JP3274834B2 - Surface treatment method and treatment agent - Google Patents

Surface treatment method and treatment agent

Info

Publication number
JP3274834B2
JP3274834B2 JP09536098A JP9536098A JP3274834B2 JP 3274834 B2 JP3274834 B2 JP 3274834B2 JP 09536098 A JP09536098 A JP 09536098A JP 9536098 A JP9536098 A JP 9536098A JP 3274834 B2 JP3274834 B2 JP 3274834B2
Authority
JP
Japan
Prior art keywords
semiconductor surface
salt
treating agent
phosphoric acid
hydrogen peroxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP09536098A
Other languages
Japanese (ja)
Other versions
JPH10321590A (en
Inventor
一良 林田
政彦 柿沢
謙一 梅北
裕美 名和
久志 村岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Wako Pure Chemical Corp
Original Assignee
Wako Pure Chemical Industries Ltd
Fujifilm Wako Pure Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wako Pure Chemical Industries Ltd, Fujifilm Wako Pure Chemical Corp filed Critical Wako Pure Chemical Industries Ltd
Priority to JP09536098A priority Critical patent/JP3274834B2/en
Publication of JPH10321590A publication Critical patent/JPH10321590A/en
Application granted granted Critical
Publication of JP3274834B2 publication Critical patent/JP3274834B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Cleaning Or Drying Semiconductors (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【産業上の利用分野】本発明は、半導体やLCDの表面の
清浄化を向上させる表面処理剤の改良に関する。詳しく
は、半導体や集積回路,LCD等の製造において常用され
ているシリコン、ゲ ルマニウムあるいはGa−As,Ga−P
等の化合物半導体の表面及び半導体に接する 膜表面或
はガラス基板の中の少なくとも一面の有機物、微粒子及
び金属汚染除去等の洗浄処理に使用し、表面の清浄化を
向上させ製品歩留まりを改善するための改良された表面
処理剤及び処理方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement in a surface treatment agent for improving the cleaning of semiconductor and LCD surfaces. Specifically, silicon, germanium, Ga-As, Ga-P, which are commonly used in the manufacture of semiconductors, integrated circuits, LCDs, etc.
Used for cleaning treatment such as removal of organic substances, fine particles, and metal contamination on at least one surface of the surface of a compound semiconductor such as a semiconductor and a film surface or a glass substrate in contact with the semiconductor to improve surface cleaning and improve product yield. And an improved surface treatment agent.

【0002】[0002]

【従来技術及びその問題点】現在、LSI、IC、ダイオー
ド、整流素子等の半導体デバイスは、ほとんどがシリコ
ンデバイスでありこれらはシリコンウェハーに気相成
長、酸化膜形成、不純物拡散、電極金属膜蒸着等の工程
を加えて製造されている。
2. Description of the Related Art At present, most semiconductor devices such as LSIs, ICs, diodes, rectifiers, etc. are silicon devices, and these are vapor phase growth, oxide film formation, impurity diffusion, electrode metal film deposition on a silicon wafer. It is manufactured by adding such steps.

【0003】不純物による汚染は、半導体の電気特性に
著しい影響を与えるため、前記各工程の前にシリコンウ
ェハー表面を充分に洗浄し、汚染を除去する必要があ
る。その工業的手法は、使用する薬液の種類、処理温度
等により多岐にわたっているが、70年代の中頃からはRC
A洗浄(RCA Review,P187-206,June(1970)等)と呼ばれ
る一連の処理が広く使われ、ウェット洗浄の基幹となっ
ている。
[0003] Since contamination by impurities significantly affects the electrical characteristics of a semiconductor, it is necessary to sufficiently clean the surface of a silicon wafer to remove the contamination before each of the above steps. The industrial methods vary widely depending on the type of chemical solution used, the processing temperature, etc.
A series of processes called A cleaning (RCA Review, P187-206, June (1970), etc.) is widely used, and is the backbone of wet cleaning.

【0004】即ち、有機物汚染や一部の金属例えばCuや
Agなどに対して洗浄効果があり、特に微粒子汚染に対し
て著効のある[アンモニア+過酸化水素+水]処理(SC
-1処理)と自然酸化膜を除去するための希HF処理、及び
金属汚染除去効果の著しい[塩酸+過酸化水素+水]処
理(SC-2処理)の組合せである。
That is, organic contamination and some metals such as Cu and
[Ammonia + Hydrogen peroxide + Water] treatment (SC
-1 treatment), a dilute HF treatment for removing a natural oxide film, and a [hydrochloric acid + hydrogen peroxide + water] treatment (SC-2 treatment) with a remarkable metal contamination removing effect.

【0005】一般に用いられてきたRCA洗浄のスケジュ
ールは、SC-1処理→希HF処理→SC-2処理であるが、希HF
処理はウェハーが微粒子汚染を受けやすく、またSC-2処
理は微粒子を除く力が弱い。LSIの超高集積化と共にデ
バイスパターンは急速に微細化し、それと共にデバイス
を不良化する微粒子のサイズも著しく微細化した。微粒
子は小さくなる程、ウェハーに対する付着力が増し、従
って除去が難しくなり、製造歩留は洗浄時の微粒子汚染
除去能力に強く左右される。そこで、SC-1処理を洗浄ス
ケジュールの最後とすることが試みられてきた。しかし
かかる洗浄を行ったウェハーは再結合ライフタイムが低
下し、また酸化膜耐圧が劣化する等の電気的特性に問題
があることが知られている。
The RCA cleaning schedule that has been generally used is SC-1 processing → dilute HF processing → SC-2 processing.
In the process, the wafer is susceptible to particle contamination, and in the SC-2 process, the ability to remove particles is weak. With ultra-high integration of LSIs, device patterns have rapidly become finer, and the size of fine particles that make devices defective have also become extremely finer. The smaller the particles, the greater the adhesion to the wafer and therefore the more difficult it is to remove, and the manufacturing yield is strongly dependent on the ability to remove particulate contamination during cleaning. Thus, attempts have been made to make SC-1 processing the last in the cleaning schedule. However, it is known that the wafer subjected to such cleaning has a problem in electrical characteristics such as a decrease in recombination lifetime and a decrease in oxide film breakdown voltage.

【0006】金属不純物がシリコンウェハー表面を汚染
した場合、これらの電気的特性の低下を生じる。SC-1処
理後のウェハー表面に検出される金属はFe、Al、Ca、M
g、Znなどである。このような汚染元素は洗浄に入る前
の工程で装置から汚染されたり、或は環境から汚染され
たりしてSC-1の洗浄能力では、除去できなかった分と、
処理液中の薬液に存在したものが逆にウェハーに吸着し
た分とよりなっている。
[0006] When metal impurities contaminate the silicon wafer surface, these electrical characteristics deteriorate. Metals detected on the wafer surface after SC-1 processing are Fe, Al, Ca, M
g and Zn. Such contaminant elements were contaminated from the equipment in the process before entering the cleaning, or were contaminated from the environment and could not be removed with the cleaning ability of SC-1,
What is present in the chemical liquid in the processing liquid is the amount adsorbed on the wafer.

【0007】洗浄しにくい元素は一般にウェハーに吸着
しやすい元素であってSC-1ではFeとAlが他の元素に比
し、顕著にこの傾向がある。量産工場では洗浄装置は生
産性を重視するので、キャリアに入ったウェハーを順次
洗浄槽に送り込むタクト方式が使われているが、SC-1処
理槽では洗浄で溶出した汚染元素が漸次蓄積されて後続
ウェハーへ吸着汚染の影響を与える。また使用するアン
モニアや過酸化水素は極めて高純度のものを使用しない
と薬液中の不純物に起因する吸着汚染を生じる。特に過
酸化水素の製造や貯蔵にはAlなどの金属が使われるので
半導体用には精密な精製を必要とする。さらにこれらの
高純度薬品は輸送容器や洗浄槽への薬品供給系でも、汚
染の危険があり、洗浄槽内の薬液を高純度に保つのは容
易ではない。
[0007] Elements that are difficult to clean are generally elements that are easily adsorbed to the wafer. In SC-1, Fe and Al have a remarkable tendency as compared with other elements. At mass production factories, the cleaning equipment emphasizes productivity, so a tact method is used in which wafers in carriers are sequentially sent to the cleaning tank.However, in the SC-1 processing tank, contaminant elements eluted during cleaning gradually accumulate. Influences adsorption contamination on subsequent wafers. Also, unless very high purity ammonia or hydrogen peroxide is used, adsorption contamination due to impurities in the chemical solution occurs. In particular, metal such as Al is used for production and storage of hydrogen peroxide, and therefore requires precise purification for semiconductors. Furthermore, these high-purity chemicals have a risk of contamination even in a chemical supply system for a transport container or a cleaning tank, and it is not easy to maintain a high-purity chemical in the cleaning tank.

【0008】通常SC-1処理後のウェハーではFeは1011
1012原子/cm2程度、Alは1011〜101 3原子/cm2程度、C
a,Mg,Znなどは1010〜1011原子/cm2程度の汚染がみら
れる。これらの金属汚染の電気的特性への影響はFe以外
はこの程度の濃度であれば酸化膜耐圧でもライフタイム
でも無視出来ることが分かっている。従ってSC-1処理で
電気的特性を著しく害する元素はFeである。Feのライフ
タイムに対する影響はP型の領域で著しいが、ライフタ
イム低下が無視出来るのは1010原子/cm2以下である。
また酸化膜の経時破壊試験(TDDB特性)も無汚染ウェハ
ーの真性破壊時間に達するにはFeはやはり1010原子/cm
2程度まで低濃度化する必要がある。SC-1処理だけでこ
れだけの清浄度を得ることは極めて難しかった。
[0008] In a normal SC-1 treatment after wafer Fe 10 11 -
10 12 atoms / cm 2 approximately, Al is 1011 1 3 atoms / cm 2 approximately, C
For a, Mg, Zn, etc., contamination of about 10 10 to 10 11 atoms / cm 2 is observed. It has been found that the effect of these metal contaminations on the electrical characteristics can be ignored at an oxide film withstand voltage and a lifetime at such a concentration except for Fe. Therefore, the element that significantly impairs the electrical characteristics in the SC-1 treatment is Fe. Although the influence of Fe on the lifetime is remarkable in the P-type region, the decrease in the lifetime is negligible at 10 10 atoms / cm 2 or less.
In addition, the time-dependent destruction test (TDDB characteristic) of the oxide film also requires that Fe be 10 10 atoms / cm to reach the intrinsic destruction time of a non-contaminated wafer.
It is necessary to reduce the concentration to about 2 . It was extremely difficult to obtain such a high degree of cleanliness by SC-1 treatment alone.

