JPH03219000A - Etching method and washing method for silicon wafer - Google Patents

Etching method and washing method for silicon wafer

Info

Publication number
JPH03219000A
JPH03219000A JP2214290A JP21429090A JPH03219000A JP H03219000 A JPH03219000 A JP H03219000A JP 2214290 A JP2214290 A JP 2214290A JP 21429090 A JP21429090 A JP 21429090A JP H03219000 A JPH03219000 A JP H03219000A
Authority
JP
Japan
Prior art keywords
silicon wafer
etching
cleaning
solution
hydrogen peroxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2214290A
Other languages
Japanese (ja)
Other versions
JP2599021B2 (en
Inventor
Susumu Otsuka
進 大塚
Tadashi Sakon
正 佐近
Jun Atsumi
渥美 純
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2214290A priority Critical patent/JP2599021B2/en
Publication of JPH03219000A publication Critical patent/JPH03219000A/en
Application granted granted Critical
Publication of JP2599021B2 publication Critical patent/JP2599021B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Weting (AREA)
  • Cleaning Or Drying Semiconductors (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To extremely decrease metallic contaminating materials contg. Fe by etching a silicon wafer with an etching soln. prepd. by adding a complexing agent which forms a complex compd. with the metallic contaminating materials to an aq. alkaline soln. CONSTITUTION:The silicon wafer is etched or washed by using the etching liquid or washing liquid or the etching liquid or washing liquid added with the complexing agent (e.g.: citric acid) which forms the complex compd. with an extremely slight quantity of the metallic contaminating material, for example, Fe, existing on the surface of the silicon wafer at the time of etching or washing the silicon wafer by using the aq. alkaline soln., for example, an aq. KOH soln. and ammonia-aq. hydrogen peroxide soln. The degradation in the quality of the silicon wafer is averted in this way and the deterioration in the electrical characteristics when the silicon wafer is used for highly integrated devices is averted.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、シリコンウェハの表面を高清浄な状態にする
ためのエッチングあるいは洗浄方法に関するものである
. 従来の技術 近年、デバイスの高集積化に伴って、その基板となるシ
リコンウェハの表面をより一層清浄化することが強く望
まれている. 一般に、シリコンウェハは、単結晶シリコンのインゴッ
トから円盤状に切り出された後、ラッピング,エッチン
グ,ポリッシングおよび洗浄の各工程を経て、加工歪や
汚染物質が除去された平滑な表面の製品となる. しかし、加工歪や汚染物質を除去するエッチングや洗浄
に不具合があるとシリコンウェハ表面にシリコン粒子や
塵等の微粒子汚染物質(パーティクルとも言われる)や
金属系汚染物質が残ることになる. 微粒子汚染物質が存在すると,デバイスの配線の断線や
ショートの原因となり、金属系汚染物質が存在すると酸
化誘起m層欠陥の発生やライフタイムの低下といった問
題が生じる.したがって、これら汚染物質を極力低減す
ることが必要である.従来のシリコンウェハのエッチン
グ方法としては、■苛性アルカリ水溶液でエッチングす
る方法(以下、アルカリエッチング法という)、■硝酸
と弗酸を主成分とする混酸水溶液でエッチングする方法
が行われている. 従来のエッチング方法のうち、■は水酸化カリウムの水
溶液を用いる場合が多い.しかし、特級グレードの水酸
化カリウムを用いたとしても,ppmあるいはサブpp
mオーダの金属系汚染物質が含まれていることに加え、
アルカリ水溶液でエッチングされたシリコン面は、Fe
等の金属系汚染物質で非常に汚染されやすいという問題
がある.また、従来のシリコンウェハの洗浄方法として
は、■希弗酸水溶液で洗浄する方法(以下、島弗酸法と
いう)、■塩酸または硫酸と過酸化水素との混合水溶液
で洗浄する方法(以下,塩酸過酸化水素法または硫酸過
酸化水素法という)、■アンモニアと過酸化水素との混
合水溶液で洗沙する方法(以下、アンモニア過酸化水素
法という)および■第四級水酸化アンモニウム類の有機
アルカリ,例えば[(CH3 )3NCH,CH,OH
]OHの化学式で表示され、一般にはコリンと言われて
いる有機アルカリと過酸化水素あるいは界面活性剤との
混合水溶液で洗浄する″方法(以下コリン過酸化水素法
という)が行われている.これら各洗浄法で使用される
洗浄液には、微粒子汚染物質や金属系汚染物質を極力低
減した高純度の薬品類や水が使用されている. 従来の洗浄法のうち,■はシリコンウェハの表面に通常
10λ程度の厚さで汚染物が存在する、自然酩化膜を溶
解する能力を有し、酸化膜中の金属系汚染物質の除去効
果は高いが、微粒子汚染物質の低減は困難という問題が
ある. ■は塩酸または硫酸が持つ金属系汚染物質に対する高溶
解能力を利用したものであるが、酸化股を溶解する能力
がない.このため,酸化膜上の金属系汚染物質を除去す
る効果は高いが,#化膜中や酸化膜とシリコンの界面に
存在する金属系汚染物質を除去する効果は低い. ■はシリコン自身を溶解する働きがあるため、その上に
存在する金属系汚染物質を除去する効果は高いが、アル
カリ性の洗浄液中で生成する酸化膜は、洗浄液中の金属
系汚染物質等を取り込み易いという性質があり、シリコ
ンウェハが再汚染される可能性が高い.しかし,この方
法は微粒子の除去効果が高いため、ウエハメーカーやデ
バイスメーカーで広く利用されている. ■はアンモニアより強アルカリ性のため、シリコン微粉
を良く溶解する.また、バクテリアに対する破壊作用が
強いため、他の洗浄法では除去しにくい固着バクテリア
の除去に有効である.しかし、洗浄液は強アルカリ性で
あるため、■と同様に洗浄液中の金属系汚染物質等を取
り込み易いという性質があり、シリコンウェハが再汚染
される可能性が高い. 発明が解決しようとする課題 シリコンウェハ表面の清浄度を評価する方法に、フレー
ムレス原子吸光による金属系汚染物質を分析する方法、
マイクロ波反射法によるライフタイム(以下、再結合ラ
イフタイムという)を調べる方法がある.本発明者は,
これらの方法を用いて、アルカリエッチング法でのシリ
コンウェハ表面のFe汚染状況あるいは上記各種洗浄法
により洗浄したシリコンウェハの再結合ライフタイムを
調べて清浄度を評価した. アルカリエッチング法は、約100PPbの不純物Fe
を含む5%水酸化カリウム水溶液で、80℃、15分間
の条件でエッチングしたシリコンウェハW面のFe汚染
量をフレームレス原子吸光で調べたところ、約4 X 
1015atoms/cm2という高濃度ノFeで汚染
されるという問題を明らかにした. また、上記各種洗浄法により洗浄したシリコンウェハの
再結合ライフタイムを評価した結果、第1表に例示した
ように、アンモニア過酸化水素法およびコリン過酸化水
素法で洗浄したシリコンウェハは、他の方法で洗浄した
ものに比べて再結合ライフタイムがかなり劣るという問
題を明らかにした. 第 l 表 この原因について本発明者が調査した結果、水酸化カリ
ウム、アンモニア水、コリン水溶液および過酸化水素水
に元々含まれていた,微量のFeが原因であることが判
明した.本発明者の分析結果によると、薬品製造メーカ
ーや製造ロフトにより違いはあるが、水酸化カリウムに
は、70ppb程度、アンモニア水には、0.06〜0
.25ppb程度、過酸化水素水には0.13〜0.3
2ppb程度、コリン(0.5%水溶液)には、10p
pb程度のFeが含まれていた.また、エッチングある
いは洗浄に使用される石英カラス製の洗浄槽やヒーター
にも,不純物としてFeが含まれており、その溶出が洗
浄液の加熱により促進され、エッチング液中のFe含有
量が100PPb程度、洗浄液中のFe含有量がo.s
ppb程度になることも珍しくない. アルカリエッチング法において、上記したように、約1
00ppbの不純物Feを含む5%水酸化カリウム水溶
液でエッチングしたシリコンウェハの表面は、約4 X
 10” atoms/cm2のFeで汚染される.ま
た、アンモニア過酸化水素法において、洗浄液中にFe
が0.5ppbという極微量存在しても、8 X 10
” ata酊/C12程度のFeが付着して、シリコン
ウェハ表面を汚染し,再結合ライフタイムを低下させる
ことが知られている(大塚ら、第34回半導体・集積回
路技術シンポジウム予稿集、1888年、p.37) 
, 本発明は、従来のシリコンウェハのエッチング方法のう
ち、アルカリエッチング法を改良し、Feを含む金属系
汚染物質を極めて低減した、新規なエッチング方法を提
供することを目的にする.また、従来のシリコンウェハ
の洗浄方法のうち,微粒子汚染物質の除去効果が高いア
ンモニア過酸化水素法あるいはコリン過酸化水素法を改
良し、Feを含む金属系汚染物質を極めて低減した,高
清浄度のシリコンウェハを得ることのできる、新規な洗
浄方法を提供することを目的とする.課題を解決するた
めの手段および作用 本発明者は,従来のアルカリエッチング法,アンモニア
過酸化水素法あるいはコリン過酸化水素法において,エ
ッチング液や洗浄液中の極微量のFeにより、シリコン
ウェハの表面が汚染される理由は,アルカリ性のエッチ
ング液や洗浄液中のFeは、水に不溶の水酸化第二鉄F
e(OH)sとしてコロイド状に分散していて、表面が
溶解し、活性化されたシリコンウェハにこれが吸着する
ためであると推察し,エッチング液や洗浄液中のFeを
水酸化第二鉄とは異なる化合物にすることによって、吸
着を防止することを検討した. 本発明はこのような考え方によりなされたものであって
、その要旨は、 1,アルカリ性水溶液をエッチング液として,シリコン
ウェハをエッチングするに際し、該シリコンウェハの表
面あるいは該エ−ツチング液に存在する金属汚染物質と
錯化合物を形成する錯化剤を該エッチング液に添加した
エッチング溶液でエッチングすることを特徴とするシリ
コンウェハのエッチング方法、 2.アルカリ性水溶液を洗浄液としてシリコンウェハを
洗浄するに際し、該シリコンウェハの表面あるいは該洗
浄液に存在する金属汚染物質と錯化合物を形成する錯化
剤を該洗浄液に添加した洗浄溶液で洗浄することを特徴
とするシリコンウェハの洗浄方法である. 従来のアルカリエッチング法によるシリコンウェハのエ
