JPH03213142A - Method for purifying particulate material - Google Patents

Method for purifying particulate material

Info

Publication number
JPH03213142A
JPH03213142A JP2007919A JP791990A JPH03213142A JP H03213142 A JPH03213142 A JP H03213142A JP 2007919 A JP2007919 A JP 2007919A JP 791990 A JP791990 A JP 791990A JP H03213142 A JPH03213142 A JP H03213142A
Authority
JP
Japan
Prior art keywords
treatment
acid
powder
particulate material
acid treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007919A
Other languages
Japanese (ja)
Other versions
JPH0790165B2 (en
Inventor
Hiromichi Kobayashi
廣道 小林
Keiji Matsuhiro
啓治 松廣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2007919A priority Critical patent/JPH0790165B2/en
Publication of JPH03213142A publication Critical patent/JPH03213142A/en
Publication of JPH0790165B2 publication Critical patent/JPH0790165B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a ceramic sintered body having a uniform shape or dimension and high strength at high temp. by applying acid treatment to a ceramic particulate material subjected to classifying treatment, heat treatment and drying in succession and removing unnecessary inclusion to wash and dry the resulting particulate material. CONSTITUTION:A powdery or particulate material being a ceramic raw material is dispersed in a solvent to obtain a suspension which is, in turn, subjected to classifying treatment and applied to a screen having a predetermined mesh size to obtain a particulate material having a desired dimension or shape. Next, this particulate material is treated with an acid to volatilize and remove free carbon, carbon dioxide or carbon monoxide or to convert metal impurity to oxide. Next, the particulate is subjected to acid treatment (treatment with sulfuric acid, treatment with hydrochloric acid or treatment with a mixture of both acids), if necessary, to remove metal impurity or oxide previously formed by the treatment of metal impurity with the acid. Next, a washing process is performed two or more times, necessary, and the washed particulate material is dried to obtain a ceramic raw material as a purified one having a desired shape and/or dimension. By this method, unnecessary inclusion is removed to obtain a ceramic sintered body having a uniform shape and dimension and high strength at high temp.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は粉粒体の精製方法に関し、−層詳細には不要な
混在物を除去し、しかも形態、寸法の整った無機物、セ
ラミックまたは非酸化物からなる粉粒体を容易且つ確実
に得ることが可能な粉粒体の精製方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for refining powder and granular materials, which includes: - removing unnecessary inclusions in the layer details, and producing inorganic, ceramic or non-containing materials with a uniform shape and size; The present invention relates to a method for refining powder and granules that can easily and reliably obtain powder and granules made of oxides.

「従来の技術] 一般に、例えば、セラミックを製造するための原料は、
原鉱石を粉砕することによって得られる。その際、高純
度化並びに品質の安定化を図るべく、粒度、化学成分等
の調整を必要とする。このために粉砕された状態の原料
は精製工程に付され、所定の規格に適合した粉粒体とし
て市販に供される。
“Prior Art” In general, raw materials for producing ceramics, for example, are
Obtained by crushing raw ore. At that time, it is necessary to adjust particle size, chemical components, etc. in order to achieve high purity and stabilize quality. For this purpose, the raw material in a pulverized state is subjected to a refining process and is commercially available as powder or granules that meet predetermined specifications.

然しながら、前記のように精製が行われた市販品として
の粉粒体は、その用途にてらして鑑みるとき、未だ不要
な混在物が包含され、あるいは、粒度が所望の要件に適
合しない場合が多い。そして、この要件に適合しないま
まで当該粉粒体を母材又は強化材として用い、セラミッ
ク、焼結体を得ようとする場合、不純物量、大きさの不
揃い等により所望の特性、例えば、高温高強度を有する
セラミック焼結体を得ることが困難となる。
However, when considering the intended use of commercially available powder or granules that have been purified as described above, they often still contain unnecessary contaminants or the particle size does not meet the desired requirements. . When attempting to obtain a ceramic or sintered body by using the powder or granular material as a base material or reinforcing material without meeting these requirements, the desired characteristics, such as high temperature It becomes difficult to obtain a ceramic sintered body with high strength.