【0009】SC-1と類似の洗浄法としては有機アルカリ
+過酸化水素による方法が知られている。テトラメチル
アンモニウムヒドロキシド(TMAH)+過酸化水素(特開
昭50−147284号公報)、トリアルキル(ヒドロキシアル
キル)アンモニウムヒドロキシド+過酸化水素(特公昭
53−43012号公報)等があり、いずれもSC-1同様[アル
カリ+過酸化水素]処理の特徴である微粒子除去能力に
優れている反面、処理液からのFe、Al等の吸着が大き
く、従ってFe、Al等の汚染したウェハーに対する洗浄力
も十分ではない。金属不純物を安定な水溶性錯塩として
捕えて被洗浄体に対して不活性化する手法は一般洗浄剤
の配合にあたっても常套的なものであり、TMAH+過酸化
水素に錯化剤を添加した例が特開昭50−158281号公報
に、トリアルキル(ヒドロキシアルキル)アンモニウム
ヒドロキシド+過酸化水素に添加した例が特公昭53−20
377号公報にある。いずれも錯化剤の添加量は0.01重量
%以上必要とされているが、シアン系錯化剤の添加は危
険であり、またEDTA(エチレンジアミン四酢酸)やトリ
エタノールアミン等の有機物を100ppmも添加するとシリ
コン表面に有害な炭素汚染を生じて電気的特性に問題を
生ずる。またシリコン表面にAlの汚染があると、熱酸化
にあたって酸化膜成長速度に影響することが知られてお
り、これはプロセスの精密制御の点で好ましくない。
As a cleaning method similar to SC-1, a method using an organic alkali + hydrogen peroxide is known. Tetramethylammonium hydroxide (TMAH) + hydrogen peroxide (JP-A-50-147284), trialkyl (hydroxyalkyl) ammonium hydroxide + hydrogen peroxide
No. 53-43012), all of which are excellent in the ability to remove fine particles, which is a feature of [alkali + hydrogen peroxide] treatment, like SC-1, but have high adsorption of Fe, Al, etc. from the treatment liquid, Therefore, the cleaning power for a wafer contaminated with Fe, Al or the like is not sufficient. The method of capturing metal impurities as a stable water-soluble complex salt and inactivating it against the object to be cleaned is a common practice in formulating general cleaning agents, and there is an example in which a complexing agent is added to TMAH + hydrogen peroxide. JP-A-50-158281 discloses an example in which trialkyl (hydroxyalkyl) ammonium hydroxide is added to hydrogen peroxide.
No. 377. In all cases, the addition amount of the complexing agent is required to be 0.01% by weight or more, but the addition of a cyanide complexing agent is dangerous, and 100 ppm of organic substances such as EDTA (ethylenediaminetetraacetic acid) and triethanolamine are added. Then, harmful carbon contamination occurs on the silicon surface, causing a problem in electrical characteristics. It is known that Al contamination on the silicon surface affects the growth rate of the oxide film during thermal oxidation, which is not preferable in terms of precise control of the process.

【0010】以上のように微粒子汚染に対して非常に効
果のある[アルカリ+過酸化水素]洗浄はFeやAl等の有
害金属に対しては洗浄効果が不十分でこれを解決する有
効な手段は未だ見出されていない。
As described above, [alkali + hydrogen peroxide] cleaning, which is very effective for particulate contamination, has an insufficient cleaning effect on harmful metals such as Fe and Al and is an effective means for solving the problem. Has not been found yet.

【0011】[0011]

【発明の目的】本発明の目的は、上記した如き従来のア
ルカリ系表面処理剤における問題点を解決し、処理液か
らの吸着による金属汚染を抑止すると共に高い洗浄効果
を有する改良された表面処理剤及び表面処理方法を提供
することにある。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems of the conventional alkaline surface treating agents, to suppress metal contamination due to adsorption from a treating solution, and to provide an improved surface treatment having a high cleaning effect. An object of the present invention is to provide an agent and a surface treatment method.

【0012】[0012]

【発明の構成】本発明は、半導体の表面を無機又は有機
のアルカリ、過酸化水素及び水を主たる構成成分とする
半導体表面処理剤で洗浄する工程と、洗浄後これを超純
水でリンスする工程とから成る半導体表面処理方法であ
って、半導体表面処理剤とリンス用超純水の少くとも何
れか一方に、縮合リン酸又はその塩を存在させて該処理
を行う方法の発明である。
According to the present invention, a semiconductor surface is washed with a semiconductor surface treating agent containing inorganic or organic alkali, hydrogen peroxide and water as main components, and the semiconductor is rinsed with ultrapure water after the washing. A condensed phosphoric acid or a salt thereof in at least one of the semiconductor surface treating agent and the ultrapure water for rinsing.
Is an invention of a method for performing the method.

【0013】また、本発明は、無機又は有機のアルカ
リ、過酸化水素、水及び縮合リン酸又はその塩を含有し
て成る半導体表面処理剤の発明である。
Further, the present invention is an invention of a semiconductor surface treating agent comprising an inorganic or organic alkali, hydrogen peroxide, water and condensed phosphoric acid or a salt thereof .

【0014】更に、本発明は、縮合リン酸又その塩を半
導体表面処理剤を構成する成分の1以上に含有させたの
ち各成分を混合するか、又は半導体表面処理剤を構成す
る各成分を混合したのちこれに縮合リン酸又その塩を含
有させることにより調製することを特徴とする、上記半
導体表面処理剤の調製方法の発明である。
Further, the present invention relates to a method of mixing condensed phosphoric acid or a salt thereof in one or more of the components constituting the semiconductor surface treating agent and then mixing the components or mixing the components constituting the semiconductor surface treating agent. The invention is a method for preparing the above-mentioned semiconductor surface treating agent, which is prepared by mixing and then adding a condensed phosphoric acid or a salt thereof .

【0015】また、本発明は、縮合リン酸又はその塩
含有させて成る半導体表面処理剤用アルカリ水溶液の発
明である。更にまた、本発明は、蒸留精製後更に金属不
純物の除去処理を経た後、縮合リン酸又はその塩を含有
させて成る半導体表面処理剤用過酸化水素水の発明であ
る。
Further, the present invention is an invention of an alkaline aqueous solution for a semiconductor surface treating agent containing condensed phosphoric acid or a salt thereof . Still further, the present invention is an invention of a hydrogen peroxide solution for a semiconductor surface treating agent, which comprises condensed phosphoric acid or a salt thereof after a purification treatment by distillation and further removal of metal impurities.

【0016】また、本発明は、縮合リン酸又その塩を含
有して成る過酸化水素水を半導体表面処理剤の構成成分
として用いて半導体表面処理を行うことを特徴とする半
導体表面処理方法の発明である。
Further, the present invention provides a method for treating a semiconductor surface, wherein a semiconductor surface treatment is carried out by using a hydrogen peroxide solution containing condensed phosphoric acid or a salt thereof as a component of a semiconductor surface treating agent. It is an invention.

【0017】また、本発明は、縮合リン酸又その塩を含
有して成るアルカリ水溶液を半導体表面処理剤の構成成
分として用いて半導体表面処理を行うことを特徴とする
半導体表面処理方法の発明である。
The present invention also relates to a method for treating a semiconductor surface, wherein an alkaline aqueous solution containing condensed phosphoric acid or a salt thereof is used as a constituent of a semiconductor surface treating agent to carry out a semiconductor surface treatment. is there.

【0018】そして、本発明は、縮合リン酸又その塩
含有して成る水を半導体表面処理剤の構成成分として用
いて半導体表面処理を行うことを特徴とする半導体表面
処理方法の発明でもある。
The present invention also provides a method for treating a semiconductor surface, characterized in that a semiconductor surface treatment is carried out by using water containing condensed phosphoric acid or a salt thereof as a component of a semiconductor surface treating agent. .

【0019】[アルカリ+過酸化水素]洗浄で電気的特
性が低下する場合の主役はFeであるが、その吸着汚染並
びに洗浄力の不足は本発明で充分に解決される。後述の
比較例1で分かるようにSC-1洗浄後電気的特性上必要な
シリコン表面のFeの濃度を1010原子/cm2以下にするに
はSC-1処理液中のFe濃度は0.01ppb以下に維持しなけれ
ばならない。しかし本来洗浄を行うということは汚れた
ウェハーが順次洗浄液に入ってくるということであり、
実際の例では上述のようにSC-1処理後の表面Fe濃度は10
11〜1012原子が普通である。即ち図1から実際のSC-1洗
浄槽のFe濃度は0.1〜1ppb程度となっていることが推測
出来る。ここでFe1ppbを含むSC-1処理 液中に、既述の
錯化剤添加特許に記載された錯化剤例えばトリエタノー
ルアミンを添加しても、その濃度が1%でやっとFe吸着
が1011原子/cm2以下となる。EDTAのような典型的なキ
レート剤でも10-2重量%で漸く1010原子/cm2程度が得
られる。
[Alkaline + Hydrogen Peroxide] Fe plays a major role in the case where the electrical properties are reduced by cleaning, but the adsorption contamination and the lack of cleaning power are sufficiently solved by the present invention. As can be seen from Comparative Example 1 below, in order to reduce the Fe concentration on the silicon surface required for electrical characteristics after SC-1 cleaning to 10 10 atoms / cm 2 or less, the Fe concentration in the SC-1 treatment solution is 0.01 ppb. Must be kept below. However, cleaning originally means that dirty wafers sequentially enter the cleaning solution,
In the actual example, the surface Fe concentration after the SC-1 treatment was 10 as described above.
11-10 12 atom are common. That is, it can be inferred from FIG. 1 that the actual Fe concentration in the SC-1 cleaning tank is about 0.1 to 1 ppb. Here, even if a complexing agent such as triethanolamine described in the above-mentioned complexing agent-added patent was added to the SC-1 treatment solution containing 1 ppb of Fe, the concentration of Fe was only 10% and Fe adsorption was only 10 11. Atoms / cm 2 or less. Even with a typical chelating agent such as EDTA, about 10 10 atoms / cm 2 can be finally obtained at 10 -2 % by weight.