ッチングは、一般には85℃のKOH水溶IIで行われ
ている. 従来のアンモニア過酸化水素法によるシリコンウェハの
洗浄は、NH40H: 0.5〜5重量%、1702:
4〜6重量%、温度70〜85℃の水溶液で一般に行わ
れている. 従来のコリン過酸化水素法によるシリコンウェハの洗浄
は、[(C}I3)3MCI12CH20H]OH :
 1〜38重量%、H,02:0〜3重量%、温度30
〜70℃の水溶液で一般に行われている. 本発明法は、このような従来のアルカリエッチング法の
エッチング液やアンモニア過酸化水素法あるいはコリン
過酸化水素法の洗浄液に,錯化剤を添加した液をエッチ
ング液あるいは洗浄液とするのであるが、添加する錯化
剤は、シリコンウェハの表面あるいはエッチング液や洗
浄液中に存在する金属系汚染物質と反応して,安定した
錯化合物を形成するもの、特にFeと反応して、安定し
たFe@化合物を形成するものでなければならない.特
に、アンモニア過酸化水素洗浄液はPRが約10〜12
の強アルカリ性で,コリン過酸化水素洗浄液は、さらに
PHが12以上の強アルカリ性で、強力な酸化剤である
過酸化水素を含み,しかも高温であるため、錯化剤には
酸化分解されないものを選択する必要がある. 本発明において、金属系汚染物質と錯化合物を形成する
錯化剤は、以下に示すもの1種または2種以上を使用す
ることができる. (1)金属との反応にあずかるドナー原子の2個の酸素
が水酸基とカルポキシル基にもとすいたヒドロキシカル
ポン酸類. 例えば、クエン酸、酒石酸、リンゴ酸、4,6−ジヒド
ロキシ一〇−トルイル酸、ジンコン等およびその他のヒ
ドロキシカルポン酸類. (2)金属との反応にあずかるドナー原子の2個の酸素
が水酸基にもとすいた化合物類. 例えば、カテコール、レゾルシン、ピロガロール、オル
シン、グルコン酸、4.2−ピリジルアゾレゾルシン、
4.5−ジヒドロキシーベンゼン−1.3−ジスルホン
酸(チロン)類. (3)金属との反応にあずかるドナー原子の2個の酸素
が水酸基とカルポニル基にもとすいた化合物類. 例エば、トロポロン類、2−ヒドロキシ−1.4−ベン
ツキノン,2−ヒドロキシ−1.4−ナフトキノン、5
−ヒドロキシ−1.4−ナフトキノン、1−ヒドロキシ
−8,】0−アントラキノン類等のヒドロキシキノン類
,3−ヒドロキシ−4−ピロン(ピロメコン酸)、コウ
ジ酸、コメン酸,マルトール類等の4−ピロン類. (0β−ジケトン類. 例えば、アセチルアセトン、テノイルトリフルオルアセ
トン等. (5)金属との反応にあずかるドナー原子の2傭が窒素
であるアミン基にもとすいたアミン類.例えば、エチレ
ンジアミン、トリエタノールアミン等. (6)金属との反応にあずかるドナー原子の2個のうち
1個が窒素であるアミノ基で、他の1個が酸素であるカ
ルポキシル基にもとすいたポリアミノカルポン酸類. 例えば,エチレンジアミン2酢酸、エチレンジアミン4
酢酸類等および他のボリアミノカルポン酸類. (7)金属との反応にあずかるドナー原子の2傭のうち
の1個の窒素が二トロ基で、他の1個の酸素が水酸基に
もとすいた化合物類. 例えば、クペロン、ニトロソR塩等. 本発明において、これら錯化剤の添加量の下限は、錯化
剤の種類およびエッチング液あるいは洗浄液中の不純物
金属の成分と量により異なるので一概には決められない
が、エッチング液には0.1重量%以上、洗浄液には0
.0l重量%以上とすることが望ましい.また、添加量
を増しても効果は認められないため、上限は特に限定し
ないが洗浄液への添加は、錯化剤の種類によっては急激
な発熱反応により突沸することがある(例えばニトロソ
R塩).また経済性の点からl重量%以下とすることが
望ましい. 本発明法によりシリコンウェハをエッチングあるいは洗
浄すると、アルカリ性水溶液の特徴であるシリコン自身
の溶解作用により、ウエハ表面の微粒子汚染物質の除去
効果が高いと同時に,エッチング液や洗浄液中に微量の
Feが含まれていても、錯化剤の作用によりFe錯化合
物になるので,活性化されたウエハ表面に水酸化第二鉄
のコロイドが吸着されることがなく、従来の問題点であ
った,Fe汚染や再結合ライフタイムの低下が回避され
る. さらに、錯化剤の種類によっては、M,Ca.Cr. 
Cu. Ng, Xi等の金属も錯化合物になるので、
微量のこれら金属で汚染されたシリコンウエI\をエッ
チングあるいは洗浄した場合、あるいは微量のこれら金
属で汚染されたエッチング液あるいは洗浄液を使用した
場合も、これら金属系物質による汚染の問題や金属系汚
染物質による再結合ライフタイムの低下が回避される. なお、本発明の洗浄法は、従来公知の洗浄法と組合わせ
て行っても良い.例えば希弗酸法によりシリコンウェハ
表面の酸化膜を除去した後に、本発明法を行うと効果的
である. 実施例 エッチングとして、KOH:5重量%の水溶液に、各種
錯化剤を添加し、あるいは添加しないエー,チンダ液を
80℃に保持して、直径5インチのn型シリコンウェハ
を浸漬し15分間エッチングした.エッチング後のシリ
コンウェハは、直ちに超純水中で5分間以上の流水水洗
を2回行い、スピンドライヤーにより乾燥した後、フレ
ームレス原子吸光分析により、シリコンウェハ表面のF
eを分析した.なお、表中のNILは、分析定量下限以
下の0.2X 10”atoms/cm2未満であるこ
とを示す.第2表に試験結果を示す. 第2表から明らかなように,本発明例では、Fe汚染が
極めて低減される. 洗浄として, NH40H: 3.7重量%、H,02
 : 4.9重量%のアンモニア過酸化水素洗浄液に,
各種錯化剤を添加し、あるいは添加しない洗浄液を80
℃に保持して、直径5インチのnfiおよびp!!!シ
リコンウェハを浸漬し10分間洗浄した.また、[(C
H3 )sNcTocH,OH]OH = 0.5重量
%. III,も二3.0重量%のコリン過酸化水素洗
浄液に,各種錯化剤を添加し、あるいは添加しない洗浄
液を70℃に保持して、直径5インチのn型およびp型
シリコンウェハを浸漬し3分間洗浄した.洗浄後のシリ
コンウェハは、直ちに超純水中で5分間以上の流水水洗
を2回行い、スピンドライヤーにより乾燥した後,評価
テストを行った. 結果を第3表に示す.表中のFeイオン添加量5および
10 ppbは、洗浄液に故意に添加したものである. 乾燥後のウエハの一部は、ウエ八表面微粒子計測装置に
より汚染微粒子数を調べ、残りのウエハは、酸化炉にて
1000℃で25分間のドライ酸化を行い、表面に約2
80人厚さの酸化膜を形成した.酸化したウエハは、マ
イクロ波反射法により再結合ライフタイムを測定した. 汚染微粒子数は、何れも10儒/ウエハ以下であった.
また、第3表から明らかなように,本発明例では、金属
系汚染物質が極めて低減される結果、再結合ライフタイ
ムの優れたシリコンウェハが得られる. 第3表のうちのNo.01 , No.02 . No
.07 . No.11No.12 、No.22 .
 No.24 , No.25について、直径l〜6m
mのアルミ電極を持つNOSダイオードを作成して、酸
化H#圧および発生ライフタイムを測定した.酸化陵耐
圧は、印加電界0−25V/cmステップ、判定電流1
 #LA/cm2の条件〒測定し、Aモード(酸化膜の
ピンホールに起因するもの)をn型、p型ウエハ共ニ4
NvlCI1以下、Bモード(金属系汚染物質等による
酸化膜のウィークスポットに起因するもの)をn型ウエ
ハが4〜?.5MV/c■、p型ウエハが4〜8.ON
V/c組Cモード(酸化膜本来の絶縁破壊)をn型ウエ
ハが7.5NV/cm+以上、p型ウエハが8.OMV
/cm以上と分類し、Cモード率で評価した.その結果
、第4表に示すように本発明法で洗浄したものでは、酸
化膜耐圧および発生ライフタイムの優れたシリコンウェ
ハが得られる.(以下余白) 発明の効果 本発明法によりシリコンウェハをエッチングすると、汚
染Feが極めて低減された、高清浄のシリコンウェハが
得られる.また、本発明法によりシリコンウェハを洗浄
すると、金属系汚染物質および微粒子汚染物質がともに
極めて低減された,高清浄のシリコンウェハが得られ、
酸化誘起積層欠陥の発生やライフタイムの低下といった
、シリコンウェハの品質低下が回避されるとともに、高
集積化したデバイスに使用した場合の電気特性劣化も回
避される.
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to an etching or cleaning method for bringing the surface of a silicon wafer into a highly clean state. Background of the Invention In recent years, as devices have become more highly integrated, there has been a strong desire to further clean the surfaces of silicon wafers that serve as their substrates. In general, a silicon wafer is cut into a disk shape from a single-crystal silicon ingot, and then undergoes lapping, etching, polishing, and cleaning steps to create a product with a smooth surface that is free from processing distortion and contaminants. However, if there is a problem with processing distortion or the etching or cleaning that removes contaminants, particulate contaminants (also called particles) such as silicon particles and dust, and metal contaminants will remain on the silicon wafer surface. The presence of particulate contaminants causes disconnections and short circuits in device wiring, and the presence of metal contaminants causes problems such as the generation of oxidation-induced m-layer defects and shortened lifetimes. Therefore, it is necessary to reduce these pollutants as much as possible. Conventional methods for etching silicon wafers include: (1) etching with a caustic alkaline aqueous solution (hereinafter referred to as alkaline etching method), and (2) etching with a mixed acid aqueous solution containing nitric acid and hydrofluoric acid as main components. Among the conventional etching methods, method (■) often uses an aqueous solution of potassium hydroxide. However, even if special grade potassium hydroxide is used, ppm or sub-pp
In addition to containing m-order metal contaminants,
The silicon surface etched with an alkaline aqueous solution is Fe