[発明が解決しようとする課題] 本発明は前記の不都合を克服するためになされたもので
あって、特にセラミックを得るための粉状体または粉粒
体の原料から不要な混在物を除去し、併せて形態、ある
いは寸法が整い、従って、これらの粉粒体を用いること
により、高温で強度が大なるセラミック焼結体を得るた
めの粉粒体の精製方法を提供することを目的とする。
[Problems to be Solved by the Invention] The present invention has been made in order to overcome the above-mentioned disadvantages, and in particular removes unnecessary contaminants from powder or powder raw materials for obtaining ceramics. In addition, the purpose of the present invention is to provide a method for refining powder and granules to obtain a ceramic sintered body that has a uniform shape or size and has high strength at high temperatures by using these powders and granules. .

[課題を解決するための手段] 前記の目的を達成するために、本発明は、原材料として
のセラミックの粉粒体を分級処理する第1の工程と、 前記分級処理された粉粒体を加熱処理する第2の工程と
、 前記加熱処理され、乾燥された粉粒体を酸処理を行うこ
とにより不要な混在物を除去する第3の工程と、 前記不要な混在物を除去した後の粉粒体に対し水洗処理
を行う第4の工程と、 前記水洗処理された粉粒体を乾燥させるための第5の工
程と、 からなることを特徴とする。
[Means for Solving the Problems] In order to achieve the above object, the present invention includes a first step of classifying ceramic powder as a raw material, and heating the classified powder. a second step of treating the heat-treated and dried granular material with an acid to remove unnecessary inclusions; and a third step of removing unnecessary inclusions from the powder after removing the unnecessary inclusions. The method is characterized by comprising: a fourth step of washing the granules with water; and a fifth step of drying the washed granules.

[発明の具体的構成1 セラミックの原料である粉状体または粒状体(球状、板
状、針状等の形状を含む)を溶媒中に分散させて懸濁液
を得、これを分級処理する。
[Specific configuration of the invention 1 Powdered or granular materials (including shapes such as spheres, plates, and needles), which are raw materials for ceramics, are dispersed in a solvent to obtain a suspension, which is then classified. .

このようにして分級された後の原料を所定のメツシュを
有する篩にかけて所望の寸法または形態の粉粒体を得る
The raw material classified in this manner is passed through a sieve having a predetermined mesh to obtain a powder having a desired size or shape.

次に、形態または寸法が整った原料は酸処理工程に付さ
れる。例えば、遊離炭素、二酸化炭素あるいは一酸化炭
素として揮散させ除去するためであり、また、金属不純
物を酸化させて酸化物とするものである。次に、必要に
応じて原料となる粉粒体には酸処理が施される。想起さ
れる不純物に応じて、例えば、硫酸処理、塩酸処理、あ
るいはこれらの混酸による処理も可能である。これによ
って金属不純物や金属不純物を酸処理することにより生
成した酸化物が除去される。例えば、A l z O3
を除去するためには硫酸処理が好適であり、また、場合
によって塩酸処理とすることも可能である。さらに硫酸
処理、塩酸処理を同時若しくは経時的に行うことも可能
である。最終製品として一定の寸法、形態を保有し、且
つ焼成後に所望の特性が得られればよいからである。
Next, the raw material with the correct shape or size is subjected to an acid treatment step. For example, it is used to volatilize and remove free carbon, carbon dioxide, or carbon monoxide, and it is also used to oxidize metal impurities to form oxides. Next, if necessary, the raw material powder is subjected to acid treatment. Depending on the possible impurities, for example, sulfuric acid treatment, hydrochloric acid treatment, or treatment with a mixed acid thereof is also possible. This removes metal impurities and oxides generated by acid treatment of metal impurities. For example, Al z O3
In order to remove this, sulfuric acid treatment is suitable, and hydrochloric acid treatment can also be used depending on the case. Furthermore, it is also possible to perform sulfuric acid treatment and hydrochloric acid treatment simultaneously or sequentially. This is because it is sufficient that the final product has a certain size and shape and that desired characteristics are obtained after firing.