【0020】経験によれば[アルカリ+過酸化水素]処
理剤中の低沸点物質に分解し難い有機物は炭素濃度で多
くとも10-4重量%以下でないとデバイス収率に影響す
る。そこでFe1ppbを含むSC-1処理液に種々のキレート
剤を10-4重量%加えてシリコン表面へのFe吸着量を比較
したが、EDTAをはじめ、Feに対して同程度の高い錯形成
定数をもつ1,2-シクロヘキサンジアミン四酢酸(CyDT
A)、トリエチレンテトラミン六酢酸(TTHA)、ニトリ
ロ三酢酸(NTA)のいずれもが、キレート剤未添加の場
合の1/2〜1/3程度までしか吸着が減らなかった。本発明
では特定の錯化剤の添加でその目的の達成をはかってい
るが、その効果を強力にしてできるだけ少量の添加で充
分の効果を得ようとするものである。
According to experience, organic substances in the [alkali + hydrogen peroxide] treating agent that are not easily decomposed into low-boiling substances affect the device yield unless the carbon concentration is at most 10 -4 % by weight or less. Therefore, the amount of Fe adsorbed on the silicon surface was compared by adding 10 -4 wt% of various chelating agents to the SC-1 treatment solution containing 1 ppb of Fe. 1,2-cyclohexanediaminetetraacetic acid (CyDT
A), triethylenetetramine hexaacetic acid (TTHA), and nitrilotriacetic acid (NTA) all reduced the adsorption only to about 1/2 to 1/3 of the case where no chelating agent was added. In the present invention, the purpose is achieved by the addition of a specific complexing agent, but the effect is strengthened to obtain a sufficient effect by adding as little as possible.

【0021】即ち、本発明者らは、上記目的を達成する
ためウェハー表面における金属吸着メカニズムについて
鋭意研究を重ねた結果、吸着は金属に配位されたOH基と
ウェハー表面に存在するOH基,H基との間に作用する水
素結合に起因するものであり、金属に対するOH基の配位
を抑制する錯化剤を半導体表面処理剤又はリンス液中に
含有させることで、吸着による汚染を低減できるとの結
論に達し、本発明を完成するに到った。
That is, the present inventors have conducted intensive studies on the metal adsorption mechanism on the wafer surface in order to achieve the above object, and as a result, the adsorption was found to be due to the OH group coordinated to the metal and the OH group existing on the wafer surface. Reduced contamination due to adsorption by incorporating a complexing agent that suppresses the coordination of the OH group to the metal in the semiconductor surface treatment agent or rinsing liquid, due to the hydrogen bond acting with the H group We have reached the conclusion that we can do it and have completed the present invention.

【0022】錯形成反応は、酸性領域においては錯化剤
に対する金属イオンとH基との競争反応であるが、アル
カリ性領域においては金属イオンに対する錯化剤とOH基
との競争反応である。即ち、金属イオンに対する錯化剤
の反応(錯形成反応)が金属イオンに対するOH基の反応
(水酸化物生成反応)よりも速やかで、且つ反応により
生成した錯化合物が安定で、尚且つ水溶性であれば、錯
化剤はアルカリ性溶液中に共存する金属イオンの水酸化
物生成を抑止することができる。更にまた、強力な錯形
成能を有する錯化剤は水酸化物をも溶解できることか
ら、錯形成反応を利用することで金属に対するOH基の配
位を抑止できると共に、吸着している金属をも溶解でき
ると本発明者らは考えたのである。
The complexing reaction is a competitive reaction between the metal ion and the H group for the complexing agent in the acidic region, but is a competitive reaction between the complexing agent and the OH group for the metal ion in the alkaline region. That is, the reaction of the complexing agent with the metal ion (complex formation reaction) is faster than the reaction of the OH group with the metal ion (hydroxide formation reaction), and the complex compound formed by the reaction is stable and water-soluble. If so, the complexing agent can suppress the formation of hydroxide of metal ions coexisting in the alkaline solution. Furthermore, since a complexing agent having a strong complexing ability can also dissolve a hydroxide, it is possible to suppress the coordination of the OH group to the metal by utilizing the complexing reaction, and to reduce the adsorbed metal. The inventors thought that they could be dissolved.

【0023】このOH基の配位を抑制する強力な錯化剤と
して本発明者らは鋭意研究の結果、ホスホン酸系のキレ
ート剤及び縮合リン酸類を選択した。即ち、これら本発
明に係る錯化剤は何れもFe,Al,Znなどの金属イオンに
対する錯形成定数がOH基の配位を充分に抑制できる程に
大きいこと、錯形成反応は容易で且つ速やかであるこ
と、及び生成した錯化合物は安定で且つ水溶性であるこ
とを見出し、更に、ホスホン酸系キレート剤の酸化体に
ついても錯形成能等について確認し、ホスホン酸系キレ
ート剤と同様に金属の吸着抑制に顕著な効果を有するこ
とを見出し、本発明に到達した。
As a strong complexing agent for suppressing the coordination of the OH group, the present inventors have conducted intensive studies and have selected phosphonic acid chelating agents and condensed phosphoric acids. That is, any of these complexing agents according to the present invention has a complex formation constant for metal ions such as Fe, Al, and Zn that is large enough to sufficiently suppress the coordination of the OH group, and the complex formation reaction is easy and rapid. And that the resulting complex compound is stable and water-soluble. Further, the oxidized form of the phosphonic acid chelating agent was also confirmed for its complexing ability and the like. The present inventors have found that the present invention has a remarkable effect on suppressing the adsorption of water, and have reached the present invention.

【0024】本発明に係るホスホン酸系キレート剤とし
ては、例えばメチルジホスホン酸、アミノトリス(メチ
レンホスホン酸)、エチリデンジホスホン酸、1ーヒド
ロキシエチリデンー1,1ージホスホン酸、1ーヒドロキシプ
ロピリデンー1,1ージホスホン酸、1ーヒドロキシブチリデ
ンー1,1ージホスホン酸、エチルアミノビス(メチレンホ
スホン酸)、ドデシルアミノビス(メチレンホスホン
酸)、ニトリロトリス(メチレンホスホン酸)、エチレ
ンジアミンビス(メチレンホスホン酸)、エチレンジア
ミンテトラキス(メチレンホスホン酸)、ヘキセンジア
ミンテトラキス(メチレンホスホン酸)、ジエチレント
リアミンペンタ(メチレンホスホン酸)、或はこれらの
アンモニウム塩、アルカリ金属塩(Na塩は除く)等、分
子中にホスホン酸基又はその塩を1以上有するキレート
剤が挙げられ、それらの酸化体としては、これらホスホ
ン酸系キレート剤の内、その分子中に窒素原子を有する
ものが酸化されてN−オキシド体となっているものが挙
げられる。また、本発明に係る縮合リン酸類としては、
例えばメタリン酸、テトラメタリン酸、ヘキサメタリン
酸、トリポリリン酸、或はこれらのアンモニウム塩、ア
ルカリ金属塩(Na塩は除く)等が挙げられる。
Examples of the phosphonic acid chelating agent according to the present invention include methyldiphosphonic acid, aminotris (methylenephosphonic acid), ethylidene diphosphonic acid, 1-hydroxyethylidene-1,1-diphosphonic acid and 1-hydroxypropyl acid. Den-1,1-diphosphonic acid, 1-hydroxybutylidene-1,1-diphosphonic acid, ethylaminobis (methylenephosphonic acid), dodecylaminobis (methylenephosphonic acid), nitrilotris (methylenephosphonic acid), ethylenediaminebis (methylene Phosphonic acid), ethylenediaminetetrakis (methylenephosphonic acid), hexenediaminetetrakis (methylenephosphonic acid), diethylenetriaminepenta (methylenephosphonic acid), or their ammonium salts, alkali metal salts (excluding Na salts) Phosphon Chelating agents having one or more groups or salts thereof are mentioned. As the oxidized form thereof, among these phosphonic acid-based chelating agents, those having a nitrogen atom in the molecule are oxidized into N-oxide forms. Are included. Further, as the condensed phosphoric acids according to the present invention,
Examples thereof include metaphosphoric acid, tetrametaphosphoric acid, hexametaphosphoric acid, and tripolyphosphoric acid, or ammonium salts and alkali metal salts (excluding Na salts) thereof.

【0025】例えば、エチリデンジホスホン酸(EDP)
を10-4重量%になるようFe1ppbを含むSC-1処理液に加
えた場合、Feの吸着は目的の1010原子/cm2以下とな
り、明らかに従来のキレート剤と吸着量に差が出た。他
の本発明に係る錯化剤でも同様の効果が得られ、またFe
の汚染したシリコンに対する洗浄後残存率も従来の錯化
剤の場合の約1/10となり、洗浄効果も著しく改善され
る。
For example, ethylidene diphosphonic acid (EDP)
If was added to SC-1 treating solution containing a Fe1ppb so as to be 10-4% by weight, the adsorption of Fe becomes an object of 10 10 atoms / cm 2 or less, clearly out differences in adsorption and conventional chelating agents Was. Similar effects can be obtained with other complexing agents according to the present invention, and Fe
The residual rate after cleaning of contaminated silicon is about 1/10 of that of the conventional complexing agent, and the cleaning effect is significantly improved.