There is a problem in that it is extremely susceptible to contamination with metal-based contaminants such as. Conventional methods for cleaning silicon wafers include: ■ Cleaning with a dilute hydrofluoric acid solution (hereinafter referred to as the hydrofluoric acid method); ■ Cleaning with a mixed aqueous solution of hydrochloric acid or sulfuric acid and hydrogen peroxide (hereinafter referred to as the hydrofluoric acid method). (referred to as hydrochloric acid hydrogen peroxide method or sulfuric acid hydrogen peroxide method), ■ method of washing with a mixed aqueous solution of ammonia and hydrogen peroxide (hereinafter referred to as ammonia hydrogen peroxide method), and ■ organic method of quaternary ammonium hydroxide. Alkali, such as [(CH3)3NCH,CH,OH
] The chemical formula of OH is used for washing with a mixed aqueous solution of an organic alkali called choline and hydrogen peroxide or a surfactant (hereinafter referred to as the choline-hydrogen peroxide method). The cleaning liquid used in each of these cleaning methods uses high-purity chemicals and water that contain as little particulate contaminants and metal contaminants as possible. It has the ability to dissolve naturally intoxicated films in which contaminants usually exist in a thickness of about 10λ, and is highly effective in removing metal contaminants in oxide films, but it is difficult to reduce particulate contaminants. ① utilizes the high dissolving ability of hydrochloric acid or sulfuric acid for metal contaminants, but it does not have the ability to dissolve oxidized particles.For this reason, it is not effective in removing metal contaminants on the oxide film. is high, but its effectiveness in removing metal contaminants present in the oxide film and at the interface between the oxide film and silicon is low. However, the oxide film formed in the alkaline cleaning solution has the property of easily absorbing metal contaminants, etc. in the cleaning solution, and there is a high possibility that the silicon wafer will be re-contaminated. This method is widely used by wafer manufacturers and device manufacturers because it is highly effective in removing fine particles. ■ is more alkaline than ammonia, so it dissolves silicon fine powder better. Also, because it has a strong destructive effect on bacteria, other This method is effective in removing adhered bacteria that are difficult to remove with cleaning methods.However, since the cleaning solution is strongly alkaline, it tends to absorb metal contaminants in the cleaning solution, as in (2), and silicon wafers may be recontaminated. Problems to be Solved by the Invention Methods for evaluating the cleanliness of silicon wafer surfaces include a method of analyzing metal contaminants using flameless atomic absorption;
There is a way to check the lifetime (hereinafter referred to as recombination lifetime) using microwave reflection method. The inventor is
Using these methods, the cleanliness was evaluated by examining the Fe contamination on the surface of silicon wafers by alkaline etching and the recombination lifetime of silicon wafers cleaned by the various cleaning methods described above. The alkaline etching method uses approximately 100 PPb impurity Fe.
The amount of Fe contamination on the W surface of a silicon wafer etched at 80°C for 15 minutes with a 5% potassium hydroxide aqueous solution containing
The problem of contamination with Fe at a high concentration of 1015 atoms/cm2 was clarified. In addition, as a result of evaluating the recombination lifetime of silicon wafers cleaned by the various cleaning methods mentioned above, as illustrated in Table 1, silicon wafers cleaned by the ammonia hydrogen peroxide method and the choline hydrogen peroxide method We clarified the problem that the recombination lifetime is considerably inferior to that of those cleaned using this method. As a result of the inventor's investigation into the cause of this problem, it was found that the cause was a trace amount of Fe originally contained in potassium hydroxide, aqueous ammonia, aqueous choline solution, and aqueous hydrogen peroxide. According to the inventor's analysis, although there are differences depending on the chemical manufacturer and manufacturing loft, potassium hydroxide has a concentration of about 70 ppb, and ammonia water has a concentration of 0.06 to 0.0 ppb.
.. About 25 ppb, 0.13 to 0.3 for hydrogen peroxide solution
About 2ppb, 10p for choline (0.5% aqueous solution)
It contained approximately pb of Fe. In addition, quartz glass cleaning tanks and heaters used for etching or cleaning also contain Fe as an impurity, and its elution is promoted by heating the cleaning solution, so that the Fe content in the etching solution is approximately 100 PPb. If the Fe content in the cleaning solution is o. s
It is not uncommon for it to be around ppb. In the alkali etching method, as mentioned above, about 1
The surface of a silicon wafer etched with a 5% potassium hydroxide aqueous solution containing 00 ppb of impurity Fe is approximately 4
Contaminated with 10" atoms/cm2 of Fe. Also, in the ammonia hydrogen peroxide method, Fe is contaminated in the cleaning solution.
Even if it exists in a trace amount of 0.5 ppb, 8 x 10
It is known that Fe with a concentration of about C12 adheres to the silicon wafer surface, contaminates the silicon wafer surface, and reduces the recombination lifetime (Otsuka et al., Proceedings of the 34th Semiconductor and Integrated Circuit Technology Symposium, 1888 year, p. 37)