次に、水洗上・程を必要に応じて複数回繰り返して行っ
た後、乾燥させて所望の形態および/または寸法を有す
る精製物としてのセラミック原料を得ることが出来る。
Next, after repeating the water washing step several times as necessary, it is dried to obtain a ceramic raw material as a purified product having a desired shape and/or size.

[実施例1コ 入手した市販品の炭化珪素板状粒子は、−船釣に遊離炭
素、二酸化珪素、Al2O3等の不要な混在物を含み、
且つ形態、寸法が不揃いであるという確認を行った。
[Example 1] The commercially available silicon carbide plate-shaped particles obtained from the boat contained unnecessary inclusions such as free carbon, silicon dioxide, and Al2O3;
It was also confirmed that the shapes and dimensions were irregular.

第1図aに分級前の原料の電子顕微鏡写真を示す。なお
、図において、左側の写真は1cmが100μmとする
拡大写真であり、右側の写真は1cmが50μmとする
原料の拡大写真である。以後、分級後、酸化後、硫酸処
理後、弗化水素処理後の電子顕微鏡写真を示すが、その
拡大写真の寸法は前記と同様である。
FIG. 1a shows an electron micrograph of the raw material before classification. In addition, in the figure, the photograph on the left is an enlarged photograph of the raw material where 1 cm is 100 μm, and the photograph on the right is an enlarged photograph of the raw material where 1 cm is 50 μm. Hereinafter, electron micrographs will be shown after classification, oxidation, sulfuric acid treatment, and hydrogen fluoride treatment, and the dimensions of the enlarged photographs are the same as above.

そこで、以゛上のように、得られた炭化珪素板状粒子を
、溶媒であるエチルアルコール中に分散させ、懸濁液を
得、この懸濁液を粒子の大きさ30μmで水ひにより分
級した。実際、粒子の大きさ30μmの原料が沈降する
時間はストークスの式によって得た。水ひした懸濁液は
目開き15μmの篩を通過させて、篩上の残渣を乾燥さ
せ、所望の炭化珪素板状粒子とした。
Therefore, as described above, the obtained silicon carbide plate-like particles were dispersed in ethyl alcohol as a solvent to obtain a suspension, and this suspension was classified by water strainer to a particle size of 30 μm. did. In fact, the settling time of a raw material with a particle size of 30 μm was obtained using Stokes' equation. The strained suspension was passed through a sieve with an opening of 15 μm, and the residue on the sieve was dried to obtain desired silicon carbide plate-like particles.

表1に分級前と分級後の化学分析結果を重量%で示す。Table 1 shows the chemical analysis results before and after classification in weight percent.

例えば、珪素については、分級前が62.12重量%で
あったものが、分級後では66、32重量%に増加して
いる。不要な混在物が除去されて、相対的にその重量が
増えたためであると考えられる。さらにまた、アルミニ
ウムについては、分級前が1.56重量%であったもの
が、0.061重量%となっている。また、鉄について
も同様に、0.17重量%であったものが、0.10重
量%となっている。さらにまた、遊離二酸化珪素が、0
.87重量%から0,49重量%へ、また、遊離炭素は
3.19重量%から1.12重量%へと減少している。
For example, silicon was 62.12% by weight before classification, but increased to 66.32% by weight after classification. This is thought to be due to a relative increase in weight due to the removal of unnecessary inclusions. Furthermore, the aluminum content was 1.56% by weight before classification, but it has become 0.061% by weight. Similarly, for iron, the content was 0.17% by weight, but now it is 0.10% by weight. Furthermore, free silicon dioxide is 0
.. The free carbon is reduced from 87% to 0.49% by weight and from 3.19% to 1.12% by weight.