【0026】これら本発明に係る錯化剤は、単独で使用
してもまた2種以上を混合して使用してもよい。その含
有量は、全溶液中で通常10-7〜10-3重量%の範囲であり
好ましくは10-6〜10-4重量%の範囲である。尚、この濃
度範囲以上に含有させると有害な表面の炭素汚染を起こ
す。また、この濃度範囲以下では洗浄効果があまり期待
できない。
These complexing agents according to the present invention may be used alone or as a mixture of two or more. Its content is usually in the range of 10 -7 to 10 -3 % by weight, preferably in the range of 10 -6 to 10 -4 % by weight in the whole solution. In addition, if it is contained more than this concentration range, harmful carbon contamination of the surface is caused. If the concentration is below this range, the cleaning effect cannot be expected much.

【0027】本発明に係る半導体表面処理剤は、通常、
無機又は有機のアルカリ、過酸化水素及び水を主たる構
成成分とする。本発明で用いられる無機のアルカリとし
てはアンモニアが挙げられ、通常20〜30%水溶液として
用いられる。また、本発明で用いられる有機のアルカリ
としてはまず第4級アンモニウムヒドロキシドが挙げら
れ、通常0.5〜10重量%水溶液として用いられる。第4
級アンモニウムヒドロキシドの具体例としては、例えば
トリメチル-2-ヒドロキシエチルアンモニウムヒドロキ
シド、テトラメチルアンモニウムヒドロキシド(TMAH)
等が代表的なものとして挙げられるが、これらに限定さ
れるものではない。また本発明に用いられる有機アルカ
リは第4級アンモニウムヒドロキシドのみに限定されな
い。例えば炭酸グアニジンも同様の濃度で使用出来る。
これらの無機又は有機のアルカリは、何れも半導体表面
処理剤全溶液中の濃度が通常0.01〜30重量%、好ましく
は0.01〜20重量%の濃度範囲になるように用いられる。
The semiconductor surface treating agent according to the present invention generally comprises
Inorganic or organic alkali, hydrogen peroxide and water are the main constituent components. Examples of the inorganic alkali used in the present invention include ammonia, which is usually used as a 20 to 30% aqueous solution. The organic alkali used in the present invention includes quaternary ammonium hydroxide, which is usually used as a 0.5 to 10% by weight aqueous solution. 4th
Specific examples of the quaternary ammonium hydroxide include, for example, trimethyl-2-hydroxyethylammonium hydroxide, tetramethylammonium hydroxide (TMAH)
And the like are typical examples, but are not limited thereto. The organic alkali used in the present invention is not limited to quaternary ammonium hydroxide. For example, guanidine carbonate can be used at similar concentrations.
These inorganic or organic alkalis are used so that the concentration in the whole solution of the semiconductor surface treating agent is usually 0.01 to 30% by weight, preferably 0.01 to 20% by weight.

【0028】過酸化水素は通常20〜40重量%の水溶液と
して使用に供され、通常半導体表面処理剤全溶液中の過
酸化水素濃度が0.01〜30重量%の濃度範囲になるように
用いられるが、その範囲外であっても洗浄効果に特に影
響を与えない。
Hydrogen peroxide is usually used as an aqueous solution of 20 to 40% by weight, and is usually used so that the concentration of hydrogen peroxide in the whole solution of the semiconductor surface treating agent is in the range of 0.01 to 30% by weight. Even outside the range, the cleaning effect is not particularly affected.

【0029】本発明に係る錯化剤は、半導体表面処理剤
を構成している上記アルカリ、過酸化水素水又は水のい
ずれかの成分、又は任意の二成分、或は全ての成分に夫
々溶解して使用するのが普通であるが、アルカリ、過酸
化水素水及び水を混合したのちに該混合液にこれを溶解
して使用してもかまわない。即ち半導体表面処理剤中に
本発明に係る錯化剤を存在させる方法については特に限
定されない。
The complexing agent according to the present invention is dissolved in any one of the above-mentioned alkali, hydrogen peroxide solution or water, or any two or all of the components constituting the semiconductor surface treating agent. Usually, the mixture is used, but after mixing an alkali, a hydrogen peroxide solution and water, the mixture may be dissolved and used in the mixture. That is, the method for causing the complexing agent according to the present invention to be present in the semiconductor surface treating agent is not particularly limited.

【0030】また、本発明に係る錯化剤は、これをリン
ス用の水(通常、超純水を使用)に添加しても全く同様
の効果が得られる。
Further, the same effect can be obtained by adding the complexing agent according to the present invention to rinsing water (usually using ultrapure water).

【0031】本発明に係る錯化剤の内の一部は、これま
でに過酸化水素の安定化剤として使用された例は多数あ
るが(特公昭43−11656号公報、特公昭55−45484号公
報、特公昭59−45601号公報、特開昭60−239305号公
報、特公昭62−57566号公報、特公昭62−57567号公報
等)、本発明の如き目的で使用された例はこれまでに全
くなく、従って本発明の如き目的で過酸化水素水に添加
された例も皆無である。即ち、本発明に係る錯化剤を含
有する過酸化水素水が半導体表面処理剤として用いられ
た例はこれまで皆無である(従来、上記安定化剤により
安定化された過酸化水素水をSC-1処理に使用する場合に
はこれを蒸留精製後、更にイオン交換等で精製した後、
使用に供していた為これら安定化剤は全て事前に除去さ
れていた。)。
Some of the complexing agents according to the present invention have so far been used as stabilizers for hydrogen peroxide in many cases (JP-B-43-11656, JP-B-55-45484). JP, JP-B-59-45601, JP-Sho 60-239305 Patent Publication No.
Distribution, JP-B 62-57566, JP-Sho 62-57567 Patent Publication), object example used as in the present invention are quite than ever, thus adding to the hydrogen peroxide in such an object of the present invention There are no examples done. That is, there has been no example in which a hydrogen peroxide solution containing the complexing agent according to the present invention has been used as a semiconductor surface treatment agent. -1 When used for the treatment, this is purified by distillation, and further purified by ion exchange, etc.
All of these stabilizers had been removed in advance because they had been used. ).

【0032】本発明に於いて、本発明に係る錯化剤を過
酸化水素水に添加して用いる場合には該錯化剤を蒸留精
製後更に金属不純物の除去処理を経た後の過酸化水素水
に添加して用いるのが好ましいが、精製未処理の過酸化
水素水に添加して用いても、Fe、Al、Zn等に関しては充
分効果が認められる。このことはこれまで全く確認され
ておらず、本発明者らが初めて見出した事実である。
In the present invention, when the complexing agent according to the present invention is used by adding it to aqueous hydrogen peroxide, the complexing agent is purified by distillation and then subjected to a treatment for removing metal impurities. It is preferable to use it by adding it to water. However, even if it is used by adding it to an untreated purified hydrogen peroxide solution, sufficient effects are recognized with respect to Fe, Al, Zn, and the like. This has not been confirmed at all, and is the first finding of the present inventors.

【0033】本発明の表面処理剤は、常温においても優
れた吸着抑止効果と高い洗浄効果を示すので敢えて加熱
する必要は全くない。勿論、適度な加熱下においてもそ
の効果に変りがないことは言うまでもない。尚、本発明
に係る半導体表面処理剤は、アルカリ、過酸化水素、水
及び本発明に係るキレート剤の他に、本発明の効果を阻
害しない範囲で各種補助成分(例えば界面活性剤等)が
含まれていてもよい。
Since the surface treating agent of the present invention exhibits an excellent adsorption inhibiting effect and a high cleaning effect even at room temperature, it is not necessary to heat it at all. Needless to say, the effect remains unchanged even under moderate heating. The semiconductor surface treating agent according to the present invention includes, in addition to alkali, hydrogen peroxide, water and the chelating agent according to the present invention, various auxiliary components (for example, a surfactant) within a range not to impair the effects of the present invention. May be included.

【0034】以下に実施例及び比較例を挙げるが、本発
明はこれらの実施例により何等限定されるものではな
い。
Examples and comparative examples are shown below, but the present invention is not limited to these examples.

【0035】尚、本実施例におけるウェハー表面の金属
濃度は清浄化したテフロンシートとウェハー表面でサン
ドイッチした微量の超高純度希フッ酸に該金属を溶出さ
せ、これをフレームレス原子吸光分析で定量した。
In this example, the metal concentration on the wafer surface was determined by eluting the metal into a cleaned Teflon sheet and a trace amount of ultra-high purity dilute hydrofluoric acid sandwiched between the wafer surfaces, and quantifying the metal by flameless atomic absorption spectrometry. did.

【0036】特に断りのない限りアンモニア水は28%、
過酸化水素は35%を使用した。以下、濃度を表わす%や
ppm、ppbはすべて重量比を示すものとする。また特に断
りのない限りこれらの薬品は超高純度品、即ちFe 0.1pp
b、Al 0.1ppb以下であることをフレームレス原子吸光分
析で確認して使用した。また水はすべてFe 0.01ppb、Al
0.01ppb程度であることを同様に分析で確認した超純水
を使用した。
Unless otherwise specified, aqueous ammonia was 28%,
35% of hydrogen peroxide was used. Hereafter,% representing the concentration
ppm and ppb all indicate the weight ratio. Unless otherwise noted, these chemicals are ultra-high purity products, that is, Fe 0.1pp
b, Al was confirmed to be 0.1 ppb or less by flameless atomic absorption spectrometry and used. All water is Fe 0.01ppb, Al
Ultrapure water, which was also confirmed by analysis to be about 0.01 ppb, was used.