The purpose of the present invention is to improve the alkaline etching method among conventional etching methods for silicon wafers, and to provide a new etching method in which metallic contaminants including Fe are extremely reduced. In addition, among conventional silicon wafer cleaning methods, we have improved the ammonia hydrogen peroxide method or the choline hydrogen peroxide method, which is highly effective in removing particulate contaminants, to achieve high cleanliness that significantly reduces metal contaminants including Fe. The purpose of this study is to provide a new cleaning method that can obtain silicon wafers. Means and Action for Solving the Problems The present inventor has discovered that in the conventional alkaline etching method, ammonia hydrogen peroxide method, or choline hydrogen peroxide method, the surface of the silicon wafer is The reason for the contamination is that Fe in alkaline etching and cleaning solutions is ferric hydroxide F, which is insoluble in water.
It is assumed that this is because Fe is dispersed in a colloidal form as e(OH)s, and the surface is dissolved and adsorbed to the activated silicon wafer. We investigated ways to prevent adsorption by using different compounds. The present invention was made based on this idea, and its gist is as follows: 1. When etching a silicon wafer using an alkaline aqueous solution as an etching solution, metals present on the surface of the silicon wafer or in the etching solution are removed. 2. A method for etching a silicon wafer, comprising etching with an etching solution in which a complexing agent that forms a complex compound with a contaminant is added to the etching solution; 2. When cleaning a silicon wafer using an alkaline aqueous solution as a cleaning liquid, the silicon wafer is cleaned with a cleaning solution in which a complexing agent that forms a complex compound with the surface of the silicon wafer or a metal contaminant present in the cleaning liquid is added to the cleaning liquid. This is a method for cleaning silicon wafers. Etching of silicon wafers by the conventional alkaline etching method is generally performed in KOH aqueous solution II at 85°C. Cleaning of silicon wafers by the conventional ammonia hydrogen peroxide method uses NH40H: 0.5 to 5% by weight, 1702:
It is generally carried out in an aqueous solution containing 4 to 6% by weight and at a temperature of 70 to 85°C. Cleaning of silicon wafers by the conventional choline hydrogen peroxide method is [(C}I3)3MCI12CH20H]OH:
1-38% by weight, H, 02: 0-3% by weight, temperature 30
It is generally carried out in an aqueous solution at ~70°C. In the method of the present invention, a complexing agent is added to the etching solution of the conventional alkaline etching method, the ammonia hydrogen peroxide method, or the choline hydrogen peroxide method, and the solution is used as the etching solution or cleaning solution. The complexing agent to be added is one that reacts with metal contaminants present on the surface of the silicon wafer or in the etching solution or cleaning solution to form a stable complex compound, and in particular reacts with Fe to form a stable Fe@ compound. It must form a In particular, the ammonia hydrogen peroxide cleaning solution has a PR of about 10 to 12.
The choline hydrogen peroxide cleaning solution is also strongly alkaline with a pH of 12 or higher, contains hydrogen peroxide, a strong oxidizing agent, and is heated to high temperatures, so the complexing agent must be one that will not be decomposed by oxidation. You need to choose. In the present invention, as the complexing agent that forms a complex compound with a metal contaminant, one or more of the following can be used. (1) Hydroxycarboxylic acids in which the two oxygen atoms of the donor atoms that participate in the reaction with metals are converted into a hydroxyl group and a carpoxyl group. For example, citric acid, tartaric acid, malic acid, 4,6-dihydroxy-10-toluic acid, zincone, and other hydroxycarboxylic acids. (2) Compounds in which two oxygen atoms, which are donor atoms that participate in reactions with metals, are also converted into hydroxyl groups. For example, catechol, resorcinol, pyrogallol, orcine, gluconic acid, 4,2-pyridylazoresorcinol,
4.5-dihydroxybenzene-1,3-disulfonic acid (thyrone). (3) Compounds in which the two oxygen atoms of the donor atoms that participate in the reaction with the metal are also a hydroxyl group and a carbonyl group. For example, tropolones, 2-hydroxy-1,4-benzquinone, 2-hydroxy-1,4-naphthoquinone, 5
Hydroxyquinones such as -hydroxy-1,4-naphthoquinone, 1-hydroxy-8, ]0-anthraquinones, 4-hydroxyquinones such as 3-hydroxy-4-pyrone (pyromeconic acid), kojic acid, comenic acid, maltol, etc. Pyrones. (0β-diketones. For example, acetylacetone, thenoyltrifluoroacetone, etc.) (5) Amines used in amine groups in which nitrogen is the second donor atom that participates in the reaction with metals. For example, ethylenediamine, trifluoroacetone, etc. Ethanolamine, etc. (6) Polyaminocarboxylic acids containing an amino group in which one of the two donor atoms participating in the reaction with a metal is nitrogen, and the other is a carpoxyl group, in which the other is oxygen. For example, ethylenediamine diacetic acid, ethylenediamine 4
Acetic acids, etc. and other polyaminocarboxylic acids. (7) Compounds in which one nitrogen of the two donor atoms participating in the reaction with the metal is a ditro group, and the other oxygen is a hydroxyl group. For example, cuperone, nitroso R salt, etc. In the present invention, the lower limit of the amount of these complexing agents added cannot be determined unconditionally because it varies depending on the type of complexing agent and the component and amount of impurity metal in the etching solution or cleaning solution. 1% by weight or more, 0 in cleaning solution