分級後の電子顕微鏡写真を第1図すに示す。An electron micrograph after classification is shown in Figure 1.

第1図aの分級前の原料の組成拡大写真と比べると、形
態が極めて整い、且つ寸法、すなわち、粒度も均一とな
っていることが容易に読解されよう。
When compared with the enlarged photograph of the composition of the raw material before classification shown in FIG.

以上のようにして、分級された後の炭化珪素の板状粒子
は、次いで、遊離炭素、金属の不要な混在物を除去する
ために、酸処理工程に付した。この酸処理工程は、実質
的に650℃で20時間加熱処理を行うことにより達成
している。この場合、遊離炭素は、分級後、1.12重
量%含有していたが、650℃で20時間酸処理を行っ
たところ、0.42重量%に減少していることが確認さ
れた。遊離炭素は酸素と結合してC02あるいはCOと
して揮散した。また、珪素は酸素と結合させて5in2
とし、さらに、アルミニウムは酸素と結合させてAl2
O3とするためのものである。実際、遊離二酸化珪素は
、分級後、0.49重量%含有していたが、650℃で
20時間酸処理を行ったところ2.10重量%に増大し
た。これは遊離珪素が酸素と結合して二酸化珪素を生成
したのと、炭化珪素板状粒子表面が酸化され二酸化珪素
を生成したものと解される。
The silicon carbide plate-like particles classified as described above were then subjected to an acid treatment step in order to remove unnecessary inclusions of free carbon and metal. This acid treatment step is achieved by essentially performing a heat treatment at 650° C. for 20 hours. In this case, the content of free carbon was 1.12% by weight after classification, but it was confirmed that the content was reduced to 0.42% by weight after acid treatment at 650° C. for 20 hours. Free carbon combined with oxygen and volatilized as CO2 or CO. In addition, silicon is combined with oxygen to form a 5in2
Furthermore, aluminum is combined with oxygen to form Al2
This is for O3. In fact, free silicon dioxide was contained in an amount of 0.49% by weight after classification, but this increased to 2.10% by weight after acid treatment at 650° C. for 20 hours. This is understood to be that free silicon combined with oxygen to produce silicon dioxide, and that the surface of the silicon carbide platelet particles was oxidized to produce silicon dioxide.

さらに、AI、03を除去するために硫酸処理工程に付
した。すなわち、粉状体または粒状体中に硫酸を流入さ
せ、このAl2O3を除去するとともに、この溶媒とし
ての硫酸を無くなるまで蒸発させ、粉状体または粒状体
を乾固させる。
Furthermore, it was subjected to a sulfuric acid treatment step to remove AI and 03. That is, sulfuric acid is introduced into the powder or granules to remove Al2O3, and the sulfuric acid as a solvent is evaporated until it disappears, thereby drying the powder or granules.

蒸発乾固処理はガラスビーカー中でアルコールランプに
より加熱を行ってAl2O3を除去した。
In the evaporation to dryness treatment, Al2O3 was removed by heating with an alcohol lamp in a glass beaker.

この場合、硫酸が残っていることが懸念されるために、
pH7になるまで水洗工程に付した。
In this case, there is a concern that sulfuric acid may remain, so
It was subjected to a water washing step until the pH reached 7.

さらに、二酸化珪素を除去するために、弗化水素酸を用
いて白金皿中で蒸発乾固処理を行った。これによって、
二酸化珪素等の酸化物からなる不要な混在物が除去され
た。二酸化珪素は650℃で20時間酸処理後2.10
重量%含有していたが、硫酸処理で1.76重量%に減
少、さらに弗化水素酸処理で0.05重量%に減少して
いることが確言忍された。
Furthermore, in order to remove silicon dioxide, evaporation to dryness was performed in a platinum dish using hydrofluoric acid. by this,
Unwanted contaminants consisting of oxides such as silicon dioxide were removed. Silicon dioxide is 2.10 after acid treatment at 650℃ for 20 hours.
It was confirmed that the content was 1.76% by weight after treatment with sulfuric acid, and further reduced to 0.05% by weight after treatment with hydrofluoric acid.