【0037】[0037]

【実施例】【Example】

実施例 1.アンモニア水1容、過酸化水素水1容及び
水5容からなる混合液(以下SC-1処理液と略称)にエチ
リデンジホスホン酸(EDP)を10-4%並びに1.5×10-5
添加した夫々一連の処理液についてFeを10ppb、1ppb、
0.1ppb添加したものに夫々5インチP型数Ωcm、結晶方
位(100)のウェハーを浸漬し、70℃で10分処理し、超純
水で10分リンスした後(以下ウェハーとSC-1での処理条
件はこの場合と同様である。)、ウェハー表面に吸着し
たFe濃度を定量した。これらの吸着実験の結果をフロイ
ンドリッヒプロットしたものを図1に点線で示す。更に
EDPを10-3%加えた場合でFe 10ppbの液からの吸着との
関係を三角印で示した。
Example 1 Ethylidene diphosphonic acid (EDP) was added to a mixture of 1 volume of ammonia water, 1 volume of hydrogen peroxide solution and 5 volumes of water (hereinafter abbreviated as SC-1 treatment solution) at 10 -4 % and 1.5 × 10 -5 %.
Fe was added at 10 ppb, 1 ppb,
After immersing a wafer with a crystal orientation (100) of 5 inch P type several Ωcm and crystal orientation (100) in each of which 0.1 ppb was added, treating at 70 ° C. for 10 minutes, rinsing with ultrapure water for 10 minutes (hereinafter wafer and SC-1) Is the same as in this case.), And the concentration of Fe adsorbed on the wafer surface was quantified. The results of these adsorption experiments are shown by dotted lines in FIG. 1 as Freundlich plots. Further
The relationship between the addition of 10 -3 % EDP and the adsorption of Fe from 10 ppb from the solution is indicated by a triangle.

【0038】比較例 1.実施例1で用いた過酸化水素
水(EDP無添加)及び他の市販二社の過酸化水素水(錯
化剤無添加、市販品A及び市販品B)を用いたSC-1処理
液の三つのシリーズについて実施例1と同様に処理液か
らのFe吸着実験を行った。そのフロインドリッヒプロッ
トしたものを図1に実線で示す。
Comparative Example 1. SC-1 treatment solution using the hydrogen peroxide solution (without EDP) used in Example 1 and hydrogen peroxide solution (without complexing agent, commercial product A and commercial product B) of two other commercial companies An experiment of Fe adsorption from the processing solution was performed on the three series in the same manner as in Example 1. The result of the Freundlich plot is shown by a solid line in FIG.

【0039】過酸化水素水のメーカーによる差は殆ど無
く、SC-1処理液中にFeが1ppbあれば吸着はほぼ1012
子/cm2、吸着量を1010原子/cm2以下にするにはSC-1処
理液のFe濃度は0.01ppb以下に管理しなければならない
ことが分かる。
There is almost no difference depending on the manufacturer of the hydrogen peroxide solution. If Fe in the SC-1 treatment solution is 1 ppb, the adsorption can be reduced to approximately 10 12 atoms / cm 2 and the adsorption amount can be reduced to 10 10 atoms / cm 2 or less. It can be seen that the Fe concentration of the SC-1 treatment solution must be controlled to 0.01 ppb or less.

【0040】実施例1の該表面処理剤は比較例1に対し
顕著な吸着防止効果を示し、SC-1処理液中のFeの管理レ
ベルが0.1ppbならばEDPの1.5×10-5%で、1ppbなら10
-4%、10ppbなら10-3%で1010原子/cm2以下にFeの吸着
を抑制し得る。即ち炭素汚染を無視できる程度の微量錯
化剤で目的を達し得る。
The surface treating agent of Example 1 shows a remarkable adsorption-preventing effect as compared with Comparative Example 1. When the control level of Fe in the SC-1 treatment solution is 0.1 ppb, the surface treatment agent is 1.5 × 10 -5 % of EDP. , 10 for 1ppb
At -4 % and 10 ppb, the adsorption of Fe can be suppressed to 10 10 atoms / cm 2 or less at 10 -3 %. That is, the purpose can be achieved with a trace amount of complexing agent that can ignore carbon contamination.

【0041】比較例 2.比較例1と同様の吸着実験を
Alについても行ったが、フロインドリッヒプロットは図
1のFeと殆ど一致した。
Comparative Example 2 An adsorption experiment similar to Comparative Example 1 was performed.
The analysis was also performed on Al, but the Freundlich plot almost coincided with Fe in FIG.

【0042】実施例 2.実施例1と同様の吸着実験を
Alに関してEDPの10-3%で行ったがフロインドリッヒプ
ロットは無添加の場合(比較例2)に比し1桁程度低下
するだけで吸着低減効果はあるもののFeよりかなり弱
い。従って本発明に係るキレート剤の添加にあたっては
過酸化水素の精製を十分に行い、出来るだけAlの濃度を
下げてから添加を行い薬品起因のAl汚染を最小に抑止し
ておくことが望ましい。
Embodiment 2 The same adsorption experiment as in Example 1 was performed.
For Al, the EDP was performed at 10 -3 %, but the Freundlich plot decreased only by about one digit as compared with the case where no additive was added (Comparative Example 2), but had an adsorption reducing effect, but was considerably weaker than Fe. Therefore, when adding the chelating agent according to the present invention, it is desirable to sufficiently purify hydrogen peroxide and reduce the Al concentration as much as possible before adding to minimize the chemical-induced Al contamination.

【0043】実施例 3.Feに対するマスク効果が強い
とされるトリエタノールアミン並びにEDTAと本発明に係
るジエチレントリアミンペンタ(メチレンホスホン酸)
(ETPPO)との比較でFe1ppbを含むSC-1処理液中の錯化
剤濃度とシリコン表面へのFe吸着量の関係を求め図2に
示した。本発明に係るキレート剤は10-7%から効果がみ
られ、10-4%でFe吸着量を1010原子/cm2以下に抑止で
きる。一方トリエタノールアミンは1%でやっと1011
子/cm2をきり、EDTAでも10-2%でないと1010原子/cm2
の吸着レベルに達しない。
Embodiment 3 Triethanolamine and EDTA, which are said to have a strong masking effect on Fe, and diethylenetriaminepenta (methylenephosphonic acid) according to the present invention
The relationship between the concentration of the complexing agent in the SC-1 treatment solution containing 1 ppb of Fe and the amount of Fe adsorbed on the silicon surface was determined by comparison with (ETPPO), and is shown in FIG. The effect of the chelating agent according to the present invention is observed from 10 -7 %, and the amount of Fe adsorption can be suppressed to 10 10 atoms / cm 2 or less at 10 -4 %. On the other hand, triethanolamine is only 10% at 1% at 10 11 atoms / cm 2 , and 10 10 atoms / cm 2 if EDTA is not 10 -2 %.
Does not reach the adsorption level.

【0044】比較例 3.Fe1ppbを含むSC-1処理液中
で各種錯化剤を3×10-4%添加した場合のウェハーへの
吸着量を求め比較した。結果を表1に示す。
Comparative Example 3 The amount of adsorption to the wafer when 3 × 10 −4 % of various complexing agents were added in the SC-1 treatment solution containing 1 ppb of Fe was determined and compared. Table 1 shows the results.

【0045】[0045]

【表1】 [Table 1]

【0046】実施例 4.メチルジホスホン酸(MDP)
を10-4%を予め添加したアンモニア水(28%)を用い、
上記諸例と同様にSC-1処理液を作製した。処理液のMDP
濃度は1.5×10-5%となる。この液にFe1ppbを加えたも
のについて洗浄処理後ウェハーへの吸着を調べた。吸着
は6×1010原子/cm2であった。
Embodiment 4 Methyl diphosphonic acid (MDP)
Using ammonia water (28%) pre-added with 10-4 %
An SC-1 treatment liquid was prepared in the same manner as in the above examples. MDP of processing solution
The concentration becomes 1.5 × 10 −5 %. After the cleaning treatment of the solution obtained by adding 1 ppb of Fe to this solution, the adsorption to the wafer was examined. Adsorption was 6 × 10 10 atoms / cm 2 .

【0047】またFe1ppbを添加しないこのSC-1処理液
で、予めFeを表面に1012原子/cm2汚染させたシリコン
ウェハーを70℃で10分洗浄後、純水で10分リンスした
(以後のSC-1洗浄実験で使用するFe汚染ウェハーと洗浄
条件はこれに同じ)とき、ウェハー上のFe残存量は6×
109原子/cm2で残存率(残存量の当初汚染量に対する百
分率)が0.6%となりSC-1処理液によるFeの洗浄効果は
1桁向上した。
Also, a silicon wafer which was previously contaminated with Fe at 10 12 atoms / cm 2 on its surface was washed at 70 ° C. for 10 minutes with this SC-1 treatment solution to which 1 ppb of Fe was not added, and then rinsed with pure water for 10 minutes (hereinafter referred to as “rinsing”). The cleaning conditions are the same as those for the Fe-contaminated wafer used in the SC-1 cleaning experiment of
At 10 9 atoms / cm 2 , the residual ratio (percentage of the residual amount to the initial contamination amount) was 0.6%, and the cleaning effect of Fe by the SC-1 treatment solution was improved by one digit.

【0048】比較例 4.実施例4のMDPに変えて同濃
度で各種のキレート安定定数の大きいEDTA類似のキレー
ト剤を用い、同様の吸着実験及び洗浄実験を行った。そ
の結果を実施例4の結果と比較して表2に示す。
Comparative Example 4 The same adsorption experiment and washing experiment were performed using various chelating agents similar to EDTA having a large chelate stability constant at the same concentration in place of the MDP of Example 4. The results are shown in Table 2 in comparison with the results of Example 4.

【0049】[0049]

【表2】 [Table 2]

【0050】これらのキレート剤は10-5%では、Feの吸
着抑制効果も洗浄効果の向上も殆どないことが分かる。
It can be seen that when these chelating agents are contained at 10 -5 %, the effect of suppressing the adsorption of Fe and the improvement of the cleaning effect are hardly observed.

