JP2015127269A - Sintered compact of silicon carbide and producing method thereof - Google Patents

Sintered compact of silicon carbide and producing method thereof Download PDF

Info

Publication number
JP2015127269A
JP2015127269A JP2013272612A JP2013272612A JP2015127269A JP 2015127269 A JP2015127269 A JP 2015127269A JP 2013272612 A JP2013272612 A JP 2013272612A JP 2013272612 A JP2013272612 A JP 2013272612A JP 2015127269 A JP2015127269 A JP 2015127269A
Authority
JP
Japan
Prior art keywords
slurry
silicon carbide
raw material
sintered body
material powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013272612A
Other languages
Japanese (ja)
Other versions
JP6312431B2 (en
Inventor
中村 浩章
Hiroaki Nakamura
中村  浩章
友幸 淺野
Tomoyuki Asano
友幸 淺野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTK Ceratec Co Ltd
Original Assignee
Nihon Ceratec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Ceratec Co Ltd filed Critical Nihon Ceratec Co Ltd
Priority to JP2013272612A priority Critical patent/JP6312431B2/en
Publication of JP2015127269A publication Critical patent/JP2015127269A/en
Application granted granted Critical
Publication of JP6312431B2 publication Critical patent/JP6312431B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a sintered compact of silicon carbide and a producing method thereof in which suppression of generation frequency of crack etc. due to baking shrinkage in a formed product is achieved.SOLUTION: There is provided a producing method of a ceramic sintered compact in which, by precipitating a part of ingredient powder with elutriation subjected to slurry obtained from supplementation of distribution agent and solvent to ceramic ingredient powder, supernatant of the slurry is recovered, then a formed product is produced by forming a cake of the ingredient powder in the supernatant, and the formed product is subjected to calcination. Due to the elutriation, y% or more of ingredient powder among ingredient powder having a larger diameter than criterion particle diameter to be x% as accumulation in early stage particle diameter distribution is removed. The elutriation is carried out so that 2 dimensional plot (x, y) is positioned in first specified region S1 or second specified region S2.

Description

本発明は、炭化珪素質焼結体およびその製造方法に関する。   The present invention relates to a silicon carbide sintered body and a method for producing the same.

炭化珪素質焼結体は、その高熱伝導性および高ヤング率という特性に鑑みて、半導体製造装置、液晶製造装置用部材またはチャック部材などに用いられている。一方、炭化珪素粉末の成形時または当該成形体の焼成時の収縮むらに由来する残留応力、または、局所的な気孔が焼結体に残存してしまい、焼結体の加工時の応力解放によるまたはポアを基点としたチッピングまたはカケ、ひいては破損をきたす可能性がある。この可能性は、半導体ウエハの大型化、ひいては半導体製造装置などの構成部材としての炭化珪素質焼結体の大型化に伴ってより高くなっている。   Silicon carbide-based sintered bodies are used for semiconductor manufacturing apparatuses, liquid crystal manufacturing apparatus members, chuck members, and the like in view of the characteristics of high thermal conductivity and high Young's modulus. On the other hand, residual stress derived from unevenness of shrinkage at the time of molding of the silicon carbide powder or firing of the molded body, or local pores remain in the sintered body, resulting in stress release during processing of the sintered body. Or there is a possibility of chipping or chipping based on the pores, and eventually damage. This possibility becomes higher as the size of the semiconductor wafer is increased, and as a result, the size of the silicon carbide sintered body as a constituent member of a semiconductor manufacturing apparatus is increased.

そこで、原料粉末の粒径分布の調整、助剤添加量などの配合調整または焼成方法の改良により、成形体の焼結容易化、ひいては焼結体における空隙の発生および密度のばらつき抑制、さらに残留応力の軽減が図られている(特許文献1〜2参照)。   Therefore, by adjusting the particle size distribution of the raw material powder, adjusting the blending amount of the auxiliary agent, etc., or improving the firing method, it becomes easier to sinter the molded body, and further suppresses the generation of voids and density variation in the sintered body, and the residual The stress is reduced (see Patent Documents 1 and 2).

特開2001−247367号公報JP 2001-247367 A 特開2006−240957号公報JP 2006-240957 A

しかし、原料粉末である炭化珪素粉末は、原料の大きな塊(インゴット)の粉砕により得られるため、比較的多量の粗粒を含んでいる。このため、当該原料粉末を含むスラリーが調整され、鋳込み成形などで得られた成形体の密度分布に局所的なむらが生じてしまう。   However, since the silicon carbide powder as the raw material powder is obtained by crushing a large lump (ingot) of the raw material, it contains a relatively large amount of coarse particles. For this reason, the slurry containing the said raw material powder is adjusted, and local nonuniformity will arise in the density distribution of the molded object obtained by casting.

そこで、本発明は、成形体の焼成収縮に由来するクラックなどの発生頻度抑制が図られている炭化珪素質焼結体およびその製造方法を提供することを目的とする。   Accordingly, an object of the present invention is to provide a silicon carbide based sintered body in which the occurrence frequency of cracks derived from firing shrinkage of a molded body is suppressed and a method for producing the same.

本発明は、以下の[1]〜[2]の炭化珪素質焼結体の製造方法および[3]〜[4]の炭化珪素質焼結体を提供する。
[1]最大頻度が12%以下であり、D50が0.7〜1.2[μm]の範囲に含まれ、D90−D50が0.7〜1.1[μm]の範囲に含まれ、かつ、D90−D10が1.2〜1.6[μm]の範囲に含まれている炭化珪素粉末に対してpH調整剤および溶媒を添加することによりスラリーを調整する工程と、前記スラリーに対するエルトリエーションによって原料粉末の一部を沈降させることにより、前記スラリーの上澄みを回収する工程と、前記上澄みに含まれている原料粉末を成形することにより成形体を作製する工程と、前記成形体を焼成することにより焼結体を作製する工程と、を含み、前記エルトリエーションによって、前記スラリーに含まれる粒径が初期粒径分布において累積x%となる基準粒径より大径の原料粉末のうち、y%以上の原料粉末が除去され、2次元プロット(x、y)が、x−y平面において4つの線分L11:x=70(5≦y≦70)、L12:y=2x−135(70≦x≦95)、L13:x=95(55≦y≦95)およびL14:y=x(70≦x≦95)により画定されている第1指定領域に含まれている炭化珪素質焼結体の製造方法。
[2]前記2次元プロット(x、y)が、x−y平面において4つの線分L21:x=70(25≦y≦70)、L22:y=2x−115(70≦x≦85)、L23:y=4x−285(85≦x≦95)およびL24:y=x(70≦x≦95)により画定されている第2指定領域に含まれている[1]記載の方法。
[3][1]記載の方法により製造され、ヤング率が415[GPa]以上であり、かつ、その標準偏差が13.0[GPa]以下である炭化珪素質焼結体。
[4][2]記載の方法により製造され、ヤング率が417[GPa]以上であり、かつ、その標準偏差が8.0[GPa]以下である炭化珪素質焼結体。
The present invention provides a method for producing a silicon carbide sintered body of the following [1] to [2] and a silicon carbide sintered body of [3] to [4].
[1] The maximum frequency is 12% or less, D50 is included in the range of 0.7 to 1.2 [μm], D90-D50 is included in the range of 0.7 to 1.1 [μm], And the process which adjusts a slurry by adding a pH adjuster and a solvent with respect to the silicon carbide powder in which D90-D10 is contained in the range of 1.2-1.6 [micrometers], and the elt with respect to the said slurry A step of recovering the supernatant of the slurry by precipitating a part of the raw material powder by the relation, a step of producing a molded body by molding the raw material powder contained in the supernatant, and firing the molded body And a step of producing a sintered body having a particle diameter larger than a reference particle diameter in which the particle size contained in the slurry is cumulative x% in the initial particle size distribution by the L-trilation. , Y% or more of the raw material powder is removed, a two-dimensional plot (x, y) is, four line segments in the x-y plane L 11: x = 70 (5 ≦ y ≦ 70), L 12: y = 2x -135 (70 ≦ x ≦ 95), L 13 : included in the first designated area defined by x = 95 (55 ≦ y ≦ 95) and L 14 : y = x (70 ≦ x ≦ 95) A method for producing a silicon carbide sintered body.
[2] The two-dimensional plot (x, y) includes four line segments L 21 : x = 70 (25 ≦ y ≦ 70) and L 22 : y = 2x−115 (70 ≦ x ≦) in the xy plane. 85), L 23: y = 4x-285 (85 ≦ x ≦ 95) , and L 24: y = x (70 ≦ x ≦ 95) is included in the second designated area is defined by [1], wherein the method of.
[3] A silicon carbide based sintered body produced by the method according to [1], having a Young's modulus of 415 [GPa] or more and a standard deviation of 13.0 [GPa] or less.
[4] A silicon carbide based sintered body produced by the method according to [2], having a Young's modulus of 417 [GPa] or more and a standard deviation of 8.0 [GPa] or less.

本発明の方法によれば、粗粒の存在に由来して幅広の粒径分布(図1破線参照)を有する原料粉末から調整されたスラリーに対してエルトリエーションが施される。これにより、粗粒の一部が除去され、幅狭になった粒径分布(図1実線参照)を有する原料粉末が得られる。当該原料粉末が用いられることにより成形体の充填率の向上が図られ、これが焼成されることにより、焼成収縮の均質化、ひいては焼結体の相対密度の向上が図られる。その結果、焼結体のヤング率の向上およびヤング率のばらつき(標準偏差)の低下が図られる。   According to the method of the present invention, an elutriation is applied to a slurry prepared from a raw material powder having a wide particle size distribution (see the broken line in FIG. 1) due to the presence of coarse particles. Thereby, a part of the coarse particles is removed, and a raw material powder having a narrowed particle size distribution (see the solid line in FIG. 1) is obtained. By using the raw material powder, the filling rate of the molded body is improved, and by firing, the shrinkage of the sintered body is homogenized and the relative density of the sintered body is improved. As a result, the Young's modulus of the sintered body is improved and the variation (standard deviation) in Young's modulus is reduced.

原料粉末としての炭化珪素粉末の粒径分布調整に関する説明図。Explanatory drawing regarding the particle size distribution adjustment of the silicon carbide powder as raw material powder. 市販の炭化珪素粉末の粒径分布に関する説明図。Explanatory drawing regarding the particle size distribution of commercially available silicon carbide powder. 第1指定範囲および第2指定範囲の説明図。Explanatory drawing of a 1st designated range and a 2nd designated range.

本発明の一実施形態としての炭化珪素質焼結体の製造方法は、(1)スラリー調整工程と、(2)エルトリエーション工程と、(3)成形工程と、(4)焼成工程と、を含んでいる。   The manufacturing method of the silicon carbide based sintered body as one embodiment of the present invention includes (1) a slurry adjustment step, (2) an elutriation step, (3) a molding step, and (4) a firing step. Contains.

(1)スラリー調整行程
炭化珪素粉末に対して、pH調整剤および水が添加された上で、樹脂ボールが媒体として用いられてミリングされることによりスラリーが調整された。pH調整剤は、スラリーのpHを9〜12の範囲に調整できる材料であれば限定されない。
(1) Slurry adjustment process After adding a pH adjuster and water with respect to silicon carbide powder, the slurry was adjusted by using a resin ball as a medium and milling. A pH adjuster will not be limited if it is a material which can adjust pH of a slurry to the range of 9-12.

炭化珪素粉末の当初の粒径分布には、(a)最大頻度が12%以下であり、(b)D50が0.7〜1.2[μm]の範囲に含まれ、(c)D90−D50が0.7〜1.1[μm]の範囲に含まれ、かつ、(d)D90−D10が1.2〜1.6[μm]の範囲に含まれているという特徴がある。   In the initial particle size distribution of the silicon carbide powder, (a) the maximum frequency is 12% or less, (b) D50 is included in the range of 0.7 to 1.2 [μm], and (c) D90− D50 is included in the range of 0.7 to 1.1 [μm], and (d) D90-D10 is included in the range of 1.2 to 1.6 [μm].

図2には市販の炭化珪素粉末その1の粒径分布が一点鎖線で示され、市販の炭化珪素粉末その2の粒径分布が二点鎖線で示され、かつ、比較のために市販のアルミナ粉末の粒径分布が破線で示されている。市販の炭化珪素粉末の粒径分布曲線は比較的ピークが低くて幅広である一方、市販のアルミナ粉末の粒径分布曲線は比較的ピークが高くて幅狭である。市販の炭化珪素粉末その1の最大頻度は約8%であり、D50が0.87[μm]であり、D90−D10が1.45[μm]であり、かつ、D90−D50が0.96[μm]である。市販の炭化珪素粉末その2の最大頻度は約10%であり、D50が1.01[μm]であり、D90−D10が1.37[μm]であり、かつ、D90−D50が0.83[μm]である。   In FIG. 2, the particle size distribution of commercial silicon carbide powder No. 1 is shown by a one-dot chain line, the particle size distribution of commercial silicon carbide powder No. 2 is shown by a two-dot chain line, and commercially available alumina for comparison. The particle size distribution of the powder is indicated by a broken line. The particle size distribution curve of the commercially available silicon carbide powder has a relatively low peak and is wide, while the particle size distribution curve of the commercially available alumina powder has a relatively high peak and a narrow width. The maximum frequency of the commercially available silicon carbide powder 1 is about 8%, D50 is 0.87 [μm], D90-D10 is 1.45 [μm], and D90-D50 is 0.96. [Μm]. The maximum frequency of commercially available silicon carbide powder No. 2 is about 10%, D50 is 1.01 [μm], D90-D10 is 1.37 [μm], and D90-D50 is 0.83. [Μm].

(2)エルトリエーション工程
スラリーが容器に入れられて所定期間にわたり静置され、比較的大径の粉末(粗粒)が選択的に容器底面に堆積する。堆積した大径粉末群の上澄みに滞留しているスラリーが送液ポンプなどで回収されるエルトリエーションが実施される。pH調整剤の添加により、粉末の凝集および2次粉末化が抑制され、1次粉末の状態における効率のよい分級が促されるとともに、粉末の急な沈降が抑制されて回収が容易になる。
(2) L-triation step The slurry is placed in a container and allowed to stand for a predetermined period, and a relatively large diameter powder (coarse particles) is selectively deposited on the bottom surface of the container. An elutriation is performed in which the slurry staying in the supernatant of the accumulated large-diameter powder group is collected by a liquid feed pump or the like. The addition of the pH adjuster suppresses the aggregation and secondary powdering of the powder, promotes efficient classification in the state of the primary powder, and suppresses rapid sedimentation of the powder, thereby facilitating recovery.

たとえば図1に破線で示されている比較的幅広の粒径分布を有する原料粉末から調整されたスラリーに対して1回または複数回にわたってエルトリエーションが施される。これにより、図1に実線で示されている比較的幅狭の粒径分布を有する原料粉末が含まれるスラリーが回収される。   For example, the slurry prepared from the raw material powder having a relatively wide particle size distribution shown by a broken line in FIG. 1 is subjected to elutriation once or a plurality of times. Thereby, the slurry containing the raw material powder having a relatively narrow particle size distribution shown by the solid line in FIG. 1 is recovered.

回収された原料粉末の粒径分布(図1実線参照)は、原料粉末の初期粒径分布(図1破線参照)の基準粒径Dxよりも大径の分布範囲S(図1太線参照)のうち、y%(図1斜線部分参照)が除去されたことを示している。基準粒径Dxは、粒径分布の累積がx%になる粒径を意味し、たとえばx=50の場合はメディアン径D50に相当する。 The particle size distribution of the recovered raw material powder (see the solid line in FIG. 1) is a distribution range S (see the thick line in FIG. 1) larger than the standard particle size D x of the initial particle size distribution of the raw material powder (see the broken line in FIG. 1). Of these, y% (see the hatched portion in FIG. 1) is removed. Reference diameter D x denotes a particle size of which cumulative particle size distribution is x%, for example in the case of x = 50 corresponds to a median diameter D 50.

2次元プロット(x、y)が、x−y平面において図3に一点鎖線で示されている4つの線分L11:x=70(5≦y≦70)、L12:y=2x−135(70≦x≦95)、L13:x=95(55≦y≦95)およびL14:y=x(70≦x≦95)により画定されている第1指定領域に含まれるようにエルトリエーションが実施される。 In the two-dimensional plot (x, y), four line segments L 11 : x = 70 (5 ≦ y ≦ 70) indicated by a one-dot chain line in FIG. 3 in the xy plane, L 12 : y = 2x− 135 (70 ≦ x ≦ 95), L 13 : x = 95 (55 ≦ y ≦ 95) and L 14 : y = x (70 ≦ x ≦ 95) so as to be included in the first designated region An e-triation is performed.

2次元プロット(x、y)が、x−y平面において図3に二点鎖線で示されている4つの線分L21:x=70(25≦y≦70)、L22:y=2x−115(70≦x≦85)、L23:y=4x−285(85≦x≦95)およびL24:y=x(70≦x≦95)により画定されている第2指定領域に含まれるようにエルトリエーションが実施されることがより好ましい。 The two-dimensional plot (x, y) shows four line segments L 21 : x = 70 (25 ≦ y ≦ 70) indicated by a two-dot chain line in FIG. 3 in the xy plane, and L 22 : y = 2x. -115 (70 ≦ x ≦ 85), L 23 : included in the second designated region defined by y = 4x−285 (85 ≦ x ≦ 95) and L 24 : y = x (70 ≦ x ≦ 95) It is more preferable that the elutriation is performed as described above.

(3)成形工程
回収されたスラリーに対して分散剤(または分散剤および焼結助剤)が添加されて再混合される。分散剤は、ポリカルボン酸系分散剤またはポリアクリル酸系分散剤などの一般的な分散剤が用いられる。この段階でスラリーに対してpH調整剤および水が不足分だけ追加されてもよい。回収されたスラリーが乾燥されることにより原料粉末が得られた上で、当該原料粉末に分散剤などが添加されて再びスラリーが調整されてもよい。混合ミルより払い出されたスラリーに、バインダが添加された上で真空攪拌脱泡が行われる。スラリーが石膏型に流し込まれて、鋳込み成形により成形体が作製される。成形方法は、排泥鋳込み成形または真空吸引成形法などの他の方法が用いられてもよい。
(3) Molding step A dispersant (or dispersant and sintering aid) is added to the recovered slurry and remixed. As the dispersant, a general dispersant such as a polycarboxylic acid-based dispersant or a polyacrylic acid-based dispersant is used. At this stage, a pH adjusting agent and water may be added in an insufficient amount to the slurry. The recovered slurry may be dried to obtain a raw material powder, and then a dispersant may be added to the raw material powder to adjust the slurry again. The slurry discharged from the mixing mill is subjected to vacuum stirring and defoaming after a binder is added. The slurry is poured into a gypsum mold, and a molded body is produced by casting. As the forming method, other methods such as waste mud casting or vacuum suction forming may be used.

(4)焼成工程
成形体が乾燥された後、真空または適当な雰囲気において、所定の温度範囲で保持されることにより焼結体が得られる。
(4) Firing step After the molded body is dried, a sintered body is obtained by being held in a predetermined temperature range in a vacuum or in an appropriate atmosphere.

(実施例)
(実施例1)
スタルク製UF−10の炭化珪素粉末100重量部に対して、pH調整剤として0.5重量部の水酸化テトラアンモニウムヒドロキシドが添加され、さらに50重量部のイオン交換水が添加された上で、18時間ミリングされることによりスラリーが調整された。
(Example)
Example 1
After adding 0.5 parts by weight of tetraammonium hydroxide as a pH adjuster and 50 parts by weight of ion-exchanged water to 100 parts by weight of Stark UF-10 silicon carbide powder, The slurry was adjusted by milling for 18 hours.

このスラリーが容器に入れられて5時間にわたり静置されることにより、容器の底に粗粒を含む比較的大径の粉末を堆積させた。さらに、スラリーのpHが10.5に調整され、、かつ、スラリー粘度が180[mPa・s]に調節された。この状態で、上澄みに滞留したスラリーのみが送液ポンプにより回収された。(x、y)=(70、5)であった。   The slurry was placed in a container and allowed to stand for 5 hours, whereby a relatively large-diameter powder containing coarse particles was deposited on the bottom of the container. Further, the pH of the slurry was adjusted to 10.5, and the slurry viscosity was adjusted to 180 [mPa · s]. In this state, only the slurry retained in the supernatant was collected by the liquid feed pump. (X, y) = (70, 5).

2次元プロット(x、y)の位置は容器内におけるスラリーの静置時間のほか、スラリーのpHおよび粘度が調整されることにより調整される。スラリーのpHが9.0〜12.0の範囲に調節されることで炭化珪素原料粉末の凝集(一次粒子化)が抑制される。スラリー粘度は水分量、pH調整剤濃度、または増粘剤の添加量などにより調整可能であり、25〜380[mPa・s]に調整されることで当該スラリーに含有されている原料粉末の沈降速度が過度に高速になることが抑制される。   The position of the two-dimensional plot (x, y) is adjusted by adjusting the pH and viscosity of the slurry in addition to the standing time of the slurry in the container. By adjusting the pH of the slurry to a range of 9.0 to 12.0, aggregation (primary particle formation) of the silicon carbide raw material powder is suppressed. The slurry viscosity can be adjusted by the amount of water, the pH adjusting agent concentration, the amount of thickener added, etc., and by adjusting the slurry viscosity to 25 to 380 [mPa · s], the raw material powder contained in the slurry is settled. An excessively high speed is suppressed.

回収スラリーに対して、ホウ素源としてのスタルク製1500FのBCと、カーボン源としての東海カーボン社製Aqua Black001とが添加された。炭化珪素100重量部に対する添加量は、ホウ素源が0.6重量部に調節され、カーボン源が固形分で3.0重量部に調節された。分散剤として東亞合成製A−6114(ポリカルボン酸アンモニウム塩系)がカーボン源の固形分に対して3.0重量部添加された。その上で、原料粉末が再び18時間にわたりミリングされた後、得られたスラリーにバインダが5.0重量部添加され、1hrにわたり攪拌脱泡された。 Stark 1500 F B 4 C as a boron source and Tokai Carbon Co. Aqua Black001 as a carbon source were added to the recovered slurry. With respect to 100 parts by weight of silicon carbide, the boron source was adjusted to 0.6 parts by weight and the carbon source was adjusted to 3.0 parts by weight in solid content. A-6114 (polycarboxylic acid ammonium salt type) manufactured by Toagosei Co., Ltd. was added as a dispersant to 3.0 parts by weight based on the solid content of the carbon source. Further, after the raw material powder was milled again for 18 hours, 5.0 parts by weight of a binder was added to the resulting slurry, and the mixture was stirred and degassed for 1 hr.

(成形工程)
スラリーが加圧されながら石膏型に流し込まれ、直径500[mm]、厚さ20[mm]の略円板形状の成形体が鋳込み成形された。石膏からの不純物が入らない程度に成形体の外周が生加工された。
(焼成工程)
成形体が非酸化雰囲気において、2050[℃]で3.5[hr]にわたり保持されることにより、実施例1の炭化珪素質焼結体が作製された。
(実施例2〜8)
2次元プロット(x、y)で表わされる原料粉末の粒度分布の調節態様(表1参照)のほかは、実施例1と同様の条件下で実施例2〜8の炭化珪素質焼結体が作製された。
(Molding process)
The slurry was poured into a plaster mold while being pressurized, and a substantially disk-shaped molded body having a diameter of 500 [mm] and a thickness of 20 [mm] was cast and molded. The outer periphery of the molded body was raw-processed to such an extent that impurities from gypsum did not enter.
(Baking process)
The molded body was held at 2050 [° C.] for 3.5 [hr] in a non-oxidizing atmosphere, whereby the silicon carbide based sintered body of Example 1 was produced.
(Examples 2 to 8)
Except for the aspect of adjusting the particle size distribution of the raw material powder represented by the two-dimensional plot (x, y) (see Table 1), the silicon carbide based sintered bodies of Examples 2 to 8 under the same conditions as in Example 1 It was made.