このようにして弗化水素酸処理゛を行った後、水洗工程
に付した。水洗工程は継続して長い時間にわたって1回
であってもよく、また、乾燥、水洗を繰り返して複数回
にわたって行ってもよい。
After being treated with hydrofluoric acid in this manner, it was subjected to a water washing step. The water washing step may be carried out once over a long period of time, or may be carried out multiple times by repeating drying and washing.

第1図Cに酸化後の炭化珪素の粒状体の電子顕微鏡写真
を示し、また、第1図dに硫酸処理後の炭化珪素の拡大
写真を示し、また、第1図eに弗化水素による処理後の
電子顕微鏡拡大写真を示している。
Figure 1C shows an electron micrograph of silicon carbide granules after oxidation, Figure 1d shows an enlarged photograph of silicon carbide after sulfuric acid treatment, and Figure 1e shows hydrogen fluoride treatment. An enlarged electron microscope photograph after treatment is shown.

なお、原材料としての炭化珪素板状粒子について、予め
鉄分が極めて多く含まれていると確認された場合におい
ては、硫酸処理後の工程にさらに塩酸処理工程を加え、
酸化鉄としてこの不要な混在物を除去することも可能で
ある。
In addition, if it is confirmed in advance that the silicon carbide plate-shaped particles used as a raw material contain an extremely large amount of iron, a hydrochloric acid treatment step is added to the step after the sulfuric acid treatment.
It is also possible to remove this unwanted inclusion as iron oxide.

[実施例2] 実施例1で精製して得られた炭化珪素板状粒子と未精製
の炭化珪素板状粒子を強化材として窒化珪素母材に添加
してセラミック焼結体を作製し、次いで、四点曲げ強度
測定を行った。四点曲げ強度は、JIS  R1601
rファインセラミックスの曲げ強さ試験法」に従って測
定した。
[Example 2] A ceramic sintered body was prepared by adding silicon carbide plate-like particles obtained by refining in Example 1 and unrefined silicon carbide plate-like particles to a silicon nitride base material as reinforcing materials, and then , four-point bending strength measurements were performed. Four-point bending strength is JIS R1601
Measured according to the ``Fine Ceramics Bending Strength Test Method''.

この場合の具体的実施例について説明する。A specific example in this case will be described.

先ず、母材および強化材をボットミルに入れ、水または
エチルアルコール中で24時間混合し混合物を形成した
。次に、得られた混合物を120℃で24時間乾燥させ
、目開きが149μmの大きさの篩にかけ、成形用粉末
を得た。
First, the matrix and reinforcement were placed in a bot mill and mixed for 24 hours in water or ethyl alcohol to form a mixture. Next, the obtained mixture was dried at 120° C. for 24 hours and passed through a sieve with an opening of 149 μm to obtain a powder for molding.

次いで、圧力200kg/cm”でプレス成形し、焼成
した。この場合、場合、加圧焼結を施したが、ホットプ
レスはlatmのN2雰囲気、圧力300kg/cm2
で行った。なお、焼結温度が1700℃以上になると、
窒化珪素の分解が激しくなるのでN2圧は9.5atm
とした。
Next, it was press-formed and fired at a pressure of 200 kg/cm.
I went there. In addition, when the sintering temperature becomes 1700℃ or higher,
Because the decomposition of silicon nitride becomes intense, the N2 pressure is 9.5 atm.
And so.

表2は、このようにして得られたセラミック焼結体の曲
げ強度測定結果を示したものである。
Table 2 shows the bending strength measurement results of the ceramic sintered bodies thus obtained.

この表において、実施例No、1〜6は精製して得られ
た炭化珪素板状粒子を用いたセラミック焼結体を示し、
また、比較例N097〜12は未精製の炭化珪素板状粒
子を用いたセラミック焼結体に関する実験結果を示す。
In this table, Example Nos. 1 to 6 indicate ceramic sintered bodies using refined silicon carbide plate-like particles,
Moreover, Comparative Examples Nos. 097 to 12 show experimental results regarding ceramic sintered bodies using unrefined silicon carbide plate-like particles.

表2より明らかなように、1200℃、1400℃の曲
げ強度では、精製して高純度が得られた炭化珪素板状粒
子を用いたセラミック焼結体は未精製の炭化珪素板状粒
子を用いたセラミック焼結体に比べ高強度であった。特
に、高融点粒界相を有するY203 、Y b 20s
を添加した系において効果が太きく1400℃での曲げ
強度で154〜249MPaの差が認められた。これに
よって、高温強度には不純物が影響を及ぼしていること
が判った。すなわち、高温強度が大きいセラミック焼結
体を得るには精製により不純物を除去した高純度の炭化
珪素板状粒子を用いることの有効性が確認された。
As is clear from Table 2, at the bending strengths of 1200°C and 1400°C, the ceramic sintered body using purified silicon carbide plate-like particles with high purity is the same as the ceramic sintered body using unrefined silicon carbide plate-like particles. The strength was higher than that of the ceramic sintered body. In particular, Y203, Y b 20s with high melting point grain boundary phase
The effect was greater in the system with the addition of , and a difference of 154 to 249 MPa in bending strength at 1400°C was observed. This revealed that impurities have an effect on high-temperature strength. That is, it was confirmed that it is effective to use highly purified silicon carbide plate-like particles from which impurities have been removed by purification in order to obtain a ceramic sintered body with high high-temperature strength.

[発明の効果コ 表1から容易に諒解される通り、水ひによって微細な遊
離炭素、二酸化珪素、Al2O3等の不要な混在物は約
半分近くは除去された。特に、Al2O3は1.56重
量%から0.061重量%へとその除去率は極めて著し
かった。さらにまた、650℃で20時間にわたる酸処
理では、遊離炭素は0.061重量%から0.048重
量%にとその除去が行われた。一方、硫酸処理工程にお
いては、A1.03は0.041重量%となり、その除
去率が極めて顕著であることが、表1から諒解されよう
[Effects of the Invention] As can be easily understood from Table 1, nearly half of the unnecessary inclusions such as fine free carbon, silicon dioxide, and Al2O3 were removed by the water droplets. In particular, the removal rate of Al2O3 was extremely remarkable, from 1.56% by weight to 0.061% by weight. Furthermore, acid treatment at 650° C. for 20 hours removed free carbon from 0.061% by weight to 0.048% by weight. On the other hand, in the sulfuric acid treatment step, A1.03 was 0.041% by weight, and it can be understood from Table 1 that the removal rate was extremely remarkable.

また、弗化水素酸処理は二酸化珪素等の酸化物の除去に
顕著な効果が得られることが判った。
Furthermore, it has been found that hydrofluoric acid treatment has a remarkable effect on removing oxides such as silicon dioxide.

分級前が0.87重量%であったものが、0.05重量
%になり、著しく減少している。
The content before classification was 0.87% by weight, but it decreased to 0.05% by weight, which is a significant decrease.

以上のようにして得られた精製された後の炭化珪素板状
粒子は、不要な混在物が極めて少ないために、高温強度
が大であり、構造用セラミックとして使用するとき一層
の品質の向上が期待出来る。
The purified silicon carbide plate-like particles obtained as described above have extremely low unnecessary inclusions, so they have high high-temperature strength and can be used as structural ceramics to further improve quality. I can expect it.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は炭化珪素板状粒子の分級前、分級後、酸化後、
硫酸処理後、弗化水素酸処理後の電子顕微鏡拡大写真で
ある。 (Q)付線【 (b) 分線≦峯 CXlpm FIG、1 141m デ石m 手 続 補 正 書 (方式) %式% 発明の名称 粉粒体の精製方法 3゜ 補正をする者 事件との関係
Figure 1 shows silicon carbide plate-shaped particles before classification, after classification, and after oxidation.
These are enlarged electron micrographs after sulfuric acid treatment and hydrofluoric acid treatment. (Q) Line [ (b) Separate line ≦Mine CXlpm FIG, 1 141m De stone m Procedural amendment (method) % formula % Name of invention Method for refining powder and granular material 3゜Relationship with the case of the person making the amendment

Claims (6)

【特許請求の範囲】[Claims] (1)原材料としてのセラミックの粉粒体を分級処理す
る第1の工程と、 前記分級処理された粉粒体を加熱処理する第2の工程と
、 前記加熱処理され、乾燥された粉粒体を酸処理を行うこ
とにより不要な混在物を除去する第3の工程と、 前記不要な混在物を除去した後の粉粒体に対し水洗処理
を行う第4の工程と、 前記水洗処理された粉粒体を乾燥させるための第5の工
程と、 からなることを特徴とする粉粒体の精製方法。
(1) A first step of classifying ceramic powder as a raw material, a second step of heat-treating the classified powder, and the heat-treated and dried powder. a third step of removing unnecessary contaminants by acid treatment; a fourth step of performing a water washing treatment on the granular material after removing the unnecessary contaminants; A method for refining a powder or granule, comprising: a fifth step of drying the powder or granule.
(2)請求項1記載の方法において、第2の工程は大気
中または酸素雰囲気中で行うことを特徴とする粉粒体の
精製方法。
(2) The method according to claim 1, wherein the second step is carried out in the air or in an oxygen atmosphere.
(3)請求項1または2記載の方法において、酸処理を
行う第3の工程は粉粒体に含まれる不要な混在物を除去
するために当該不要な混在物に対応して選択される酸処
理工程であることを特徴とする粉粒体の精製方法。
(3) In the method according to claim 1 or 2, the third step of performing acid treatment includes using an acid selected in accordance with the unnecessary contaminants contained in the powder or granular material in order to remove the unnecessary contaminants. A method for refining powder or granular material, which is a processing step.
(4)請求項1乃至3のいずれかに記載の方法において
、粉粒体に含まれる不要な混在物としての二酸化珪素を
除去するために、酸処理工程の後に弗化水素酸による蒸
発乾固工程を行うことを特徴とする粉粒体の精製方法。
(4) In the method according to any one of claims 1 to 3, in order to remove silicon dioxide as an unnecessary contaminant contained in the powder or granular material, after the acid treatment step, evaporation to dryness with hydrofluoric acid is performed. A method for refining powder or granular material, characterized by performing the steps.
(5)請求項1乃至4のいずれかに記載の方法において
、不要な混在物として非酸化物を含む粉粒体に対して第
2工程の後、酸処理を施すことを特徴とする粉粒体の精
製方法。
(5) In the method according to any one of claims 1 to 4, the powder or granule containing a non-oxide as an unnecessary inclusion is subjected to an acid treatment after the second step. How to purify the body.
(6)請求項1乃至5のいずれかに記載の方法において
、酸処理は硫酸、塩酸、硝酸、またはこれらの複数の混
酸で行うことを特徴とする粉粒体の精製方法。
(6) The method according to any one of claims 1 to 5, wherein the acid treatment is performed with sulfuric acid, hydrochloric acid, nitric acid, or a mixed acid of a plurality of these.
JP2007919A 1990-01-17 1990-01-17 Purification method of powder Expired - Lifetime JPH0790165B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007919A JPH0790165B2 (en) 1990-01-17 1990-01-17 Purification method of powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007919A JPH0790165B2 (en) 1990-01-17 1990-01-17 Purification method of powder

Publications (2)

Publication Number Publication Date
JPH03213142A true JPH03213142A (en) 1991-09-18
JPH0790165B2 JPH0790165B2 (en) 1995-10-04

Family

ID=11678938

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007919A Expired - Lifetime JPH0790165B2 (en) 1990-01-17 1990-01-17 Purification method of powder

Country Status (1)

Country Link
JP (1) JPH0790165B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000281328A (en) * 1999-03-30 2000-10-10 Toshiba Ceramics Co Ltd Purified silicon carbide powder for member of semiconductor device, its purification, sintered compact for member of semiconductor device obtained from the powder, and its production
WO2006040826A1 (en) * 2004-10-15 2006-04-20 Yoshihiro Masada Ritual item and process for producing the same
JP2009179726A (en) * 2008-01-31 2009-08-13 Tkx:Kk Manufacturing method of silicon carbide powder for grinding/polishing, and silicon carbide powder for grinding/polishing, and slurry for grinding/polishing
JP2011063486A (en) * 2009-09-18 2011-03-31 Sumitomo Osaka Cement Co Ltd Method for producing high-purity metal boride particle, and high-purity metal boride particle obtained by the method
JP2015127269A (en) * 2013-12-27 2015-07-09 株式会社日本セラテック Sintered compact of silicon carbide and producing method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000281328A (en) * 1999-03-30 2000-10-10 Toshiba Ceramics Co Ltd Purified silicon carbide powder for member of semiconductor device, its purification, sintered compact for member of semiconductor device obtained from the powder, and its production
WO2006040826A1 (en) * 2004-10-15 2006-04-20 Yoshihiro Masada Ritual item and process for producing the same
JP2009179726A (en) * 2008-01-31 2009-08-13 Tkx:Kk Manufacturing method of silicon carbide powder for grinding/polishing, and silicon carbide powder for grinding/polishing, and slurry for grinding/polishing
JP2011063486A (en) * 2009-09-18 2011-03-31 Sumitomo Osaka Cement Co Ltd Method for producing high-purity metal boride particle, and high-purity metal boride particle obtained by the method
JP2015127269A (en) * 2013-12-27 2015-07-09 株式会社日本セラテック Sintered compact of silicon carbide and producing method thereof

Also Published As

Publication number Publication date
JPH0790165B2 (en) 1995-10-04

Similar Documents

Publication Publication Date Title
CN103819219A (en) Acid and alkali corrosion-resistant silicon carbide porous support
PL154684B1 (en) A method of fundamentally pure aluminium oxide production
JPH0225869B2 (en)
CN102584313B (en) In-situ authigenic mullite whister reinforced aluminum titanate porous ceramic material and preparation method thereof
JPH07309618A (en) Method for manufacture of aluminium oxide powder, aluminium oxide powder manufactured by said method and use thereof
JPH03213142A (en) Method for purifying particulate material
JP3366938B2 (en) Calcium zirconate / magnesia composite porous body and method for producing the same
JP3138548B2 (en) Activated manganese dioxide for adsorbent and method for producing the same
GB2024183A (en) Sintered basalt and lava
JPH0717706A (en) Production of quartz glass powder
JP2798684B2 (en) Purification method of silicon carbide powder
JPS62265164A (en) Calcia magnesia base clinker and manufacture
JP2001328879A (en) Method of producing aluminous porous material
JP3280059B2 (en) Method for producing activated silicon carbide
JP3285621B2 (en) Method for producing silicon nitride powder
JP3035163B2 (en) Silicon nitride sintered body and method for producing the same
JPH03174364A (en) Silicon nitride-based sintered body
JP2731333B2 (en) Silicon nitride sintered body, method of manufacturing the same, silicon nitride powder and method of manufacturing the same
JPH06263410A (en) Method for increasing beta-fraction of powdery silicon nitride
JP2510251B2 (en) Method for manufacturing silicon carbide sintered body
JP2661743B2 (en) Method for producing silicon nitride ingot and silicon nitride powder
JPS6236067A (en) Manufacture of high purity recrystallized silicon carbide base sintered body
JPH02116678A (en) Production of sintered silicon carbide body
JP2002121073A (en) Method of producing silicon nitride filter
JPH0456706A (en) Manufacture of iridium sintered body