【0051】実施例 5.SC-1処理液に本発明に係るキ
レート剤としてヘキサメタリン酸(HP)、1-ヒドロキシ
エチリデン-1,1-ジホスホン酸(HDP)、ニトリロトリス
(メチレンホスホン酸)(NTPO)、エチレンジアミンテ
トラキス(メチレンホスホン酸)(EDTPO)またはETPPO
を10-4%含有させて本発明に係る表面処理液を夫々調製
した。該SC-1処理液を用いて、1012原子/cm2のFe汚染
シリコンウェハーを洗浄し、洗浄後の残存量を定量し、
残存率を求めた。また5×1012原子/cm2のAl汚染シリ
コンウェハーを同様の条件で洗浄し、同じく残存率を求
めた。更に1012原子/cm2のZn汚染シリコンウェハーに
対しても同様に行い、これらの残存率を表3に示す。
Embodiment 5 FIG. Hexametaphosphoric acid (HP), 1-hydroxyethylidene-1,1-diphosphonic acid (HDP), nitrilotris (methylenephosphonic acid) (NTPO), ethylenediaminetetrakis (methylenephosphone) Acid) (EDTPO) or ETPPO
Was contained at 10 -4 % to prepare surface treatment solutions according to the present invention. Using the SC-1 treatment liquid, a 10 12 atom / cm 2 Fe-contaminated silicon wafer was washed, and the remaining amount after the washing was quantified.
The residual rate was determined. Further, an Al-contaminated silicon wafer of 5 × 10 12 atoms / cm 2 was washed under the same conditions, and the residual ratio was determined in the same manner. Further, the same procedure was performed on a Zn-contaminated silicon wafer of 10 12 atoms / cm 2 , and the residual ratios are shown in Table 3.

【0052】比較例 5.本発明に係るキレート剤の代
りに汎用且つ代表的なキレート剤であるEDTA又はアセチ
ルアセトンを10-4%添加したSC-1処理液、並びにキレー
ト剤無添加のSC-1処理液で、夫々実施例5と同様の洗浄
実験を行った。得られた残存率を表3に併せて示す。
Comparative Example 5 The SC-1 treatment solution to which 10-4 % of EDTA or acetylacetone, which is a general-purpose and typical chelating agent, was added instead of the chelating agent according to the present invention, and the SC-1 treatment solution to which no chelating agent was added, respectively. The same washing experiment as in Example 5 was performed. The obtained residual ratio is also shown in Table 3.

【0053】[0053]

【表3】 [Table 3]

【0054】表3から明らかなように本発明に係る半導
体表面処理剤は10-4%という極めて微量の添加でFe、Zn
に対して著しい洗浄効果の向上を示しており、Alに対し
てもかなりの向上がある。一方、このような微量添加の
領域では本発明に係るホスホン酸系のキレート剤と同様
に環状のキレートを形成し得るEDTAやアセチルアセトン
を添加しても本発明の如き効果は殆ど得られなかった。
As is clear from Table 3, the semiconductor surface treating agent according to the present invention can be added to Fe and Zn with a very small addition of 10-4%.
Shows a remarkable improvement in the cleaning effect, and Al also has a considerable improvement. On the other hand, in the region where such a trace amount is added, even if EDTA or acetylacetone capable of forming a cyclic chelate is added similarly to the phosphonic acid-based chelating agent according to the present invention, the effect as in the present invention is hardly obtained.

【0055】実施例 6.実施例1の28%アンモニア水
を1%トリメチル(2-ヒドロキシ)エチルアンモニウム
ヒドロキシド水溶液に置き換えた処理液[有機アルカリ
+過酸化水素]を用い、実施例1と同様に本発明に係る
キレート剤EDPを添加し、実施例1と全く同様にして洗
浄液からシリコンウェハーへのFeの吸着実験(70℃、10
分)を行ったところ、図1の点線とほぼ一致するフロイ
ンドリッヒプロットを得た。
Embodiment 6 FIG. A chelating agent according to the present invention in the same manner as in Example 1 except that the treatment liquid [organic alkali + hydrogen peroxide] in which 28% aqueous ammonia of Example 1 was replaced with 1% aqueous solution of trimethyl (2-hydroxy) ethylammonium hydroxide was used. EDP was added, and the adsorption experiment of Fe to the silicon wafer from the cleaning solution (70 ° C, 10 ° C) was performed in the same manner as in Example 1.
), A Freundlich plot substantially matching the dotted line in FIG. 1 was obtained.

【0056】実施例 7.実施例1の28%アンモニア水
を1%TMAH水溶液に置き換えた処理液[有機アルカリ+
過酸化水素]を用い、実施例6と全く同様の吸着実験を
行ったところ、図1の点線とほぼ一致するフロインドリ
ッヒプロットを得た。
Embodiment 7 FIG. The treatment solution [28% ammonia water of Example 1 was replaced with 1% TMAH aqueous solution [organic alkali +
[Hydrogen peroxide] and the same adsorption experiment as in Example 6 was performed. As a result, a Freundlich plot almost coincident with the dotted line in FIG. 1 was obtained.

【0057】実施例6,7の結果から無機・有機を問わ
ず[アルカリ+過酸化水素]処理液に於いて本発明に係
るキレート剤が強力なFe吸着抑制効果を示すことが分
る。
From the results of Examples 6 and 7, it can be seen that the chelating agent according to the present invention has a strong Fe adsorption suppressing effect in the treatment solution of [alkali + hydrogen peroxide] regardless of whether it is inorganic or organic.

【0058】実施例 8.実施例6の処理液のEDPの代り
にHDPまたはETPPOを添加した処理液で Feに対する吸着
並びに洗浄実験を行った。該キレートの添加量は10-4
である。夫々の液で、Fe1012原子/cm2汚染シリコンウ
ェハーを70℃で10分洗浄し、純水で10分リンス後、Feの
残存率を求めた。更に夫々の液にFe 1ppbを加えた処理
液で清浄なシリコンウェハーを同様に処理した時のウェ
ハーへのFe吸着量を求めた。これらの結果を表4に示
す。
Example 8 Adsorption and washing experiments on Fe were carried out using a treating solution obtained by adding HDP or ETPPO instead of EDP to the treating solution of Example 6. The addition amount of the chelate is 10 -4 %
It is. A silicon wafer contaminated with Fe10 12 atoms / cm 2 was washed with each liquid at 70 ° C. for 10 minutes, rinsed with pure water for 10 minutes, and then the residual ratio of Fe was determined. Further, when a clean silicon wafer was similarly treated with a treatment solution obtained by adding 1 ppb of Fe to each solution, the amount of Fe adsorbed on the wafer was determined. Table 4 shows the results.

【0059】[0059]

【表4】 [Table 4]

【0060】これらの結果から本発明に係るキレート剤
の効果はアルカリが無機・有機に拘らないことが分る。
From these results, it can be seen that the effect of the chelating agent according to the present invention is not limited to inorganic or organic alkali.

【0061】実施例 9.下記A〜Cに示される3種の
処方で、28%アンモニア水:35%過酸化水素水: 水=1容:1容:5容からなる半導体表面処理剤を調製
した。 A=28%アンモニア水にEDPを添加し溶解後、これを
過酸化水素水及び水と混合して調製。 B=過酸化水素水にEDPを添加し溶解後、これを28%
アンモニア水及び水と混合して調製。 C=水にEDPを添加し溶解後、これを28%アンモニア
水及び35%過酸化水素水と混合して調製。 これら3種の処理剤の夫々にFe 1ppbを添加した後、実
施例1と同様にシリコンウェハーを洗浄、リンスし、表
面の吸着Fe量を測定した。結果を表5に示す。
Embodiment 9 FIG. Semiconductor surface treatment agents consisting of 28% ammonia water: 35% hydrogen peroxide solution: water = 1 volume: 1 volume: 5 volume were prepared using the three formulations shown in the following AC. A: EDP was added and dissolved in 28% aqueous ammonia, and then mixed with aqueous hydrogen peroxide and water. B = Add EDP to hydrogen peroxide solution and dissolve it.
Prepared by mixing with ammonia water and water. C = EDP was added to water and dissolved, and then mixed with 28% aqueous ammonia and 35% aqueous hydrogen peroxide. After adding 1 ppb of Fe to each of these three treatment agents, the silicon wafer was washed and rinsed in the same manner as in Example 1, and the amount of Fe adsorbed on the surface was measured. Table 5 shows the results.

【0062】[0062]

【表5】 [Table 5]

【0063】表5から明らかなように該表面処理剤を構
成するアンモニア水、過酸化水素水または水のどの成分
に本発明に係るキレート剤を添加溶解して調製しても、
錯形成効果は同様に発現し、吸着抑制,洗浄の有効性に
有意差を与えない。また、実施例1及び3〜5に示した
ように各成分を混合後に添加溶解して使用してもよく、
該表面処理剤の調製法は特に限定されないことが判る。
As is clear from Table 5, the chelating agent according to the present invention is added to any component of aqueous ammonia, hydrogen peroxide or water constituting the surface treating agent and dissolved.
The complex formation effect is similarly exhibited, and does not give a significant difference in the effectiveness of adsorption suppression and washing. Further, as shown in Examples 1 and 3 to 5, each component may be used after being added and dissolved after mixing,
It turns out that the method of preparing the surface treatment agent is not particularly limited.

【0064】実施例 10.酸洗浄を行って、Feが5×
109原子/cm2程度であることを確認したP型(100)の
清浄ウェハーを用い、Fe 1ppbの汚染のあるSC-1処理液
とそれに10-4%のEDPを加えた処理液の夫々で、70℃、1
0分の洗浄を行った後、超純水でリンスし 乾燥した。洗
浄ウェハーを熱酸化して、マイクロ波検出のフォトディ
ケイ法による再結合ライフタイムの比較を行った。結果
を表6に示す。
Embodiment 10 FIG. After acid cleaning, 5 × Fe
Using a P-type (100) clean wafer confirmed to be about 10 9 atoms / cm 2 , a SC-1 treatment solution with 1 ppb Fe contamination and a treatment solution with 10 -4 % EDP added to it At 70 ℃, 1
After washing for 0 minutes, it was rinsed with ultrapure water and dried. The cleaned wafers were thermally oxidized and the recombination lifetimes were compared by photodetection with microwave detection. Table 6 shows the results.

【0065】[0065]

【表6】 [Table 6]

【0066】表6でみられるようにFe 1ppbの汚染SC-1
処理液で処理されても本発明に係るキレート剤が微量で
も存在すれば再結合ライフタイムがSC-1処理前の清浄ウ
ェハーと同じレベルである。P型ウェハーではFe汚染で
ライフタイムが敏感に影響されることが知られており、
実施例1から分るように、本発明に係るキレート剤の存
在で、ライフタイムが低下しない1010原子/cm2以下にF
e汚染が抑止されるためである。
As shown in Table 6, 1 ppb of Fe-contaminated SC-1
Even if the chelating agent according to the present invention is present in a very small amount even when treated with the treatment solution, the recombination lifetime is at the same level as that of the clean wafer before the SC-1 treatment. It is known that the lifetime of P-type wafers is sensitively affected by Fe contamination,
As can be seen from Example 1, the presence of the chelating agent according to the present invention does not reduce the lifetime, so that the F is reduced to 10 10 atoms / cm 2 or less.
e This is because pollution is suppressed.

【0067】実施例 11.Fe 0.01ppbの超純水中に0.
1ppbのFeを添加し、アンモニア水でpH8.5に調製した水
にシリコンウェハーを10分浸漬したところ、1.1×1011
原子/cm2のFe吸着を生じた。この水に1.5×10-6%のED
TPOを添加し、アンモニア水でpH8.5に調製したものに同
様の浸漬を行ったところ、ウェハーへの吸着量は〈1010
原子/cm2以下であった。
Embodiment 11 FIG. Fe in ultrapure water of 0.01ppb.
When 1 ppb of Fe was added and the silicon wafer was immersed in water adjusted to pH 8.5 with ammonia water for 10 minutes, 1.1 × 10 11
Atomic atoms / cm 2 of Fe adsorption occurred. 1.5 × 10 -6 % ED in this water
When TPO was added and the pH was adjusted to 8.5 with aqueous ammonia and the same immersion was performed, the amount of adsorption to the wafer was <10 10
Atoms / cm 2 or less.

【0068】実施例 12.EDTPO及びNTPOを過酸化水
素に添加し、それらのNーオキシド(酸化体)を作製し
た。これらのNーオキシド体(酸化体)が、3×10-4
となるように添加したFe 1ppbを含むSC-1処理液でウェ
ーハを実施例1と同様に処理し、Feの吸着量を求めた。
Embodiment 12 FIG. EDTPO and NTPO were added to hydrogen peroxide to produce their N-oxides (oxidants). These N-oxides (oxidized) are 3 × 10 -4 %
The wafer was treated in the same manner as in Example 1 with the SC-1 treatment solution containing 1 ppb of Fe added so as to obtain the Fe adsorption amount.

【0069】また、2×10-3%のN−オキシド体(酸化
体)を含む過酸化水素水を20℃で30日間保存した。これ
らの過酸化水素水を用いてFe 1ppbを含むSC-1処理液を
調製し、ウェーハを実施例1と同様に処理し、Feの吸着
量を求めた。その結果を表7に併せて示す。
An aqueous hydrogen peroxide solution containing 2 × 10 −3 % of N-oxide (oxidized form) was stored at 20 ° C. for 30 days. An SC-1 treatment solution containing 1 ppb of Fe was prepared using these hydrogen peroxide solutions, and the wafer was treated in the same manner as in Example 1 to determine the amount of Fe adsorbed. The results are shown in Table 7.

【0070】[0070]

【表7】 [Table 7]

【0071】表7から明らかなように、EDTPOー酸化体
及びNTPOー酸化体は、EDTPO及びNTPOと同様にFeの吸着
抑制に有効に作用し、その効果は30日を経過しても変化
せずに安定であった。
As can be seen from Table 7, the EDTPO-oxidized product and the NTPO-oxidized product effectively act to suppress the adsorption of Fe similarly to EDTPO and NTPO, and the effect does not change even after 30 days. It was stable without.

【0072】[0072]

【発明の効果】微粒子除去効果が極めて優れており、且
つ油脂汚染の除去にも有効な[アルカリ+過酸化水素]
洗浄では電気的特性を満足出来るシリコンウェハーが得
られなかった。しかし本発明に係る錯化剤を半導体表面
処理工程に於ける処理剤又はリンス液中に有機物汚染の
害を及ぼさない程度の微量添加することにより、再結合
ライフタイム低下とか酸化膜耐圧低下等の電気的特性上
の問題を起こさない表面不純物濃度まで、有害不純物の
吸着を抑制することができ、また有害不純物に対する洗
浄能力を向上させることが出来る。本発明の効果は[ア
ルカリ+過酸化水素]の組成だけに限定されない。シリ
コンウェハーに対する微粒子の付着はpHが高くなる程弱
まることが知られている。しかしpH3より高くなると水
中のFeはコロイドになる傾向が強くなり、Fe汚染の危険
が増す。リンスに用いる超純水はしばしば0.1ppb程度ま
でFe濃度が増大する恐れがあり、本発明に係る錯化剤は
このような吸着汚染も防止する。
[Effect of the Invention] [Alkali + hydrogen peroxide] which has an excellent effect of removing fine particles and is also effective in removing oil and fat contamination.
Cleaning did not provide a silicon wafer with satisfactory electrical properties. However, by adding the complexing agent according to the present invention to the treating agent or rinsing solution in the semiconductor surface treatment step in a trace amount that does not harm organic substances, it is possible to reduce the recombination lifetime and the oxide film breakdown voltage. Adsorption of harmful impurities can be suppressed to a surface impurity concentration that does not cause a problem in electrical characteristics, and the ability to clean harmful impurities can be improved. The effect of the present invention is not limited only to the composition of [alkali + hydrogen peroxide]. It is known that the adhesion of fine particles to a silicon wafer is weakened as the pH increases. However, when the pH is higher than 3, Fe in water tends to be a colloid, and the risk of Fe contamination increases. Ultrapure water used for rinsing often has an increased Fe concentration of about 0.1 ppb, and the complexing agent according to the present invention also prevents such adsorption contamination.

【0073】本発明に係る処理法・処理剤の効果はシリ
コン単結晶表面に限らず多結晶膜表面にも効果的である
ことは勿論である。従って、このような膜を用いるLCD
用ガラス基板洗浄にも有効であり、またFeやZn等の汚染
を嫌う化合物半導体にも適用出来る。また工程としてウ
ェハーの材料としての製造段階からパターン化したデバ
イス製造段階まで広く使用出来る。その波及的効果は絶
大であるため、本発明の表面処理剤は工業的に非常に有
用である。
The effects of the processing method and the processing agent according to the present invention are of course effective not only on the surface of a single crystal silicon but also on the surface of a polycrystalline film. Therefore, LCD using such a film
It is also effective for cleaning glass substrates, and can be applied to compound semiconductors that dislike contamination such as Fe and Zn. Further, it can be widely used as a process from a stage of manufacturing as a material of a wafer to a stage of manufacturing a patterned device. Since the ripple effect is enormous, the surface treating agent of the present invention is industrially very useful.

【0074】[0074]

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は実施例1及び比較例1で得られたSC-1処
理液中のFe濃度(ppb)とシリコンウェハー表面のFeの
吸着量(原子/cm2)との関係を示す曲線図(フロイン
ドリッヒプロット)である。但し、点線は実施例1(但
し、・・・○・・・はエチリデンジホスホン酸(EDP)を10-4
%添加、・・・□・・・はEDPを1.5×10-5%添加した処理液の
結果を夫々示す。)、実線は比較例1(但し、ー×ー
はEDP無添加、ー◎ーは市販品A、ー●ー は市販品B
の結果を夫々示す。)を示す。また、△は実施例1でED
Pを10-3%添加した場合の結果を示す。
FIG. 1 shows the relationship between the Fe concentration (ppb) in the SC-1 treatment solution obtained in Example 1 and Comparative Example 1 and the amount of Fe adsorbed on the silicon wafer surface (atoms / cm 2 ). It is a curve figure (Freundlich plot). However, the dotted line is the same as in Example 1 (however,... は is ethylidene diphosphonic acid (EDP) 10 −4 ).
... Show the results of the treatment solutions to which 1.5 × 10 −5 % of EDP was added. ), The solid line is Comparative Example 1 (however,
: No EDP added,-◎-: Commercial product A,-●-: Commercial product B
Are shown below. ). In addition, △ indicates ED in the first embodiment.
The results when P was added at 10 -3 % are shown.

【図2】図2は実施例3で得られたFe 1ppbを含むSC-1
処理液中の錯化剤濃度(重量%)とシリコン表面へのFe
吸着量(原子/cm2)の関係を示す曲線図である。但
し、−□− は本発明に係るキレート剤であるETPPOを
加えたときの結果を示し、−△−はトリエタノールアミ
ン、−○− はEDTAを夫々錯化剤として加えたときの結
果を示す。
FIG. 2 shows SC-1 containing 1 ppb of Fe obtained in Example 3.
Complexing agent concentration (wt%) in processing solution and Fe on silicon surface
FIG. 4 is a curve diagram showing a relationship between adsorption amounts (atoms / cm 2 ). However,-□-shows the result when ETPPO which is the chelating agent according to the present invention was added,-△-shows the result when triethanolamine was added, and-○-shows the result when EDTA was added as a complexing agent. .

フロントページの続き (72)発明者 名和 裕美 埼玉県川越市大字的場1633 和光純薬工 業株式会社東京研究所内 (72)発明者 村岡 久志 神奈川県横浜市緑区美しが丘3丁目15番 地2 審査官 鈴木 充 (56)参考文献 特開 昭62−252141(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01L 21/304 Continuing from the front page (72) Inventor Hiromi Nawa 1633, Oji, Kawagoe-shi, Saitama Wako Pure Chemical Industries, Ltd. Tokyo Research Laboratory (72) Inventor Hisashi Muraoka 3-15 Miigaoka, Midori-ku, Yokohama-shi, Kanagawa Pref. Government Mitsuru Suzuki (56) References JP-A-62-252141 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01L 21/304

Claims (18)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 半導体の表面を無機又は有機のアルカ
リ、過酸化水素及び水を主たる構成成分とする半導体表
面処理剤で洗浄する工程と、洗浄後これを超純水でリン
スする工程とから成る半導体表面処理方法であって、半
導体表面処理剤とリンス用超純水の少くとも何れか一方
に、縮合リン酸又はその塩を存在させて該処理を行う方
法。
1. A step of cleaning a surface of a semiconductor with a semiconductor surface treating agent containing inorganic or organic alkali, hydrogen peroxide and water as main components, and a step of rinsing the semiconductor surface with ultrapure water after the cleaning. A method for treating a semiconductor surface, wherein condensed phosphoric acid or a salt thereof is present in at least one of a semiconductor surface treating agent and ultrapure water for rinsing to carry out the treatment.
【請求項2】 縮合リン酸又はその塩を含有して成る半
導体表面処理剤を用いて洗浄する請求項1に記載の半導
体表面処理方法。
2. The method for treating a semiconductor surface according to claim 1, wherein the cleaning is carried out using a semiconductor surface treating agent containing condensed phosphoric acid or a salt thereof.
【請求項3】 縮合リン酸又はその塩を含有して成る超
純水を用いてリンスする請求項1に記載の半導体表面処
理方法。
3. The method according to claim 1, wherein the rinsing is performed using ultrapure water containing condensed phosphoric acid or a salt thereof.
【請求項4】 無機又は有機のアルカリ、過酸化水素、
水、及び縮合リン酸又はその塩を含有して成る半導体表
面処理剤。
4. An inorganic or organic alkali, hydrogen peroxide,
A semiconductor surface treatment agent comprising water and condensed phosphoric acid or a salt thereof .
【請求項5】 縮合リン酸又はその塩を10-7〜10-3重量
%含んで成る請求項4に記載の半導体表面処理剤。
5. The semiconductor surface treating agent according to claim 4, comprising 10 -7 to 10 -3 % by weight of condensed phosphoric acid or a salt thereof.
【請求項6】 無機又は有機のアルカリが、アンモニア
又は第4級アンモニウムヒドロキシドである請求項4又
は5に記載の半導体表面処理剤。
6. The semiconductor surface treating agent according to claim 4, wherein the inorganic or organic alkali is ammonia or quaternary ammonium hydroxide.
【請求項7】 無機又は有機のアルカリの濃度が全溶液
中0.01〜20重量%である請求項4〜6の何れかに記載の
半導体表面処理剤。
7. The semiconductor surface treating agent according to claim 4, wherein the concentration of the inorganic or organic alkali is 0.01 to 20% by weight in the whole solution.
【請求項8】 過酸化水素の濃度が全溶液中0.01〜30重
量%である請求項4〜7の何れかに記載の半導体表面処
理剤。
8. The semiconductor surface treating agent according to claim 4, wherein the concentration of hydrogen peroxide is 0.01 to 30% by weight in the whole solution.
【請求項9】 縮合リン酸又はその塩を半導体表面処理
剤を構成する成分の1以上に含有させたのち各成分を混
合するか、又は半導体表面処理剤を構成する各成分を混
合したのちこれに縮合リン酸又はその塩を含有させるこ
とにより調製することを特徴とする、請求項4に記載の
半導体表面処理剤の調製方法。
9. A method in which condensed phosphoric acid or a salt thereof is contained in at least one of the components constituting the semiconductor surface treating agent and then the components are mixed, or the components constituting the semiconductor surface treating agent are mixed and then mixed. 5. The method for preparing a semiconductor surface treatment agent according to claim 4, wherein the preparation is carried out by adding condensed phosphoric acid or a salt thereof to the mixture.
【請求項10】 縮合リン酸又はその塩を含有させて成
る半導体表面処理剤用アルカリ水溶液。
10. An aqueous alkaline solution for a semiconductor surface treating agent, comprising condensed phosphoric acid or a salt thereof .
【請求項11】 アルカリがアンモニア又は第4級アン
モニウムヒドロキシドである請求項10に記載の半導体
表面処理剤用アルカリ水溶液。
11. The aqueous alkali solution for a semiconductor surface treating agent according to claim 10, wherein the alkali is ammonia or quaternary ammonium hydroxide.
【請求項12】 蒸留精製後更に金属不純物の除去処理
を経た後、縮合リ ン酸又はその塩を含有させて成る半導
体表面処理剤用過酸化水素水。
12. After passing through the removal process after purification by distillation further metal impurities, the semiconductor surface treating agent for hydrogen peroxide formed by incorporating a Chijimigori phosphate or a salt thereof.
【請求項13】 縮合リン酸又はその塩が、ヘキサメタ
リン酸又はヘキサメタリン酸アンモニウムである請求項
4に記載の半導体表面処理剤。
13. The semiconductor surface treating agent according to claim 4, wherein the condensed phosphoric acid or a salt thereof is hexametaphosphoric acid or ammonium hexametaphosphate.
【請求項14】 縮合リン酸又はその塩を含有して成る
過酸化水素水を半導体表面処理剤の構成成分として用い
て半導体表面処理を行うことを特徴とする半導体表面処
理方法。
14. A semiconductor surface treatment method, wherein a semiconductor surface treatment is carried out using a hydrogen peroxide solution containing condensed phosphoric acid or a salt thereof as a component of a semiconductor surface treatment agent.
【請求項15】 蒸留精製後更に金属不純物の除去処理
を経た後縮合リン酸又はその塩を含有させて成る過酸化
水素水を用いる請求項14に記載の処理方法。
15. The treatment method according to claim 14, wherein after the purification by distillation, a treatment for removing metal impurities is carried out, and then a hydrogen peroxide solution containing condensed phosphoric acid or a salt thereof is used.
【請求項16】 縮合リン酸又はその塩を含有して成る
アルカリ水溶液を半導体表面処理剤の構成成分として用
いて半導体表面処理を行うことを特徴とする半導体表面
処理方法。
16. A semiconductor surface treatment method, wherein a semiconductor surface treatment is performed using an aqueous alkaline solution containing condensed phosphoric acid or a salt thereof as a component of a semiconductor surface treatment agent.
【請求項17】 アルカリがアンモニア又は第4級アン
モニウムヒドロキシドである請求項16に記載の処理方
法。
17. The method according to claim 16, wherein the alkali is ammonia or quaternary ammonium hydroxide.
【請求項18】 縮合リン酸又はその塩を含有して成る
水を半導体表面処理剤の構成成分として用いて半導体表
面処理を行うことを特徴とする半導体表面処理方法。
18. A method for treating a semiconductor surface, wherein water containing a condensed phosphoric acid or a salt thereof is used as a component of a semiconductor surface treating agent to carry out a semiconductor surface treatment.
JP09536098A 1991-01-24 1998-03-24 Surface treatment method and treatment agent Expired - Fee Related JP3274834B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09536098A JP3274834B2 (en) 1991-01-24 1998-03-24 Surface treatment method and treatment agent

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2409491 1991-01-24
JP3-24094 1991-01-24
JP09536098A JP3274834B2 (en) 1991-01-24 1998-03-24 Surface treatment method and treatment agent

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP04032633A Division JP3061470B2 (en) 1991-01-24 1992-01-23 Surface treatment method and treatment agent

Publications (2)

Publication Number Publication Date
JPH10321590A JPH10321590A (en) 1998-12-04
JP3274834B2 true JP3274834B2 (en) 2002-04-15

Family

ID=26361582

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09536098A Expired - Fee Related JP3274834B2 (en) 1991-01-24 1998-03-24 Surface treatment method and treatment agent

Country Status (1)

Country Link
JP (1) JP3274834B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114101193B (en) * 2021-11-22 2023-07-14 锦州神工半导体股份有限公司 Silicon wafer surface cleaning method and cleaning fluid

Also Published As

Publication number Publication date
JPH10321590A (en) 1998-12-04

Similar Documents

Publication Publication Date Title
JP3061470B2 (en) Surface treatment method and treatment agent
KR100278210B1 (en) Semiconductor surface treatment agent and treatment method
KR100322392B1 (en) Cleaning agent
US7896970B2 (en) Semiconductor substrate cleaning liquid and semiconductor substrate cleaning process
KR101680759B1 (en) Alkaline aqueous solution composition for treating a substrate
EP1345848B1 (en) Composition comprising an oxidizing and complexing compound
JP3219020B2 (en) Cleaning agent
KR101388937B1 (en) Composition for removal of nickel-platinum alloy metal
JP4498726B2 (en) Washing soap
JPH05259140A (en) Cleaning liquid for semiconductor substrate
EP1648991B1 (en) Semiconductor cleaning solution
JPH03219000A (en) Etching method and washing method for silicon wafer
JP3274834B2 (en) Surface treatment method and treatment agent
JP3422117B2 (en) New surface treatment method and treatment agent
JPH11340182A (en) Cleaning agent for semiconductor surface, and method for cleaning
JP3503326B2 (en) Semiconductor surface treatment solution
JPH1017533A (en) High-purity ethylenediamine di-ortho-hydroxyphenylacetic acid and surface-treating composition containing the acid
JPH08306651A (en) Alkaline cleaning composition and cleaning method using the composition
JPH09298180A (en) Silicon wafer washing method
JPH04130100A (en) Etching method and washing method for semiconductor wafer
KR101264439B1 (en) Cleaning solution composition for electronic material and cleaning method using the same
JP2003124174A (en) Cleaning liquid for semiconductor wafer
JP2006128708A (en) Cleaning method for semiconductor

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020122

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110201

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees