図示の通りこの部分に不溶性金属材料7を設置して
おくと、該不溶性金属材料7の過電圧が固定床5を形成
する炭素系材料の過電圧より低いため殆どの酸素ガスが
前記不溶性金属材料7から発生し固定床5は殆ど酸素ガ
スと接触しなくなるため、前記固定床5の溶解は効果的
に抑制される。又該電解槽2に供給されたプール水等は
第1図の場合と同様に処理され殺菌が行われる。
The fixed bed 5 to which a DC voltage is applied is most polarized at both ends thereof, and when gas is generated, the most intense gas generation occurs at both ends. Therefore, dissolution occurs fastest at the end of the fixed bed 5 facing the power supply cathode 4 where the polarization is strongest, that is, where oxygen gas is most intensely generated. As shown in the figure, if the insoluble metal material 7 is installed in this part, most of the oxygen gas will be removed from the insoluble metal material 7 because the overvoltage of the insoluble metal material 7 is lower than the overvoltage of the carbon-based material forming the fixed bed 5. Since the fixed bed 5 hardly comes into contact with oxygen gas, the dissolution of the fixed bed 5 is effectively suppressed. Moreover, the pool water etc. supplied to the electrolytic cell 2 is treated and sterilized in the same manner as in the case of FIG.

第3図は、本発明に使用できる複極型固定床式電解槽の
他の例を示すものである。
FIG. 3 shows another example of a bipolar fixed bed electrolytic cell that can be used in the present invention.

上下にフランジ11を有する円筒形の電解槽本体12の
内部上端近傍及び下端近傍にはそれぞれメソシュ状の給
電用陽極13と給電用陰極14が設けられている。電解
種本(*12は、長期間の使用又は再度の使用にも耐え
得る電気絶縁材料特に合成樹脂で形成することが好まし
い。
A mesoche-shaped power feeding anode 13 and a power feeding cathode 14 are provided near the upper and lower ends of the cylindrical electrolytic cell body 12 having flanges 11 on the upper and lower sides, respectively. The electrolytic seed book (*12) is preferably made of an electrically insulating material, especially synthetic resin, that can withstand long-term use or repeated use.

前記再給電用電極13.14間には、導電性材料例えば
炭素系材料で形成された多数の固定床形成用粒子15と
該固定床形成用粒子15より少数の例えば合成樹脂製の
絶縁粒子18とがほぼ均一に混在している。該絶縁粒子
18は、前記給電用陽極13及び給電用陰極14が完全
に短絡するごとを防止する機能を有しζいる。
Between the repowering electrodes 13 and 14, there are a large number of fixed bed forming particles 15 made of a conductive material such as a carbon-based material and a smaller number of insulating particles 18 made of synthetic resin, for example, than the fixed bed forming particles 15. are almost evenly mixed. The insulating particles 18 have a function of preventing the power feeding anode 13 and the power feeding cathode 14 from being completely short-circuited.

ごのような構成から成る電解槽に下方から矢印で示すよ
うにプール水や製紙洗浄水等を供給しながら通電を行う
と、前記各固定床形成用粒子15が給電用陽極13側が
負に又給電用陰Ifi14側が正に分極して表面積が莫
大な三次元電極として機能し、第1図及び第2図の電解
槽と同様にして前記プール水中等の黴や細閏の殺菌等の
改質処理が行われて該電解槽の上方から取り出される。
When an electric current is supplied to the electrolytic cell constructed as shown in FIG. 1 while supplying pool water, paper manufacturing washing water, etc. from below as shown by the arrow, each of the fixed bed forming particles 15 is caused to have an anode 13 side facing negative. The power supply negative Ifi 14 side is positively polarized and functions as a three-dimensional electrode with a huge surface area, and can be used for modification such as sterilization of mold and fine particles in the pool water etc. in the same manner as the electrolytic cells shown in Figs. 1 and 2. After treatment, it is removed from the top of the electrolytic cell.

(実施例) 以下に本発明方法による被処理液改質処理の実施例を記
載するが、該実施例は本発明を限定するものではない。
(Example) Examples of the treatment liquid modification treatment according to the method of the present invention will be described below, but the examples are not intended to limit the present invention.

大立炎よ 透明な硬質ポリ塩化ビニル樹脂製の高さ600鰭、内径
500uのフランジ付円筒形である第1図に示した電解
槽をプール水を濾過清浄して返送する設備の前に設置し
た。該電解槽内には、炭素繊維から成る直径500軸、
厚さ101mの固定床30個を、開口率80%で直径5
00鰭及び厚さ1 、21mのポリエチレン樹脂製隔膜
31枚で挟み込み、上下両端の隔膜にそれぞれ白金をそ
の表面にメンキしたチタン製である直径480鶴厚さ1
 、0mmのメソシュ状給電用陽極及び給電”用陰極を
接触させて設置した。
The electrolytic cell shown in Figure 1, which is made of transparent hard polyvinyl chloride resin and has a flanged cylindrical shape with a height of 600 fins and an inner diameter of 500 μ, is installed in front of the equipment that filters and cleans the pool water and returns it. did. Inside the electrolytic cell, a diameter 500 shaft made of carbon fiber,
30 fixed beds with a thickness of 101 m, with an opening ratio of 80% and a diameter of 5
It is sandwiched between 31 polyethylene resin diaphragms with a diameter of 480 mm and a thickness of 1.00 fins and a thickness of 1.2 m, and the upper and lower membranes are made of titanium with platinum coated on their surfaces.
, 0 mm mesoche-like power feeding anode and power feeding cathode were placed in contact with each other.

プール水を5トン/分(空間速度約2560/時)の速
度で前記電解槽に供給し、電極間に第1表に示す電解電
圧を印加して前記プール水の処理を行った。該処理操作
における肉眼観察による発生ガスの有無、電解槽1m過
前後のプール水の細菌数及び消費電力量を第1表に纏め
た。
Pool water was supplied to the electrolytic cell at a rate of 5 tons/min (space velocity approximately 2560/hr), and the electrolytic voltage shown in Table 1 was applied between the electrodes to treat the pool water. Table 1 summarizes the presence or absence of gas generated by visual observation during the treatment operation, the number of bacteria in the pool water around 1 m of the electrolytic cell, and the amount of power consumed.

第 表 第1表から電解電圧の大小にかかわらずプール水中の細
菌数は電解槽で処理されることにより大幅に減少するご
とが判る。又1槽当たりの電解電圧が2V程度であると
微lのガス発生があり消費電力ヱもさほど大きくならな
いことが判る。
From Table 1, it can be seen that the number of bacteria in pool water is significantly reduced by treatment with an electrolytic cell, regardless of the magnitude of electrolysis voltage. It is also understood that when the electrolytic voltage per tank is about 2 V, a small amount of gas is generated and the power consumption does not become very large.

30口経過後に1J11 TLを停止し電解槽を解体し
て固定床の状態を観察したところ電解槽には変化は見ら
れムかった。
After 30 mouths had elapsed, 1J11 TL was stopped, the electrolytic cell was disassembled, and the state of the fixed bed was observed, and no change was observed in the electrolytic cell.

去旌開1 実施例1の電解槽本体及び給電用量陰極を使用し、該給
電用TL電極間、粒径5〜10nv+のグラファイト粒
子と硬質ポリ塩化ビニル樹脂製で粒径5〜10mmの絶
縁粒子を重量比4:lで均一に混合した混合粒子を充填
し、第3図に示す電解槽を構成した。
1. Using the electrolytic cell body and power supply cathode of Example 1, graphite particles with a particle size of 5 to 10 nv+ and insulating particles made of hard polyvinyl chloride resin with a particle size of 5 to 10 mm are placed between the power feeding TL electrodes. The electrolytic cell shown in FIG. 3 was constructed by filling mixed particles uniformly mixed at a weight ratio of 4:1.

この電解槽を製紙工程に近接させて設置し、使用前の製
紙洗浄水を実施例1と同一条件で該電解槽に供給して、
実施例1の場合と同様に、該処理操作における肉眼観察
による発生ガスの有無、電解槽通過前後の製紙洗浄水中
の細菌数及び消費電力量を測定しそれぞれ結果を第2表
に纏めた。
This electrolytic cell is installed close to the paper manufacturing process, and paper manufacturing washing water before use is supplied to the electrolytic cell under the same conditions as in Example 1.
As in Example 1, the presence or absence of generated gas was visually observed during the treatment, and the number of bacteria and power consumption in the paper washing water before and after passing through the electrolytic bath were measured, and the results are summarized in Table 2.

第2表から電解電圧の大小にかかわらず製紙洗浄水中の
細菌数は電解槽で処理されることにより大幅に減少する
ことが判る。又1槽当たりの電解電圧が2v程度である
と微咀のガス発生があり消費電力量もさほど大きくなら
ないことが判る。
From Table 2, it can be seen that the number of bacteria in the paper washing water is significantly reduced by treatment in the electrolytic bath, regardless of the magnitude of the electrolytic voltage. It is also understood that when the electrolytic voltage per tank is about 2V, a small amount of gas is generated and the power consumption does not increase so much.

第 表 実施例1の電解槽を使用して電解槽へのプール水の供給
層つまり空間速度速度を変化させて該プール水の殺薗数
、電解電圧及び消費電力を測定した。その結果を第3表
に纏めた。なお使用したプール水の電解槽通過前の細菌
数は32150個/l!であり、各ブール水処理とも発
生ガス量は微■であった。
Using the electrolytic cell of Example 1 in Table 1, the number of dead cells, electrolysis voltage, and power consumption of the pool water were measured by varying the supply layer of pool water to the electrolytic cell, that is, the space velocity. The results are summarized in Table 3. The number of bacteria in the pool water used before passing through the electrolytic tank was 32,150 per liter! The amount of gas generated was very small in each boule water treatment.

第3表から空間速度1/時を境にして殺菌敗つ第 3 表 第 表 まり滅菌効率に大きな変化が生ずることが判る。From Table 3, sterilization is defeated at a space velocity of 1/hour. 3 table No. table It can be seen that there is a significant change in sterilization efficiency.

大族開↓ 第4表に示した供給速度及び空間速度以外は実施例3と
同一条件で製紙洗浄水の滅菌処理を行った。その結果を
第4表に示した。
The paper washing water was sterilized under the same conditions as in Example 3 except for the supply rate and space velocity shown in Table 4. The results are shown in Table 4.

本実施例の場合も実施例3と同様に空間速度1/時を境
にして殺菌数つまり滅菌効率に大きな変化が生ずること
が判る。
In the case of this example, as in Example 3, it can be seen that there is a large change in the number of sterilizations, that is, the sterilization efficiency, when the space velocity reaches 1/hour.

夫旌班工 実施例1の電解槽を使用し、空間速度を37.5/時に
固定してプール水(電解槽通過前の細菌数34個/m1
)を前記電解槽に供給し、電解電圧を変化させて、該電
圧変化の発生ガス量、滅菌効率及び陽極の劣化状況への
影響を調べた。その結果を第5表に纏めた。
Using the electrolytic cell of Example 1, the space velocity was fixed at 37.5/hour, and the pool water (the number of bacteria before passing through the electrolytic cell was 34/m1).
) was supplied to the electrolytic cell, the electrolysis voltage was varied, and the influence of the voltage change on the amount of generated gas, sterilization efficiency, and deterioration status of the anode was investigated. The results are summarized in Table 5.

第5表から明らかなように、単電解槽1槽当たりの電解
電圧が1v未満でありると滅菌効率が大きく減少し、か
つ7■を越えると陽極の劣化が著しくなる従って単電解
槽当たりの電解電圧は1〜7■とすることが好ましい。
As is clear from Table 5, if the electrolysis voltage per single electrolytic cell is less than 1V, the sterilization efficiency will be greatly reduced, and if it exceeds 7V, the deterioration of the anode will be significant. The electrolytic voltage is preferably 1 to 7 cm.

第 表 (発明の効果) 本発明方法は、比較的大量の水処理を必要とJる被処理
液を複極型三次元電極式電解槽に供給し咳被処理液を前
記三次元電極と接触させて電気イ1学的に処理する被処
理液の電気化学的処理方法マある(請求項1)。
Table (Effects of the Invention) The method of the present invention involves supplying a liquid to be treated, which requires a relatively large amount of water treatment, to a bipolar three-dimensional electrode type electrolytic cell, and contacting the liquid to be treated with the three-dimensional electrode. There is also an electrochemical treatment method for a liquid to be treated in which the liquid to be treated is treated electrically.

処理贋が莫大になる例えばプール水(請求項2)や製紙
洗浄水(請求項3)では、単位体積当たりの処理能力の
高く従って電解槽の小型化や設置面積の減少が可能にな
る複極型三次元電極式電解槽によると、効率良く処理特
に殺菌処理を従来の殺閉材やv′j黴剤を使用すること
なく行うことができ、これにより処理用薬剤の莫大なコ
ストを節約でき、更に該薬剤が処理済のプール水に残存
することに起因する不都合を回避することができる。特
に本発明に係わる被処理液の処理方法では被処理液の空
間速度により滅菌効率に大きな差異が生じ、該臨界値は
1/時付近であり、被処理液の1/時以上の空間速度で
供給し処理するごとにより効率的な被処理液の滅菌処理
が可能になる。
For example, in the case of swimming pool water (Claim 2) and paper manufacturing washing water (Claim 3), where a huge amount of false processing occurs, bipolar electrodes have a high processing capacity per unit volume, which makes it possible to downsize the electrolytic cell and reduce the installation area. According to the type three-dimensional electrode type electrolytic cell, processing, especially sterilization, can be carried out efficiently without using conventional sealants or V'J fungicides, which can save a huge amount of costs for processing chemicals. Moreover, the inconvenience caused by the chemical remaining in treated pool water can be avoided. In particular, in the method for treating a liquid to be treated according to the present invention, there is a large difference in sterilization efficiency depending on the space velocity of the liquid to be treated, and the critical value is around 1/hour. It becomes possible to sterilize the liquid to be processed more efficiently each time it is supplied and processed.

電解槽当たりの電圧値は処理効率に影響を及ぼし、該電
圧がIV未満であると十分な滅菌効率が得られず、7v
を越えるとガス発生が顕著になり、かつ陽FWの劣化が
生ずるため、前記電圧はIV〜7■の範囲とすることが
望ましい(請求項4)。
The voltage value per electrolytic cell affects the processing efficiency, and if the voltage is less than IV, sufficient sterilization efficiency cannot be obtained, and 7v
If the voltage exceeds the voltage, gas generation becomes noticeable and the positive FW deteriorates, so it is desirable that the voltage is in the range of IV to 7cm (Claim 4).

本発明方法は、三次元電極上でガス発生を伴っても伴わ
なくともよいが、本発明の電気化学的処理が実際に行わ
れていることの確認は、肉眼でガス発生を観察すること
である。従って本発明では若干量のガス発生が生ずる程
度の電圧を印加することが好ましいく請求項5)。しか
し本発明方法は比較的大量処理の必要な被処理液を対象
とし、消費電力■は発生ガス量には1.;I’比例する
ため、該発生ガスlは極力掛川に抑えることが望ましい
The method of the present invention may or may not involve gas generation on the three-dimensional electrode, but confirmation that the electrochemical treatment of the present invention is actually being performed can be done by observing gas generation with the naked eye. be. Therefore, in the present invention, it is preferable to apply a voltage of such an extent that a certain amount of gas is generated. However, the method of the present invention targets liquids to be treated that require relatively large amounts of treatment, and the power consumption (1) is 1.5% compared to the amount of gas generated. ; Since it is proportional to I', it is desirable to suppress the generated gas l as much as possible.

更に本発明で発生ずる電解ガスは爆発限界内の酸素ガス
及び水素ガスの混合ガスとなり密閉系で処理を行うと爆
発の危険がある。従って電解槽の出口近傍に電解により
発生するガスの分離手段及び分離された該ガスの希釈手
段が設けて、爆発の危険を回避することができる(請求
項6)。
Furthermore, the electrolytic gas generated in the present invention is a mixed gas of oxygen gas and hydrogen gas within the explosive limit, and there is a risk of explosion if the process is carried out in a closed system. Therefore, by providing means for separating the gas generated by electrolysis and means for diluting the separated gas near the outlet of the electrolytic cell, it is possible to avoid the danger of explosion (Claim 6).

又本発明の電解槽には漏洩TL流が生ずることがあり、
該漏洩電流は電解槽から処理すべきプール水や製紙洗浄
水を通してプールの内壁や製紙工程の各種槽内等に流れ
込み、該部材に溶出等の電気化学的な腐食を生じさせた
りプールの利用者を感電させたりすることがある。これ
を回避するためには、電解槽内の給電用陽陰極が相対し
ない該電極背面部及び/又は前記電解槽の出入口配管内
に、プール水等より導電性の高い部材をその一端を接地
可能なように設置して前記漏洩電流を遮断することがで
きる(請求項7)。
In addition, leakage TL flow may occur in the electrolytic cell of the present invention,
The leakage current flows from the electrolytic tank through the pool water to be treated and paper manufacturing washing water into the inner walls of the pool and into various tanks in the paper manufacturing process, causing electrochemical corrosion such as elution to the components and harming pool users. may cause electric shock. In order to avoid this, it is possible to ground one end of a member that is more conductive than pool water, etc., on the back of the electrode where the power feeding anodes and cathodes in the electrolytic cell do not face each other, and/or in the inlet and outlet piping of the electrolytic cell. The leakage current can be cut off by installing it as follows (Claim 7).

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の電解槽として使用可能な複極型固定
床式電解槽の一例を示す縦断面図、第2図は、同じく他
の複極型固定床式電解槽の一例を示す縦断面図、第3図
は、更に他の複極型固定床式電解槽の一例を示す縦断面
図である。 1.11・・フランジ 2.12・・電解槽本体3.1
3・・給電用陽極 4.14・・給電用陰極5・・・固
定床  6・・・スペーサー7・・・不溶性金属材料 15・・固定床形成用粒子 18・・絶縁粒子第1部 第2図
FIG. 1 is a longitudinal sectional view showing an example of a bipolar fixed bed electrolytic cell that can be used as the electrolytic cell of the present invention, and FIG. 2 is a longitudinal sectional view showing an example of another bipolar fixed bed electrolytic cell. FIG. 3 is a vertical cross-sectional view showing an example of yet another bipolar fixed bed electrolytic cell. 1.11...Flange 2.12...Electrolytic cell body 3.1
3...Anode for power supply 4.14...Cathode for power supply 5...Fixed bed 6...Spacer 7...Insoluble metal material 15...Particles for forming fixed bed 18...Insulating particles Part 1 Part 2 figure

Claims (1)

【特許請求の範囲】 (1)被処理液を1/時以上の空間速度で複極式三次元
電極式電解槽に供給し、該被処理液を前記三次元電極と
接触させて電気化学的に処理する被処理液の電気化学的
処理方法。(2)被処理液がプール水である請求項1に
記載の方法。 (3)被処理液が製紙処理水である請求項1に記載の方
法。 (4)三次元電極式電解槽の陽陰極間の単電解摺電圧が
1V以上で7V以下である請求項1から3までのいずれ
かに記載の方法。 (5)三次元電極式電解槽の陽陰極間に電圧を印加して
陽極で酸素ガスを陰極で水素ガスを発生させながら被処
理液の処理を行う請求項1から3までのいずれかに記載
の方法。 (6)その出口近傍に電解により発生するガスの分離手
段及び分離されたガスの希釈手段が設けられた電解槽を
使用する請求項1から5までのいずれかに記載の方法。 (7)三次元電極式電解槽内の給電用陽陰極が相対しな
い該給電用電極背面及び/又は前記電解槽の出入口配管
内に、被処理液より導電性の高い部材をその一端を接地
可能に設置して処理を行う請求項1から6までのいずれ
かに記載の方法。
[Scope of Claims] (1) A liquid to be treated is supplied to a bipolar three-dimensional electrode type electrolytic cell at a space velocity of 1/hour or more, and the liquid to be treated is brought into contact with the three-dimensional electrode to electrochemically An electrochemical treatment method for a liquid to be treated. (2) The method according to claim 1, wherein the liquid to be treated is pool water. (3) The method according to claim 1, wherein the liquid to be treated is papermaking treated water. (4) The method according to any one of claims 1 to 3, wherein the single electrolytic sliding voltage between the anode and cathode of the three-dimensional electrode electrolytic cell is 1 V or more and 7 V or less. (5) The liquid to be treated is treated while applying a voltage between the anode and cathode of the three-dimensional electrode type electrolytic cell to generate oxygen gas at the anode and hydrogen gas at the cathode. the method of. (6) The method according to any one of claims 1 to 5, wherein an electrolytic cell is used, which is provided near the outlet with means for separating gas generated by electrolysis and means for diluting the separated gas. (7) A member with higher conductivity than the liquid to be treated can be grounded at one end on the back of the power supply electrode where the power supply anode and cathode in the three-dimensional electrode type electrolytic cell do not face each other and/or inside the inlet and outlet piping of the electrolytic cell. The method according to any one of claims 1 to 6, wherein the method is carried out by installing the method in a.
JP10911690A 1989-12-16 1990-04-25 Electrochemical treatment of liquid to be treated Pending JPH03224681A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10911690A JPH03224681A (en) 1989-12-16 1990-04-25 Electrochemical treatment of liquid to be treated

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP32684689 1989-12-16
JP1-326846 1989-12-16
JP10911690A JPH03224681A (en) 1989-12-16 1990-04-25 Electrochemical treatment of liquid to be treated

Publications (1)

Publication Number Publication Date
JPH03224681A true JPH03224681A (en) 1991-10-03

Family

ID=26448901

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10911690A Pending JPH03224681A (en) 1989-12-16 1990-04-25 Electrochemical treatment of liquid to be treated

Country Status (1)

Country Link
JP (1) JPH03224681A (en)

Similar Documents

Publication Publication Date Title
JP3181795B2 (en) Electrolyzed water production equipment
JP3181796B2 (en) Electrolyzed water production equipment
US4048032A (en) Electrolytic purification of aqueous liquids in the presence of silver ions
JPH10151463A (en) Water treatment method
KR20170107642A (en) A porous 3-dimensional mono-polar electrodes, an electrolyzer having the porous 3-dimensional mono-polar electrodes, and water treatment method using the electrolyzer having the porous 3-dimensional mono-polar electrodes
DE602004008584T2 (en) METHOD AND DEVICE FOR ELECTROCHEMICAL WATER DISINFECTION
JP5011084B2 (en) Device for killing microorganisms in water and method for killing microorganisms in water
JPH11128940A (en) Device and method for electrolysis of water
JPH03224681A (en) Electrochemical treatment of liquid to be treated
JP3150370B2 (en) Electrolytic treatment method for treated water containing microorganisms
JP3214724B2 (en) Fixed-bed type three-dimensional electrode type electrolytic cell
JP3020553B2 (en) Fixed-bed type three-dimensional electrode type electrolytic cell
JPH04118090A (en) Electrolytic treatment of water to be treated
JPH0416280A (en) Electrochemical treatment of water containing microorganism
JP6847477B1 (en) Electrolyzed water production equipment and method for producing electrolyzed water using this
JPH0418982A (en) Electrochemical treatment of water to be treated
JPH09314149A (en) Gasket for fixed bed type three dimensional electrode electrolytic bath, fixed bed type three dimensional electrode electrolytic bath, and water treatment method
JP3180318B2 (en) Electrochemical treatment of treated water containing microorganisms
WO2022195708A1 (en) Electrolyzed water production apparatus, and electrolyzed water production method using same
JPH03224683A (en) Electrochemical treatment of water to be treated
JPH08309359A (en) Electrochemical treatment of water to be treated
JP3020551B2 (en) Electrochemical treatment of treated water containing microorganisms
JPH04219194A (en) Electrochemical treatment of water to be treated
JP2922255B2 (en) Electrochemical treatment of treated water containing microorganisms
JPH06233983A (en) Three dimensional electrode-type electrolytic tank