(評価方法)
各実施例の炭化珪素質焼結体の特性などが次のように評価された。原料粉末の粒度分布は、堀場製作所製/LA−920レーザ回折/散乱式装置を用いて測定された。成形体の相対密度は、生加工後の寸法および重量に基づいて算出された。焼結体の相対密度は、アルキメデス法により算出した。
(Evaluation method)
The characteristics of the silicon carbide sintered body of each example were evaluated as follows. The particle size distribution of the raw material powder was measured using a Horiba / LA-920 laser diffraction / scattering type device. The relative density of the molded body was calculated based on the size and weight after raw processing. The relative density of the sintered body was calculated by the Archimedes method.

焼結体が厚さ方向に均等に2分割され、かつ、中央部分およびその外側において径方向に均等に離間した4つの部分のそれぞれが切り出されることにより10個の試験片が準備された。加工中のクラックの有無が確認された後、各試験片のヤング率が、日本テクノプラス社製/JE−RTによる共振法(JIS−1602)にしたがって測定された。10個の試験片に対するヤング率測定結果の標準偏差σ(ばらつき)が評価された。   The sintered body was equally divided into two in the thickness direction, and 10 test pieces were prepared by cutting out the central portion and each of the four portions equally spaced in the radial direction outside thereof. After confirming the presence or absence of cracks during processing, the Young's modulus of each test piece was measured according to a resonance method (JIS-1602) by JE-RT manufactured by Nippon Techno-Plus. The standard deviation σ (variation) of Young's modulus measurement results for 10 test pieces was evaluated.

表1には、各実施例の炭化珪素質焼結体について原料粉末の粒度分布の調節態様等とともに、成形体および焼結体の特性測定結果がまとめて示されている。   Table 1 collectively shows the measurement results of the characteristics of the molded body and the sintered body, along with the adjustment mode of the particle size distribution of the raw material powder, etc., for the silicon carbide sintered body of each example.

図2には、各実施例の焼結体の2次元プロット(x、y)が、該当数字付円により表わされている。図2および表1から明らかなように、2次元プロット(x、y)が第1指定領域S1に含まれている実施例1〜8の炭化珪素質焼結体には、クラックがみられず、ヤング率は415〜425[GPa]であり、かつ、その標準偏差σは5.0〜13.0[GPa]であった。プロット(x、y)が第2指定領域S2に含まれている実施例2、3、5、6および8の炭化珪素質焼結体のヤング率の標準偏差σは5.0〜8.0[GPa]であり、他の実施例1、4および7の炭化珪素質焼結体のそれと比較してさらに小さい。   In FIG. 2, a two-dimensional plot (x, y) of the sintered body of each example is represented by a circle with a corresponding number. As is clear from FIG. 2 and Table 1, no cracks are observed in the silicon carbide sintered bodies of Examples 1 to 8 in which the two-dimensional plot (x, y) is included in the first designated region S1. The Young's modulus was 415 to 425 [GPa], and the standard deviation σ was 5.0 to 13.0 [GPa]. The standard deviation σ of the Young's modulus of the silicon carbide based sintered bodies of Examples 2, 3, 5, 6 and 8 in which the plot (x, y) is included in the second designated region S2 is 5.0 to 8.0. [GPa], which is smaller than those of the other silicon carbide sintered bodies of Examples 1, 4 and 7.

(比較例)
2次元プロット(x、y)で表わされる原料粉末の粒度分布の調節態様のほかは、実施例1と同様の条件下で比較例1〜5の炭化珪素質焼結体が作製された。各比較例の炭化珪素質焼結体について原料粉末の粒度分布の調節態様等とともに、成形体および焼結体のクラックの有無観測結果ならびにヤング率および標準偏差σの測定結果がまとめて示されている。
(Comparative example)
The silicon carbide based sintered bodies of Comparative Examples 1 to 5 were produced under the same conditions as in Example 1 except for the aspect of adjusting the particle size distribution of the raw material powder represented by the two-dimensional plot (x, y). For the silicon carbide sintered body of each comparative example, together with the adjustment mode of the particle size distribution of the raw material powder, the observation results of the presence or absence of cracks in the molded body and the sintered body, and the measurement results of Young's modulus and standard deviation σ are collectively shown. Yes.

図2には、各比較例の焼結体の2次元プロット(x、y)が、該当数字付三角により表わされている。図2および表2から明らかなように、2次元プロット(x、y)が第1指定領域S1から外れている比較例1〜5の炭化珪素質焼結体のうち、比較例3および5の炭化珪素質焼結体にはクラックがみられた。比較例1および2の炭化珪素質焼結体のヤング率は実施例1〜8のいずれよりも低い。比較例2および3の炭化珪素質焼結体のヤング率の標準偏差σは実施例1〜8のいずれよりも大きい。   In FIG. 2, a two-dimensional plot (x, y) of the sintered body of each comparative example is represented by a triangle with a number. As apparent from FIG. 2 and Table 2, among the silicon carbide based sintered bodies of Comparative Examples 1 to 5 in which the two-dimensional plot (x, y) deviates from the first designated region S1, Comparative Examples 3 and 5 Cracks were observed in the silicon carbide sintered body. The Young's modulus of the silicon carbide sintered bodies of Comparative Examples 1 and 2 is lower than that of any of Examples 1-8. The standard deviation σ of the Young's modulus of the silicon carbide sintered bodies of Comparative Examples 2 and 3 is larger than any of Examples 1-8.

S1‥第1指定領域、S2‥第2指定領域。 S1... First designated area, S2... Second designated area.

Claims (4)

最大頻度が12%以下であり、D50が0.7〜1.2[μm]の範囲に含まれ、D90−D50が0.7〜1.1[μm]の範囲に含まれ、かつ、D90−D10が1.2〜1.6[μm]の範囲に含まれているセラミックス原料粉末に対して分散剤および溶媒を添加することによりスラリーを調整する工程と、
前記スラリーに対するエルトリエーションによって原料粉末の一部を沈降させることにより、前記スラリーの上澄みを回収する工程と、
前記上澄みに含まれている原料粉末を成形することにより成形体を作製する工程と、
前記成形体を焼成することにより焼結体を作製する工程と、を含み、
前記エルトリエーションによって、前記スラリーに含まれる粒径が初期粒径分布において累積x%となる基準粒径より大径の原料粉末のうち、y%以上の原料粉末が除去され、2次元プロット(x、y)が、x−y平面において4つの線分L11:x=70(5≦y≦70)、L12:y=2x−135(70≦x≦95)、L13:x=95(55≦y≦95)およびL14:y=x(70≦x≦95)により画定されている第1指定領域に含まれているセラミックス焼結体の製造方法。
The maximum frequency is 12% or less, D50 is included in the range of 0.7 to 1.2 [μm], D90-D50 is included in the range of 0.7 to 1.1 [μm], and D90 A step of adjusting the slurry by adding a dispersant and a solvent to the ceramic raw material powder containing -D10 in the range of 1.2 to 1.6 [μm];
Recovering the supernatant of the slurry by precipitating a part of the raw material powder by elutriation to the slurry;
A step of producing a molded body by molding the raw material powder contained in the supernatant;
Producing a sintered body by firing the molded body,
By the L-trilation, y% or more of the raw material powder having a diameter larger than the reference particle diameter that is cumulative x% in the initial particle size distribution is removed, and a two-dimensional plot (x , Y) are four line segments L 11 : x = 70 (5 ≦ y ≦ 70), L 12 : y = 2x−135 (70 ≦ x ≦ 95), L 13 : x = 95 in the xy plane. (55 ≦ y ≦ 95) and L 14 : A method for producing a ceramic sintered body included in the first designated region defined by y = x (70 ≦ x ≦ 95).
前記2次元プロット(x、y)が、x−y平面において4つの線分L21:x=70(25≦y≦70)、L22:y=2x−115(70≦x≦85)、L23:y=4x−285(85≦x≦95)およびL24:y=x(70≦x≦95)により画定されている第2指定領域に含まれている請求項1記載の方法。 The two-dimensional plot (x, y) has four line segments L 21 : x = 70 (25 ≦ y ≦ 70), L 22 : y = 2x−115 (70 ≦ x ≦ 85) in the xy plane, The method according to claim 1, wherein the method is included in a second designated area defined by L 23 : y = 4x−285 (85 ≦ x ≦ 95) and L 24 : y = x (70 ≦ x ≦ 95). 請求項1記載の方法により製造され、ヤング率が415[GPa]以上であり、かつ、その標準偏差が13.0[GPa]以下であるセラミックス焼結体。   A ceramic sintered body produced by the method according to claim 1 and having a Young's modulus of 415 [GPa] or more and a standard deviation of 13.0 [GPa] or less. 請求項2記載の方法により製造され、ヤング率が417[GPa]以上であり、かつ、その標準偏差が8.0[GPa]以下であるセラミックス焼結体。   A ceramic sintered body produced by the method according to claim 2 and having a Young's modulus of 417 [GPa] or more and a standard deviation of 8.0 [GPa] or less.
JP2013272612A 2013-12-27 2013-12-27 Method for manufacturing silicon carbide sintered body Active JP6312431B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013272612A JP6312431B2 (en) 2013-12-27 2013-12-27 Method for manufacturing silicon carbide sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013272612A JP6312431B2 (en) 2013-12-27 2013-12-27 Method for manufacturing silicon carbide sintered body

Publications (2)

Publication Number Publication Date
JP2015127269A true JP2015127269A (en) 2015-07-09
JP6312431B2 JP6312431B2 (en) 2018-04-18

Family

ID=53837463

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013272612A Active JP6312431B2 (en) 2013-12-27 2013-12-27 Method for manufacturing silicon carbide sintered body

Country Status (1)

Country Link
JP (1) JP6312431B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03213142A (en) * 1990-01-17 1991-09-18 Ngk Insulators Ltd Method for purifying particulate material
US5188780A (en) * 1991-04-18 1993-02-23 Regents Of The University Of California Method for preparation of dense ceramic products
JPH07109172A (en) * 1993-10-08 1995-04-25 Natl Inst For Res In Inorg Mater Sic sintered body and production thereof
JPH0834603A (en) * 1994-04-05 1996-02-06 Natl Inst For Res In Inorg Mater Fine silicon nitride powder and its production
JP2005298280A (en) * 2004-04-13 2005-10-27 Toto Ltd Silicon carbide sintered compact and method for producing the same
JP2006347806A (en) * 2005-06-15 2006-12-28 Nippon Steel Corp High rigidity ceramic material, and method for producing the same
JP2007254282A (en) * 1995-04-18 2007-10-04 Tosoh Corp Process of preparing sintered ito compact
JP2010241613A (en) * 2009-04-01 2010-10-28 Murata Mfg Co Ltd Barium titanate-based powder and method for producing the same, dielectric ceramic and laminated ceramic capacitor

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03213142A (en) * 1990-01-17 1991-09-18 Ngk Insulators Ltd Method for purifying particulate material
US5188780A (en) * 1991-04-18 1993-02-23 Regents Of The University Of California Method for preparation of dense ceramic products
JPH07109172A (en) * 1993-10-08 1995-04-25 Natl Inst For Res In Inorg Mater Sic sintered body and production thereof
JPH0834603A (en) * 1994-04-05 1996-02-06 Natl Inst For Res In Inorg Mater Fine silicon nitride powder and its production
JP2007254282A (en) * 1995-04-18 2007-10-04 Tosoh Corp Process of preparing sintered ito compact
JP2005298280A (en) * 2004-04-13 2005-10-27 Toto Ltd Silicon carbide sintered compact and method for producing the same
JP2006347806A (en) * 2005-06-15 2006-12-28 Nippon Steel Corp High rigidity ceramic material, and method for producing the same
JP2010241613A (en) * 2009-04-01 2010-10-28 Murata Mfg Co Ltd Barium titanate-based powder and method for producing the same, dielectric ceramic and laminated ceramic capacitor

Also Published As

Publication number Publication date
JP6312431B2 (en) 2018-04-18

Similar Documents

Publication Publication Date Title
CN107207363B (en) Cubic boron nitride polycrystalline material, cutting tool, wear-resistant tool, abrasive tool, and method for producing cubic boron nitride polycrystalline material
US9376348B2 (en) Method for making a dense sic based ceramic product
JP6853951B2 (en) cBN sintered body and cutting tool
JP2008133160A (en) Boron carbide sintered compact and method of manufacturing the same
TW201605763A (en) Silicon nitride powder, silicon nitride sintered body and circuit substrate, and production method for said silicon nitride powder
EP3732149A1 (en) Sinterable powder for making a dense slip casted pressureless sintered sic based ceramic product
TWI640615B (en) Electrofused alumina grains, production method for electrofused alumina grains, grinding stone, and coated abrasive
JP5544567B2 (en) Method for producing silicon nitride ceramics
JP6172048B2 (en) Silicon carbide fine powder and method for producing the same
CN110088061A (en) It is orientated AlN sintered body and its preparation method
JP6312431B2 (en) Method for manufacturing silicon carbide sintered body
JPWO2018110560A1 (en) Silicon nitride powder, mold release agent for polycrystalline silicon ingot, and method for producing polycrystalline silicon ingot
JP7022817B2 (en) Ceramic structure
JP2017193477A (en) Oxide sintered body and sputtering target, and methods for producing same
JP6690735B2 (en) Silicon nitride powder, release agent for polycrystalline silicon ingot, and method for producing polycrystalline silicon ingot
JPWO2019202753A1 (en) Oxide sintered body, sputtering target, and method for manufacturing oxide thin film
JP2006256894A (en) Raw material for silicon carbide sintered compact and silicon carbide sintered compact obtained using the same
JP6282943B2 (en) Silicon nitride sintered body and impact wear-resistant member provided with the same
JPWO2014123153A1 (en) Alumina sintered body, abrasive grains, grindstone, polishing cloth, and method for producing alumina sintered body
JP2014141359A (en) Sialon-base sintered compact
JP6721793B2 (en) Aluminum nitride sintered body and manufacturing method thereof
JP2018131372A (en) Rip technique of silicon acid nitride, and product of the same
JP5937507B2 (en) Ceramic granules, ceramic sintered body, and channel member
JP2007254190A (en) Aluminum nitride sintered compact, method of manufacturing aluminum nitride, and member
JP2017538651A (en) Ceramic powder with controlled size distribution

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20160401

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161020

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170905

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171017

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180313

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180320

R150 Certificate of patent or registration of utility model

Ref document number: 6312431

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250