.. It is desirable that the amount be 0l% by weight or more. In addition, no effect is observed even if the amount added is increased, so there is no particular upper limit to the upper limit, but depending on the type of complexing agent added to the cleaning solution, bumping may occur due to a rapid exothermic reaction (for example, nitroso R salt). .. Also, from the point of view of economy, it is desirable that the amount be 1% by weight or less. When silicon wafers are etched or cleaned using the method of the present invention, due to the dissolving action of silicon itself, which is a characteristic of an alkaline aqueous solution, it is highly effective in removing particulate contaminants from the wafer surface, and at the same time, a trace amount of Fe is contained in the etching solution or cleaning solution. Even if the ferric hydroxide is present, it becomes an Fe complex compound due to the action of the complexing agent, so the colloid of ferric hydroxide is not adsorbed onto the activated wafer surface, which prevents Fe contamination, which was a problem in the past. This avoids a decrease in the recombination lifetime. Furthermore, depending on the type of complexing agent, M, Ca. Cr.
Cu. Metals such as Ng and Xi also form complex compounds, so
When etching or cleaning silicon wafers contaminated with trace amounts of these metals, or when using etching solutions or cleaning solutions contaminated with trace amounts of these metals, problems of contamination due to these metal substances and metal contamination may occur. Reduction of recombination lifetime due to substances is avoided. Note that the cleaning method of the present invention may be performed in combination with conventionally known cleaning methods. For example, it is effective to perform the method of the present invention after removing an oxide film on the surface of a silicon wafer using a dilute hydrofluoric acid method. As an etching example, an n-type silicon wafer with a diameter of 5 inches was immersed in an aqueous solution of KOH: 5% by weight with or without addition of various complexing agents at 80° C. for 15 minutes. Etched. After etching, the silicon wafer was immediately rinsed with running water for at least 5 minutes twice in ultrapure water, dried using a spin dryer, and then flameless atomic absorption spectroscopy was performed to determine the F content on the silicon wafer surface.
We analyzed e. In addition, NIL in the table indicates that it is less than 0.2X 10"atoms/cm2, which is below the lower limit of analytical quantification. Table 2 shows the test results. As is clear from Table 2, in the example of the present invention, , Fe contamination is extremely reduced. As cleaning, NH40H: 3.7% by weight, H,02
: 4.9% by weight ammonia hydrogen peroxide cleaning solution,
80% cleaning solution with or without various complexing agents added
℃ and 5 inch diameter nfi and p! ! ! The silicon wafer was immersed and cleaned for 10 minutes. Also, [(C
H3)sNcTocH,OH]OH = 0.5% by weight. III, Mo2 N-type and p-type silicon wafers with a diameter of 5 inches are immersed in a 3.0% by weight choline-hydrogen peroxide cleaning solution with or without addition of various complexing agents and maintained at 70°C. and washed for 3 minutes. After cleaning, the silicon wafers were immediately rinsed with running water for 5 minutes or more twice in ultrapure water, dried with a spin dryer, and then subjected to evaluation tests. The results are shown in Table 3. The Fe ion addition amounts of 5 and 10 ppb in the table were intentionally added to the cleaning solution. After drying, some of the wafers were checked for the number of contaminant particles using a wafer surface particle counting device, and the remaining wafers were dry oxidized for 25 minutes at 1000°C in an oxidation furnace, leaving about 2.
An oxide film with a thickness of 80 people was formed. The recombination lifetime of the oxidized wafer was measured by microwave reflection method. The number of contaminant particles was less than 10 per wafer in all cases.
Furthermore, as is clear from Table 3, in the examples of the present invention, metal contaminants are extremely reduced, resulting in silicon wafers with excellent recombination lifetimes. No. 3 in Table 3. 01, No. 02. No
.. 07. No. 11 No. 12, No. 22.
No. 24, No. About 25, diameter l~6m
A NOS diode with an aluminum electrode of m was fabricated, and the oxidized H# pressure and generation lifetime were measured. Oxidation voltage withstand voltage is applied electric field 0-25V/cm step, judgment current 1
#LA/cm2 condition
NvlCI1 or less, B mode (caused by weak spots in the oxide film due to metal contaminants, etc.) for n-type wafers 4~? .. 5MV/c■, p-type wafer 4-8. ON
V/c group C mode (dielectric breakdown inherent to oxide film) is 7.5NV/cm+ or more for n-type wafers and 8.5NV/cm+ for p-type wafers. OMV
/cm or more, and evaluated based on the C mode rate. As a result, as shown in Table 4, silicon wafers cleaned by the method of the present invention have excellent oxide film breakdown voltage and generation lifetime. (Left below) Effects of the Invention When silicon wafers are etched by the method of the present invention, highly clean silicon wafers with significantly reduced Fe contamination can be obtained. Furthermore, when a silicon wafer is cleaned by the method of the present invention, a highly clean silicon wafer with extremely reduced levels of both metal-based contaminants and particulate contaminants can be obtained.
This avoids deterioration in the quality of silicon wafers, such as the occurrence of oxidation-induced stacking faults and shortened lifetimes, as well as the deterioration of electrical characteristics when used in highly integrated devices.

Claims (1)

【特許請求の範囲】 1、アルカリ性水溶液をエッチング液として、シリコン
ウェハをエッチングするに際し、該シリコンウェハの表
面あるいは該エッチング液に存在する金属汚染物質と錯
化合物を形成する錯化剤を該エッチング液に添加したエ
ッチング溶液でエッチングすることを特徴とするシリコ
ンウェハのエッチング方法。 2、アルカリ性水溶液を洗浄液としてシリコンウェハを
洗浄するに際し、該シリコンウェハの表面あるいは該洗
浄液に存在する金属汚染物質と錯化合物を形成する錯化
剤を該洗浄液に添加した洗浄溶液で洗浄することを特徴
とするシリコンウェハの洗浄方法。
[Claims] 1. When etching a silicon wafer using an alkaline aqueous solution as an etching solution, a complexing agent that forms a complex compound with a metal contaminant present on the surface of the silicon wafer or in the etching solution is added to the etching solution. A silicon wafer etching method characterized by etching with an etching solution added to a silicon wafer. 2. When cleaning a silicon wafer using an alkaline aqueous solution as a cleaning liquid, it is recommended to clean the silicon wafer with a cleaning solution containing a complexing agent that forms a complex compound with the surface of the silicon wafer or a metal contaminant present in the cleaning liquid. Characteristic silicon wafer cleaning method.
JP2214290A 1989-11-09 1990-08-15 Silicon wafer etching method and cleaning method Expired - Fee Related JP2599021B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2214290A JP2599021B2 (en) 1989-11-09 1990-08-15 Silicon wafer etching method and cleaning method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP1-289937 1989-11-09
JP28993789 1989-11-09
JP2214290A JP2599021B2 (en) 1989-11-09 1990-08-15 Silicon wafer etching method and cleaning method

Publications (2)

Publication Number Publication Date
JPH03219000A true JPH03219000A (en) 1991-09-26
JP2599021B2 JP2599021B2 (en) 1997-04-09

Family

ID=26520238

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2214290A Expired - Fee Related JP2599021B2 (en) 1989-11-09 1990-08-15 Silicon wafer etching method and cleaning method

Country Status (1)

Country Link
JP (1) JP2599021B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06249764A (en) * 1993-02-26 1994-09-09 Nippon Steel Corp Preparation of standard sample for analysis of metal contamination on surface of silicon wafer
EP0674343A2 (en) * 1994-03-25 1995-09-27 Shin-Etsu Handotai Company Limited Method for storing silicon wafers
FR2722511A1 (en) * 1994-07-15 1996-01-19 Ontrak Systems Inc Metal contaminant removal during substrate cleaning
US5580846A (en) * 1994-01-28 1996-12-03 Wako Pure Chemical Industries, Ltd. Surface treating agents and treating process for semiconductors
EP0789071A1 (en) * 1995-07-27 1997-08-13 Mitsubishi Chemical Corporation Method for treating surface of substrate and surface treatment composition therefor
US5753601A (en) * 1991-01-25 1998-05-19 Ashland Inc Organic stripping composition
WO1998028395A1 (en) * 1996-12-24 1998-07-02 Advanced Chemical Systems International, Inc. Formulations including a 1,3-dicarbonyl compound chelating agent for stripping residues from semiconductor substrates
JPWO2001071789A1 (en) * 2000-03-21 2004-03-04 和光純薬工業株式会社 Semiconductor substrate cleaning agent and cleaning method
JP2006324452A (en) * 2005-05-19 2006-11-30 Wako Pure Chem Ind Ltd Surface-treating agent for semiconductor substrate and treating method
WO2007138921A1 (en) * 2006-05-26 2007-12-06 Wako Pure Chemical Industries, Ltd. Etching solution for substrate
US7491342B2 (en) * 2003-04-02 2009-02-17 Sumco Corporation Bonded semiconductor substrate manufacturing method thereof
JP2010040908A (en) * 2008-08-07 2010-02-18 Tokuyama Corp Silicon etchant
JP2011129569A (en) * 2009-12-15 2011-06-30 Sumco Corp Semiconductor wafer manufacturing method
CN107217307A (en) * 2017-06-28 2017-09-29 常州市瑞泰物资有限公司 A kind of preparation method of monocrystalline silicon piece texture
CN111900070A (en) * 2020-07-16 2020-11-06 上海富乐德智能科技发展有限公司 Regeneration cleaning and repairing method for silicon part of semiconductor high-order process etching device
CN113122148A (en) * 2021-04-07 2021-07-16 云南合义德新材料有限公司 Crystalline silicon alkali polishing additive and use method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5245271A (en) * 1975-10-08 1977-04-09 Hitachi Ltd Process for washing surface of semiconductor element
JPS5320377A (en) * 1976-08-10 1978-02-24 Kobe Steel Ltd Method and device for heightening sensitivity of stress paint in load test
JPS5340279A (en) * 1976-09-27 1978-04-12 Toshiba Corp Surface processing method for semiconductor element substrate
JPS62115833A (en) * 1985-11-15 1987-05-27 Mitsubishi Electric Corp Surface treating agent for semiconductor substrate
JPS62252141A (en) * 1986-04-24 1987-11-02 Kyushu Denshi Kinzoku Kk Cleanser for silicon semiconductor substrate

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5245271A (en) * 1975-10-08 1977-04-09 Hitachi Ltd Process for washing surface of semiconductor element
JPS5320377A (en) * 1976-08-10 1978-02-24 Kobe Steel Ltd Method and device for heightening sensitivity of stress paint in load test
JPS5340279A (en) * 1976-09-27 1978-04-12 Toshiba Corp Surface processing method for semiconductor element substrate
JPS62115833A (en) * 1985-11-15 1987-05-27 Mitsubishi Electric Corp Surface treating agent for semiconductor substrate
JPS62252141A (en) * 1986-04-24 1987-11-02 Kyushu Denshi Kinzoku Kk Cleanser for silicon semiconductor substrate

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5753601A (en) * 1991-01-25 1998-05-19 Ashland Inc Organic stripping composition
JPH06249764A (en) * 1993-02-26 1994-09-09 Nippon Steel Corp Preparation of standard sample for analysis of metal contamination on surface of silicon wafer
US5580846A (en) * 1994-01-28 1996-12-03 Wako Pure Chemical Industries, Ltd. Surface treating agents and treating process for semiconductors
EP0674343A2 (en) * 1994-03-25 1995-09-27 Shin-Etsu Handotai Company Limited Method for storing silicon wafers
EP0674343A3 (en) * 1994-03-25 1997-07-02 Shinetsu Handotai Kk Method for storing silicon wafers.
FR2722511A1 (en) * 1994-07-15 1996-01-19 Ontrak Systems Inc Metal contaminant removal during substrate cleaning
JP2007165935A (en) * 1994-07-15 2007-06-28 Lam Res Corp Method of removing metals in scrubber
EP0789071A4 (en) * 1995-07-27 2004-07-28 Mitsubishi Chem Corp Method for treating surface of substrate and surface treatment composition therefor
EP0789071A1 (en) * 1995-07-27 1997-08-13 Mitsubishi Chemical Corporation Method for treating surface of substrate and surface treatment composition therefor
WO1998028395A1 (en) * 1996-12-24 1998-07-02 Advanced Chemical Systems International, Inc. Formulations including a 1,3-dicarbonyl compound chelating agent for stripping residues from semiconductor substrates
JP2001507073A (en) * 1996-12-24 2001-05-29 アドバンスド ケミカル システムズ インターナショナル,インコーポレイテッド Formulation containing 1,3-dicarbonyl compound chelating agent for stripping residue from semiconductor substrate
JPWO2001071789A1 (en) * 2000-03-21 2004-03-04 和光純薬工業株式会社 Semiconductor substrate cleaning agent and cleaning method
JP4821082B2 (en) * 2000-03-21 2011-11-24 和光純薬工業株式会社 Semiconductor substrate cleaning agent and cleaning method
US7491342B2 (en) * 2003-04-02 2009-02-17 Sumco Corporation Bonded semiconductor substrate manufacturing method thereof
JP2006324452A (en) * 2005-05-19 2006-11-30 Wako Pure Chem Ind Ltd Surface-treating agent for semiconductor substrate and treating method
JP4586628B2 (en) * 2005-05-19 2010-11-24 和光純薬工業株式会社 Semiconductor substrate surface treatment agent and treatment method
WO2007138921A1 (en) * 2006-05-26 2007-12-06 Wako Pure Chemical Industries, Ltd. Etching solution for substrate
JP2010040908A (en) * 2008-08-07 2010-02-18 Tokuyama Corp Silicon etchant
JP2011129569A (en) * 2009-12-15 2011-06-30 Sumco Corp Semiconductor wafer manufacturing method
CN107217307A (en) * 2017-06-28 2017-09-29 常州市瑞泰物资有限公司 A kind of preparation method of monocrystalline silicon piece texture
CN111900070A (en) * 2020-07-16 2020-11-06 上海富乐德智能科技发展有限公司 Regeneration cleaning and repairing method for silicon part of semiconductor high-order process etching device
CN113122148A (en) * 2021-04-07 2021-07-16 云南合义德新材料有限公司 Crystalline silicon alkali polishing additive and use method thereof

Also Published As

Publication number Publication date
JP2599021B2 (en) 1997-04-09

Similar Documents

Publication Publication Date Title
US6146467A (en) Treatment method for semiconductor substrates
JP3061470B2 (en) Surface treatment method and treatment agent
JP2857042B2 (en) Cleaning liquid for silicon semiconductor and silicon oxide
EP0859404B1 (en) Washing solution of semiconductor substrate and washing method using the same
JP5379441B2 (en) Alkaline aqueous solution composition for substrate processing
JPH03219000A (en) Etching method and washing method for silicon wafer
JP4744228B2 (en) Semiconductor substrate cleaning liquid and semiconductor substrate cleaning method
JP2868885B2 (en) Polishing liquid and polishing method for silicon wafer
JP3174823B2 (en) Silicon wafer cleaning method
JP3957264B2 (en) Semiconductor substrate cleaning method
JP3957268B2 (en) Semiconductor substrate cleaning method
JP3239998B2 (en) Semiconductor substrate cleaning method
JP2776583B2 (en) Semiconductor substrate processing solution and processing method
JPH0818920B2 (en) Silicon wafer cleaning method
JP2002100599A (en) Washing method for silicon wafer
JP3040067B2 (en) Method for cleaning substrate having semiconductor layer
JPH0583520B2 (en)
JP2599021C (en)
JPH04130100A (en) Etching method and washing method for semiconductor wafer
JP2001326209A (en) Method for treating surface of silicon substrate
JP2001053042A (en) Method of preventing organic contamination of substrate for electronic device from environmental atmosphere and substrate for electronic device subjected to prevention treatment
JP3649534B2 (en) Silicon wafer and silicon oxide cleaning solution
JP3274834B2 (en) Surface treatment method and treatment agent
JP4026384B2 (en) Semiconductor substrate cleaning method
JPH09298180A (en) Silicon wafer washing method

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees