JPS62265164A - Calcia magnesia base clinker and manufacture - Google Patents

Calcia magnesia base clinker and manufacture

Info

Publication number
JPS62265164A
JPS62265164A JP61107618A JP10761886A JPS62265164A JP S62265164 A JPS62265164 A JP S62265164A JP 61107618 A JP61107618 A JP 61107618A JP 10761886 A JP10761886 A JP 10761886A JP S62265164 A JPS62265164 A JP S62265164A
Authority
JP
Japan
Prior art keywords
calcia
magnesia
clinker
less
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61107618A
Other languages
Japanese (ja)
Other versions
JPH04944B2 (en
Inventor
久仁雄 松井
滝 英和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Nihon Kagaku Kogyo KK
Original Assignee
Shin Nihon Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Nihon Kagaku Kogyo KK filed Critical Shin Nihon Kagaku Kogyo KK
Priority to JP61107618A priority Critical patent/JPS62265164A/en
Publication of JPS62265164A publication Critical patent/JPS62265164A/en
Publication of JPH04944B2 publication Critical patent/JPH04944B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は塩基性耐火物の原料に適する高純度、高密度か
つ耐消化性に優れるカルシア・マグネシア系クリンカー
およびその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a calcia-magnesia clinker having high purity, high density and excellent digestibility and suitable as a raw material for basic refractories, and a method for producing the same.

[従来の技術] 近年、製鋼業ではますます鋼の高級化や連続鋳造等、操
業の合理化への指向が強まり、転炉ヤ取鍋の高温化、あ
るいは取鍋精錬法の導入が行なわれている。そのため転
炉や取鋼精錬炉に使用される耐火物に対しても、従来用
いられてきたマグネシア・カーボン質、マグネシア・ク
ロム質、ハイアルミナ質、ジルコン質耐大物よりも、苛
酷な条件に耐えるものが望まれている。
[Conventional technology] In recent years, the steel manufacturing industry has become increasingly geared towards streamlining operations, such as using higher quality steel and continuous casting, leading to the introduction of higher temperatures in converters and ladles, or the introduction of ladle refining methods. There is. Therefore, the refractories used in converters and steel refining furnaces can withstand harsher conditions than the conventionally used magnesia/carbon, magnesia/chromium, high alumina, and zircon refractories. something is desired.

塩基性耐火物材料として、カルシアは融点が2580’
Cと高く、耐熱性、耐熱衝撃性が高い。
As a basic refractory material, calcia has a melting point of 2580'
It has a high heat resistance and thermal shock resistance.

また鋼中介在物のAl2O3を吸収するなど優れた性質
を持っている。我国では資源的にも恵まれていることか
ら、製鋼炉用耐大物として大いに期待されている。
It also has excellent properties such as absorbing Al2O3 inclusions in steel. Since our country is rich in resources, it is highly anticipated as a durable material for steelmaking furnaces.

カルシア貿耐大物の中でもカルシア・マグネシア系耐火
物はカルシア・マグネシア各々の本来持っている優れた
特性を損うことなく持ち合わせているという点で長所が
あり、今後、製鋼炉用耐大物、特に新規な用途として、
取鍋精錬炉やタンディツシュなどへの使用が期待される
。それにも関わらず、上記新規用途にカルシア・マグネ
シア系耐火物が本格的に使用されていない大きな理由は
、カルシアは水に対する耐消化性が低く、従って、それ
を−成分として含有しているカルシア・マグネシア系ク
リンカーも耐消化性が低く、取扱い、貯蔵、あるいは、
れんが製造工程にむずかしいところがあること、および
高密度クリンカーが得られていないため、耐スラグ性、
および強度が不充分であることなどである。
Among calcia-based refractories, calcia-magnesia-based refractories have the advantage of possessing the excellent properties of calcia and magnesia without compromising their respective properties. As a use,
It is expected to be used in ladle smelting furnaces and tanditshu. Despite this, the main reason why calcia-magnesia-based refractories are not being used in earnest for the above-mentioned new applications is that calcia has low resistance to water digestion. Magnesia-based clinker also has low digestibility and is difficult to handle, store, or
Due to the difficulty of the brick manufacturing process and the lack of high-density clinker, slag resistance,
and insufficient strength.

耐消化性を改善する方法として、従来はFe2O3、A
12oコ、TiO2、 SiO2などの不純物をクリンカー中に多量に含ませる
ことによって耐消化性の改善を図っている。
Conventionally, as a method to improve digestion resistance, Fe2O3, A
Digestion resistance is improved by incorporating large amounts of impurities such as 12O2, TiO2, and SiO2 into the clinker.

例えば、CaOまたはCaO+MQOにFe2O3、C
r2o3、TiO2の一種または二種以上を5〜10重
量%含有させる方法(特開昭54−131612号公報
)、CaOまたはCaOとMCl0を主成分とし、Fe
2030.4〜1.2重量%、TiO20,1〜0.5
重量%、SiO21,5重最%以下、Al2031.0
重量%以下を含み、かつFe2O3、TiO2、SiO
2、Al2O3の合量が0.5〜3重但型組する方法(
特開昭59−35060号公報)などがある。これらは
いずれもCaOまたはMCl0と低融点化合物を形成す
る不純物を添加することによりカルシア結晶をそれら低
融点化合物で被覆し、高い耐消化性を得ようとするもの
である。また、MCJO,cao、Fe20)の合計が
99重量%以上、MgO10重量%以上、Fe2030
.2〜5重堡%であり、鉄成分の1部をペリクレース結
晶中に固溶させた高密度マグネシア・カルシアクリンカ
−(特開昭60−112666号公報)なども報告され
ている。
For example, Fe2O3, C in CaO or CaO+MQO
A method of containing 5 to 10% by weight of one or more of r2o3 and TiO2 (Japanese Unexamined Patent Publication No. 131612/1983), containing CaO or CaO and MCl0 as main components, and Fe
2030.4-1.2% by weight, TiO20.1-0.5
Weight%, SiO21.5% or less, Al2031.0
Contains % by weight or less, and contains Fe2O3, TiO2, SiO
2. A method in which the total amount of Al2O3 is 0.5 to 3 layers (
JP-A No. 59-35060). In all of these methods, an impurity that forms a low melting point compound with CaO or MCl0 is added to coat the calcia crystal with the low melting point compound, thereby obtaining high digestion resistance. In addition, the total of MCJO, cao, Fe20) is 99% by weight or more, MgO is 10% by weight or more, Fe2030
.. A high-density magnesia-calcia clinker (Japanese Patent Application Laid-Open No. 112666/1983) in which a part of the iron component is solid-dissolved in the periclase crystal has been reported.

その他の方法として、水洗して塩素イオンを0.4重量
%以下にした水酸化マグネシウムスラリーに軽焼ドロマ
イトまたは軽焼石灰を添加、消和して得た原料を焼成し
て、MgOとCaOの合計が99重担%以上で嵩比重の
高いマグネシア・ドロマイトクリンカ−とする方法(特
公昭4B−16322号公報)が報告されている。これ
は、嵩比重を高めることにより、ある程度の耐消化性を
得ようとするものである。
Another method is to add light burnt dolomite or light burnt lime to magnesium hydroxide slurry that has been washed with water to reduce the chlorine ion content to 0.4% by weight or less, and then slaked the resulting raw material, which is then fired. A method (Japanese Patent Publication No. 4B-16322) has been reported to produce magnesia dolomite clinker having a total loading of 99% or more and a high bulk specific gravity. This is an attempt to obtain a certain degree of digestion resistance by increasing the bulk specific gravity.

以上の従来技術は、クリンカーの耐消化性を本質的に改
善しようとするものであるが、クリンカー表面を水和し
ない物質でコーティングする方法もいくつか提案されて
いる。たとえば溶融法のCaO耐火粒子を加熱炭酸化す
る方法(特開昭56−88825号公報)や、遊離石灰
を含有するクリンカーを二酸化炭素含有雰囲気中、95
0℃以上に加熱し、次いで冷却してクリンカー表面に炭
酸カルシウム保護層を形成させる方法(特開昭60−9
0858号公報)などがある。
Although the above-mentioned conventional techniques essentially attempt to improve the digestion resistance of clinker, several methods have also been proposed in which the clinker surface is coated with a substance that does not hydrate. For example, there is a method of heating and carbonating CaO refractory particles by melting method (Japanese Unexamined Patent Application Publication No. 1988-88825), or a method of heating and carbonating CaO refractory particles using a melting method, or using a clinker containing free lime in a carbon dioxide-containing atmosphere at 95%
A method of forming a protective layer of calcium carbonate on the clinker surface by heating to 0°C or higher and then cooling (Japanese Patent Laid-Open No. 60-9
0858 Publication).

[発明が解決しようとする問題点] 上記従来技術において、不純物を添加する方法は添加す
る不純物がCaOと低融点化合物を作り、高温での耐蝕
性や強度を劣化させ、カルシア、マグネシアが本来持っ
ている優れた性質を損うという結果となっている。また
、ペリクレース結晶中に鉄成分を固溶させる方法につい
ても、使用を繰り返すことにより、鉄成分が粒界に移動
して、耐蝕性や強度を劣化させる恐れがあり、純度も低
いために用途も限定される。ざらに、これらの方法で得
られたクリンカーの耐消化性は本発明者らの意図する程
度には遅していない。また、特公昭48−16322号
公報に記載されている方法は、本発明者らの試験では、
クリンカー中にカルシアの粗大結晶が多数存在し、高高
密度を有するクリンカーは得られても、耐消化性はよく
ない。
[Problems to be Solved by the Invention] In the above-mentioned conventional technology, the method of adding impurities causes the added impurities to form low melting point compounds with CaO, which deteriorates the corrosion resistance and strength at high temperatures. This results in the loss of the excellent properties that it possesses. In addition, with regard to the method of dissolving iron components in periclase crystals, repeated use may cause the iron components to migrate to grain boundaries, deteriorating corrosion resistance and strength, and the purity is low, making it difficult to use. Limited. In general, the digestion resistance of the clinkers obtained by these methods is not as slow as the inventors intended. In addition, the method described in Japanese Patent Publication No. 48-16322, in tests conducted by the present inventors,
Many coarse crystals of calcia exist in the clinker, and even if a clinker with high density is obtained, its resistance to digestion is poor.

クリンカー表面に炭酸カルシウム層を形成させる方法は
、耐消化性の向上という点では明らかに効果があるが、
もとのクリンカーの物性が満足されるべきものでなけれ
ば効果も小さい。さらに、最適な条件等、不明な点も多
く、技術的に確立されているとは言い難い。
The method of forming a calcium carbonate layer on the clinker surface is clearly effective in improving digestion resistance, but
If the physical properties of the original clinker are not satisfactory, the effect will be small. Furthermore, there are many unknown points, such as optimal conditions, and it is difficult to say that it is technically established.

本発明の目的は、高純度、高密度であり、 −かつ耐消
化性に優れるカルシア・マグネシア系クリンカーおよび
その製造方法を提供することにある。
An object of the present invention is to provide a calcia-magnesia clinker that has high purity, high density, and excellent digestion resistance, and a method for producing the same.

[問題点を解決するための手段] 本発明はカルシア・マグネシア系クリンカーの高純度を
保ちつつ、高耐消化性、高密度を得ると言う点に重点を
置き、製造方法と得られるクリンカーの物性および組織
等について詳細に研究を重ねた結果、高密度で、かつ、
構成するカルシア結晶とマグネシア結晶の結晶サイズが
、ある大きざより小さければ、従来得られなかった高い
耐消化性が得られることを見出した。またこの様な組織
は原料である水酸化マグネシウムおよび水酸化カルシウ
ムを分級することにより得られることを見出し、製造方
法をも確立した。ざらに、上記組織を有するカルシア・
マグネシア系クリンカーを二酸化炭素含有ガス中で55
0〜750℃に加熱して、表面に、ある厚さの炭酸カル
シウムの層を形成させることにより、耐消化性は著しく
向上することを見出し、その適正な炭酸化条件を見出し
、本発明を完成するに至った。
[Means for solving the problems] The present invention focuses on obtaining high digestion resistance and high density while maintaining high purity of calcia-magnesia-based clinker, and develops a manufacturing method and physical properties of the resulting clinker. As a result of detailed research on and organization, we found that
It has been found that if the crystal sizes of the constituent calcia crystals and magnesia crystals are smaller than a certain size, a high degree of digestion resistance that has not been previously achieved can be obtained. We also discovered that such a structure can be obtained by classifying the raw materials, magnesium hydroxide and calcium hydroxide, and established a manufacturing method. In general, Calcia, which has the above structure,
magnesia-based clinker in carbon dioxide-containing gas at 55%
It was discovered that digestion resistance was significantly improved by heating to 0 to 750°C to form a layer of calcium carbonate of a certain thickness on the surface, and the appropriate carbonation conditions were found and the present invention was completed. I ended up doing it.

すなわち、本発明の構成は、 (1)組成が灼熱基準、重量%で表わして、CaO+M
Cl0  98.5jX上 MCl0’      10〜75 かつ、相対密度が96%以上であり、カルシア結晶の平
均粒径が15μm以下であることを炭酸化するカルシア
・マグネシア系クリンカーであり、その製造法は (2)カルシア・マグネシア系クリンカーのSUM方法
であって、それぞれ水酸化カルシウム原料および水酸化
マグネシウム原料中の粗粒を除去して粒度分布が44μ
m以下が99重凹%以上、かつ、25μm以下が90重
量%以上である高純度のこれらの原料を混合、成形して
、密度が1.2g/cm3以上の成形体とし、この成形
体を焼成することを炭酸化するカルシア・マグネシア系
クリンカーの製造方法である。
That is, the structure of the present invention is as follows: (1) The composition is expressed in weight percent on a scorching basis,
It is a calcia-magnesia-based clinker that carbonates MCl0' 10-75 on Cl0 98.5jX, has a relative density of 96% or more, and has an average grain size of calcia crystals of 15 μm or less, and its manufacturing method is ( 2) A SUM method for calcia-magnesia-based clinker, in which coarse particles in the calcium hydroxide raw material and magnesium hydroxide raw material are removed to obtain a particle size distribution of 44μ.
These high-purity raw materials, which have 99% or more of double concavities of m or less, and 90% or more of 25 μm or less by weight, are mixed and molded to form a molded product with a density of 1.2 g/cm3 or more, and this molded product is This is a method for producing calcia-magnesia clinker that carbonates firing.

本発明のカルシア・マグネシア系クリンカーの純度、す
なわちCaO+MCJOの含有量は発明の目的からして
98.5重量%以上であり、好ましくは98.8重量%
、より好ましくは99,0重量%以上である。本発明の
カルシア・マグネシア系クリンカーはMqOを10重畳
%ないし75重量%を含有する。
The purity of the calcia-magnesia clinker of the present invention, that is, the content of CaO + MCJO, is 98.5% by weight or more, preferably 98.8% by weight for the purpose of the invention.
, more preferably 99.0% by weight or more. The calcia-magnesia clinker of the present invention contains MqO in an amount of 10% to 75% by weight.

CaO+MgOが、本発明において規定される組成範囲
の時、MCl0が10重量%未満では、耐消化性が低下
する。MCl0が75重mmより多くなると、カルシア
結晶は、マグネシア結晶の粒界部分にわずかに存在する
だけになり、カルシア・マグネシア系クリンカーとして
の特性が失われる。
When CaO+MgO is within the composition range defined in the present invention, if MCl0 is less than 10% by weight, the digestion resistance will decrease. When MCl0 exceeds 75 mm, calcia crystals exist only slightly at the grain boundaries of magnesia crystals, and the properties as a calcia-magnesia clinker are lost.

本発明のカルシア・マグネシア系クリンカーに含まれる
Fe203は0.2重最%未満、好ましくは0.1重量
%未満がよい。前記した様にFe2O〕はCaOと低融
点化合物を形成しで、高温における強度が低下するため
、含有量が多くなることは好ましくない。
The amount of Fe203 contained in the calcia-magnesia clinker of the present invention is less than 0.2% by weight, preferably less than 0.1% by weight. As mentioned above, Fe2O] forms a low melting point compound with CaO, which lowers the strength at high temperatures, so it is not preferable for the content to be large.

その他の不純物、たとえばA120x、Sio2、B2
O3についても含有量は、特に含量で1.0重量%未満
がよい。なお、本発明のクリンカーは特に不純物の含有
量が非常に少ないという点で、従来のものと比較して特
徴を有している。なお、これらの不純物はいずれもCa
oまたはMgOと低融点化合物を作り、好ましくない。
Other impurities, such as A120x, Sio2, B2
The content of O3 is particularly preferably less than 1.0% by weight. In addition, the clinker of the present invention has a characteristic compared to conventional ones in that the content of impurities is extremely small. Note that all of these impurities are Ca
o or MgO, forming a low melting point compound, which is not preferred.

従って、本発明品は組成の面に限っても従来のものとは
明らかに異なり、高温における強度およびスラグ浸蝕性
は、従来のものより明らかに高く、様々な用途への使用
が期待される。
Therefore, the product of the present invention is clearly different from the conventional product even in terms of composition, and its strength at high temperatures and slag corrosion resistance are clearly higher than the conventional product, and it is expected to be used in a variety of applications.

本発明のカルシア・マグネシア系クリンカーの相対密度
は発明の目的からして、96%以上、好ましくは97%
以上とする。これより低い相対密度では、目的とする耐
消化性や、スラグへの耐浸触性および強度は得られない
From the purpose of the invention, the relative density of the calcia-magnesia clinker of the present invention is 96% or more, preferably 97%.
The above shall apply. If the relative density is lower than this, the desired digestion resistance, slag penetration resistance, and strength cannot be obtained.

本発明のカルシア・マグネシア系クリンカーにおけるカ
ルシア結晶の平均粒径は15μm以下であり、好ましく
は10μm以下である。
The average particle size of calcia crystals in the calcia-magnesia clinker of the present invention is 15 μm or less, preferably 10 μm or less.

カルシア結晶の平均粒径が15μmより大きくなると、
耐消化性が低下する。本発明品に見られる従来にない高
い耐消化性は上記の様な組織になって初め工発現するも
のである。
When the average grain size of calcia crystals is larger than 15 μm,
Digestibility is reduced. The unprecedentedly high digestive resistance observed in the product of the present invention is manifested only when the product has the above-mentioned structure.

カルシア結晶の大きさはマグネシア結晶の大きざとめる
程度相関関係がある。クリンカー中のカルシア結晶が小
さいためには、マグネシア結晶が小ざいことも要件の1
つとなり得る。この様にカルシア結晶およびマグネシア
結晶がともに小さな組織は、両者が均一に分散した組織
となり、この時耐消化性はざらに向上する。従って、ク
リンカー中のマグネシア結晶の平均粒径は、好ましくは
15μm以下であり、ざらに好ましくは10μm以下で
ある。
The size of calcia crystals is correlated with the degree to which magnesia crystals are rounded. In order for the calcia crystals in the clinker to be small, one of the requirements is that the magnesia crystals are small.
It can become one. In this way, a structure in which both calcia crystals and magnesia crystals are small becomes a structure in which both are uniformly dispersed, and in this case, the digestion resistance is greatly improved. Therefore, the average particle size of magnesia crystals in the clinker is preferably 15 μm or less, more preferably 10 μm or less.

一般1″::、、セラミーツクス(多結晶体)では、構
成する結晶の結晶サイズが小さく、かつ均一な程、高い
強度を有することが知られており、本発明における微細
でかつ均一な組織を有するCaO−MgO系クリンカー
は、耐消化性の面だけでなく、強度においても、従来に
ない高い強度を有することが期待ざむる。ざらに、耐消
化性が2非常に高いことから考えて、スラグ侵蝕性もか
なり向上することも予想される。      9 表面がマグネシアと炭酸カルシウムから成るカルシア・
マグネシア系クリンカーは上記のクリンカーを二駿化炭
素含有ガス中で加熱処理することにより得られる。Ca
O系の耐火材の表面を炭酸化して耐消化性を高めるとい
う方法は、前記した様に、公知の技術ではあるが、本発
明による微細かつ均一な組織を有するカルシア:マグネ
シア系クリンカーを炭酸化する9とにより、その耐消化
性はざらに格段の上昇が見られ、従来に全く見られない
様な高い耐消化性を有するカルシア・マグネシア系クリ
ンカーが得られる。これらクリンカーの表面部分のカル
シアが炭酸化されてできた炭酸カルシウム層の厚さは電
子顕微鏡による観察から、0.05〜4μmである。こ
れら炭酸カルシウム層を形成させたカルシア・マグネシ
ア系クリンカーの表面ば、マグネシア結晶と炭酸カルシ
ウム結晶が、緻密かつ均一に結合した俄械から成ること
が、電子顕微鏡によりIfされる。ざらに炭層カルシウ
ム層は、結晶粒径が1μm以下の非常に微細な炭酸カル
シウム結晶の緻密な集合体であることも観察される。こ
の様な組織を有しているため、従来に全く見られない高
い耐消化性が発現されるのである。
General 1'': It is known that ceramics (polycrystals) have higher strength as the crystal size of the constituent crystals is smaller and more uniform. It is expected that the CaO-MgO clinker will have unprecedented strength not only in terms of digestion resistance but also in terms of strength. It is also expected that the erosivity will be considerably improved. 9 Calcia, whose surface is composed of magnesia and calcium carbonate,
The magnesia-based clinker can be obtained by heat-treating the above-mentioned clinker in a carbon disuride-containing gas. Ca
As mentioned above, the method of carbonating the surface of an O-based refractory material to improve its digestion resistance is a well-known technique, but the method of carbonating the calcia/magnesia clinker having a fine and uniform structure according to the present invention 9, the digestion resistance is greatly improved, and a calcia-magnesia clinker having a high digestion resistance that has never been seen before can be obtained. The thickness of the calcium carbonate layer formed by carbonation of calcia on the surface of these clinkers is 0.05 to 4 μm, as observed by electron microscopy. It has been determined by electron microscopy that the surface of the calcia-magnesia clinker on which the calcium carbonate layer is formed is composed of a structure in which magnesia crystals and calcium carbonate crystals are tightly and uniformly bonded. It is also observed that the rough carbon bed calcium layer is a dense aggregate of very fine calcium carbonate crystals with a grain size of 1 μm or less. Because it has such a structure, it exhibits a high degree of digestive resistance that has never been seen before.

次に本発明のカルシア・マグネシア系クリンカーの製造
方法について詳しく説明する。
Next, the method for producing the calcia-magnesia clinker of the present invention will be explained in detail.

本発明のカルシア・マグネシア系タリンカーは主として
、 a)原斜め水酸化カルシウムと水酸化マグネシウムの分
級工程。
The calcia-magnesia-based tallincar of the present invention is mainly produced by: a) a step of classifying raw diagonal calcium hydroxide and magnesium hydroxide;

b)水酸化カルシウムと水酸化マグネシウムの混合工程
b) Mixing step of calcium hydroxide and magnesium hydroxide.

C)混合スラリーの濾過成形工程。C) Filtration molding process of mixed slurry.

d)ケークまたは成形体の焼成工程。d) Cake or molded body baking step.

の各工程から成る。It consists of each process.

原料である水酸化カルシウムと水酸化マグネシウムは、
従来の工業的方法で得ることができる。すなわち、水酸
化カルシウムは、石灰石または合成炭酸カルシウム等を
仮焼して(qだ生石灰を、水中で消和することにより得
られる。水酸化マグネシウムは海水に水酸化カルシウム
等のアルカリを反応させ、得られた沈澱を精製すること
によりjqられる。これらの方法で得られた水狼化カル
シウムおよび水酸化マグネシウムはそのままでは数十μ
m程度の粗大粒子(凝集粒)を含有していることか多い
。これら粗粒子は焼結匪を低下させるだけでなく、粗大
結晶を生成する要因となる。従って本発明による高密度
でかつ微細結晶を有するカルシア・マグネシア系タリン
カーを得るためには、これら原料に含まれる粗粒子を除
くことが必須の要件であり、両原料とも44μm以下が
99重量%以上かつ25μm以下が90重口%以上とす
る分級工程が必要である。これら分級は、湿式篩分け、
液体ザイクロン等により、容易に行うことかできる。
The raw materials, calcium hydroxide and magnesium hydroxide, are
It can be obtained by conventional industrial methods. That is, calcium hydroxide is obtained by calcining limestone or synthetic calcium carbonate, etc., and slaked quicklime in water. Magnesium hydroxide is obtained by reacting seawater with an alkali such as calcium hydroxide, JQ is obtained by purifying the obtained precipitate.The water-soluble calcium and magnesium hydroxide obtained by these methods have a mass of several tens of μm as they are.
It often contains coarse particles (agglomerated particles) of about 1.0 m in size. These coarse particles not only reduce the sintering strength but also become a factor in generating coarse crystals. Therefore, in order to obtain the calcia-magnesia-based tallincar having high density and fine crystals according to the present invention, it is essential to remove coarse particles contained in these raw materials, and for both raw materials, 99% by weight or more of 44 μm or less In addition, a classification step is required in which 90% or more of the particles are 25 μm or smaller. These classifications include wet sieving,
This can be easily done using liquid Zyclone or the like.

末分級の原料は不純物として、水酸化カルシウムはSi
O2、Al2O3、Fe2Oコ、CaC0]等、水酸化
マグネシウムは SiO2、B2O3、C1等を含有し、これら不純物は
焼結に有害なだけでなく、微細かつ均一な組織を得る上
で障害となる。発明の目的からしても、これら不純物は
可能な限り除くことが必要である。これら不純物のうち
、SiO2、Al2O3、Fe2O3、 Ca C0,3等は粗粒として原料中に含まれて。
The raw material for final classification is impurity, and calcium hydroxide is Si.
Magnesium hydroxide contains SiO2, B2O3, C1, etc., and these impurities are not only harmful to sintering but also an obstacle to obtaining a fine and uniform structure. For the purpose of the invention, it is necessary to remove these impurities as much as possible. Among these impurities, SiO2, Al2O3, Fe2O3, CaC0,3, etc. are contained in the raw material as coarse particles.

いることが多く、分級によりある程度除くことが可能で
ある。この様に分級工程は高純度化という一意味におい
ても、必要な工程である。
It is often possible to remove them to some extent by classifying them. In this way, the classification step is a necessary step in terms of achieving high purity.

特に原料の水酸化マグネシウムが海水から1qられたも
のである時は洗浄により、含有するC1は乾燥物基準で
0.2重量%以下にしなくてはならない。水酸化マグネ
シウム中のCIが乾燥物基準で0.2重1%より多くな
ると、焼成の際蒸発して焼結を粗害し、本発明の高密度
かつ微細組織を有するカルシア・マグネシア系タリンカ
ーは得られない。洗浄は次に述べる混合工程の前に、水
酸化マグネシウムスラリーを水洗するか、水酸化カルシ
ウムと混合後、濾過工程で濾過と同時に水洗することに
より行うことができる。
In particular, when the raw material magnesium hydroxide is 1q extracted from seawater, the C1 content must be reduced to 0.2% by weight or less on a dry matter basis by washing. If the CI in magnesium hydroxide exceeds 0.2% by weight on a dry matter basis, it will evaporate during firing and will damage the sintering, making it difficult to obtain the calcia-magnesia-based tallinker of the present invention having a high density and fine structure. I can't. Washing can be performed by washing the magnesium hydroxide slurry with water before the mixing step described below, or by washing with water simultaneously with filtration in the filtration step after mixing with calcium hydroxide.

以上の様にして精製された水酸化カルシウムcI5よび
水酸化マグネシウムを水中で攪拌、混合する。
Calcium hydroxide cI5 and magnesium hydroxide purified as described above are stirred and mixed in water.

得られた水酸化カルシウム、水酸化マグネシウム混合ス
ラリーは、加圧濾過するか、もしくは濾過、乾燥後、加
圧成形して、乾燥物基準で密度が1.2g/cm3以上
のケークまたは成形体とする。ケークまたは成形体の密
度が1.2Mcm3未満では、その後に焼成を行って1
qられる焼結体は、気孔の多い組織となり、高密度のタ
リンカーは得られない。カロ圧濾過にあたっては、通常
、工業的に用いられるフィルタープレス等の加圧濾過機
を用いることができる。ただし、加圧を行わない真空濾
過等、通常の濾過方法では乾燥物基準で密度か1.2g
/cm3以上のケークを1qることは困難である。この
場合は濾過して1qられたケークを乾燥した後に、ブリ
ケラミルマシン等の成形数を用いて加圧成形することに
より1,2g/rm3以上の密度を有する成形体を冑る
ことかてざる。この様な工程をとる場合、均一、かつ、
ある程度の強度を持つ成形体を得るためには、加圧成形
する前に乾燥物を粉砕することが望ましい。加圧濾過、
濾過乾燥後の加圧成形、いずれの工程をとっても本発明
のカルシア・マグネシア系クリンカーを得る上で何等差
し支えない。この様にして得られたケークまたは成形体
は、乾燥物基準で密度が1.2g/cm3以上であり、
その組成は、C1が0.2重量%以下である。
The obtained calcium hydroxide/magnesium hydroxide mixed slurry is filtered under pressure, or after filtered and dried, it is molded under pressure to form a cake or molded body with a density of 1.2 g/cm3 or more on a dry basis. do. If the density of the cake or molded body is less than 1.2 Mcm3, baking is performed after that.
The resulting sintered body has a structure with many pores, and high-density talincar cannot be obtained. For Calo pressure filtration, a pressure filtration machine such as a filter press that is usually used industrially can be used. However, with normal filtration methods such as vacuum filtration that does not apply pressure, the density is 1.2g on a dry basis.
It is difficult to produce 1 q of cake of /cm3 or more. In this case, after drying the filtered cake, it is necessary to pressurize it using a molding machine such as a Briquera mill machine to obtain a molded product with a density of 1.2 g/rm3 or more. . When using such a process, uniform and
In order to obtain a molded product with a certain degree of strength, it is desirable to crush the dried material before pressure molding. Pressure filtration,
There is no problem in obtaining the calcia-magnesia clinker of the present invention, regardless of which process is used, including filtration and drying followed by pressure molding. The cake or molded body obtained in this way has a density of 1.2 g/cm or more on a dry basis,
Its composition has C1 of 0.2% by weight or less.

灼熱基準では、CaO+MQOが98.5重量%以上、
望ましくは98.8重量%以上、また、望ましくはFe
2O3が0.2重量%未満、その他の不純物が1.0重
量%以下になるように調整することが好ましい。
Based on the scorching heat standard, CaO + MQO is 98.5% by weight or more,
Desirably 98.8% by weight or more, and preferably Fe
It is preferable to adjust the content so that 2O3 is less than 0.2% by weight and other impurities are less than 1.0% by weight.

MgOが10重量%未満では著しく焼結性が低下し、カ
ルシア結晶の大きざが15μmより大きくなり、相対密
度も低下する。
If MgO is less than 10% by weight, the sinterability is significantly reduced, the size of the calcia crystals becomes larger than 15 μm, and the relative density is also reduced.

「e203が0.21量%以上ではカルシア結晶の成長
を促進するので微細な組織が得られない。
“If e203 is more than 0.21% by weight, it will promote the growth of calcia crystals, making it impossible to obtain a fine structure.

次いでこれらケークまたは成形体は、必要によっては適
当な粒度に破砕された後に1600℃以上で焼成され、
本発明の高純度、高密度、かつ耐消化性に優れたカルシ
ア・マグネシア系クリンカーが得られる。ここでの焼成
は、通常マグネシアクリンカ−を焼成する際に用いられ
るロータリーキルン等をそのまま使用することができる
Next, these cakes or molded bodies are crushed to an appropriate particle size if necessary and then fired at 1600°C or higher,
The calcia-magnesia clinker of the present invention has high purity, high density, and excellent digestion resistance. For firing here, a rotary kiln or the like that is normally used when firing magnesia clinker can be used as is.

表面がマグネシアと炭酸カルシウムから成るカルシア・
マグネシア系クリンカーは、上記の様にして製造された
クリンカーをCO2分圧で5%以上含有するガス中モ1
0分間以上550〜750℃に加熱することにより得ら
れ、好ましくはCO2分圧で15%以上含有するガス中
で20分間以上、550〜750″Cに加熱することに
より得られる。550℃より低い温度、および750℃
より高い温度では炭酸化する速度が遅く、高い耐消化性
を与えるのに十分な厚さ′の炭酸カルシウム層を得るこ
とが難しく、耐消化性を大幅に改善することは困難であ
る。
Calcia, whose surface consists of magnesia and calcium carbonate
The magnesia-based clinker is produced in a gas containing 5% or more of the clinker produced as described above in terms of CO2 partial pressure.
Obtained by heating to 550-750"C for 0 minutes or more, preferably by heating to 550-750"C for 20 minutes or more in a gas containing 15% or more CO2 partial pressure. Lower than 550"C. temperature, and 750°C
At higher temperatures, the rate of carbonation is slow and it is difficult to obtain a calcium carbonate layer thick enough to provide high digestibility, making it difficult to significantly improve digestibility.

炭酸化処理はロータリーキルン等の回転炉、および縦型
回転炉等を用いることができる。
For the carbonation treatment, a rotary furnace such as a rotary kiln, a vertical rotary furnace, etc. can be used.

次に本発明の実施例および比較例を挙げ、具体的に説明
する。なお本発明における種々の測定法は下記の通りで
ある。
Next, Examples and Comparative Examples of the present invention will be given and specifically explained. In addition, various measuring methods in the present invention are as follows.

1)相対密度(RD> カルシアの理論密度を3.389/Cm3 、マグネシ
アの理論密度を3.58 Mcm3として以下の式によ
り求めた。
1) Relative density (RD> Relative density was determined by the following formula, assuming that the theoretical density of calcia was 3.389/Cm3 and the theoretical density of magnesia was 3.58 Mcm3.

RD(%) = [BD/ (3,38/(R+1)+
3.58 R/(R+1) ) ] xlOO式中でR
はカルシア・マグネシア系クリンカーのMgOとCaO
の重量含有量比(MqO/Ca0)であり、BDは日本
学術撮興会第124委員会で提案された学撮法2[マグ
ネシアクリンカ−の見掛は気孔率、見掛は比重及び嵩比
重の測定方法」に準じて測定したカルシア・マグネシア
系クリンカーの嵩比重の値である。
RD (%) = [BD/ (3,38/(R+1)+
3.58 R/(R+1) ) ] xlOO In the formula, R
are calcia-magnesia clinker MgO and CaO
BD is the weight content ratio (MqO/Ca0) of This is the value of bulk specific gravity of calcia-magnesia clinker measured according to the measurement method of

2)化学組成 日本学術撮興会第124委員会で提案された学撮法1「
マグネシアクリンカ−の化学分析法」に準じて測定した
。B2O3は試料を塩酸で溶解した俊、はうけい酸ガラ
スの分析方法[JIS R3105(1981)]にお
ける三酸化ホウ素定量方法(1)直接法に準じて測定し
た。
2) Chemical composition Gakusatsu Law 1 proposed by the 124th Committee of the Japan Society for the Promotion of Science
It was measured according to the chemical analysis method for magnesia clinker. B2O3 was measured by dissolving the sample in hydrochloric acid according to the boron trioxide quantitative method (1) direct method in the analytical method for silicate glass [JIS R3105 (1981)].

C1はポルハルト法、すなわち試料を硝酸で溶解して一
定量で硝酸銀を加え、鉄明ばん溶液を指示薬としてNH
43CN溶液で逆滴定して求めた。
C1 uses the Polhardt method, in which the sample is dissolved in nitric acid, a certain amount of silver nitrate is added, and an iron alum solution is used as an indicator.
It was determined by back titration with 43CN solution.

3)カルシア・マグネシア結晶径 Ful1man法(J、 of Metals、447
.1953>によった。すなわち、研磨面を撮影した写
真上で任意に直線を引き、粒界によって切り取られたカ
ルシアおよびマグネシア結晶上の線分を、各々について
平均してそれら平均値を1.5倍して、カルシアおよび
マグネシア結晶径とした。なお平均値を出すにあたって
は1つの試料につき、カルシアおよびマグネシア結晶の
各々について100個以上の線分を用いた。
3) Calcia/magnesia crystal diameter Ful1man method (J, of Metals, 447
.. 1953>. That is, a straight line is arbitrarily drawn on a photograph of the polished surface, the line segments cut by the grain boundaries on the calcia and magnesia crystals are averaged, and the average value is multiplied by 1.5 to obtain the calcia and magnesia crystals. It was taken as the magnesia crystal diameter. In calculating the average value, 100 or more line segments were used for each of calcia and magnesia crystals for one sample.

4)自然重量増加率 耐消化性の目安として2.0θ〜3.36mmに分級し
たクリンカーを、相対湿度65%、気温20″Cの空気
中に20日静置して、重量増加を測定し、もとの重量に
対する増加量を%で表示した。
4) Natural weight increase rate As a measure of digestion resistance, clinker classified into 2.0θ to 3.36 mm was left standing in air at a relative humidity of 65% and a temperature of 20"C for 20 days, and the weight increase was measured. , the increase in weight relative to the original weight is expressed as a percentage.

5)水酸化カルシウム、水酸化マグネシウムの粒度 水スラリーを篩を用いて分級して、篩上に残った部分を
乾燥後、秤量して全乾燥物に対する重量百分率で表示し
た。
5) Particle size of calcium hydroxide and magnesium hydroxide The water slurry was classified using a sieve, and the portion remaining on the sieve was dried, then weighed and expressed as a percentage by weight based on the total dry matter.

[実施例] 原料スラリーの調製 60℃の水1又あたり100Qの生石灰を加え、1時間
攪拌して水和し、0.5mm rJ6を用いて水中で分
級して粗粒を除き、水酸化カルシウムスラリー(A>を
得た。その一部を液体サイクロンで分級して粗粒を分離
除去して水酸化カルシウムスラリー(B)を得た。(A
)および(B)の固形分の粒度分布は第1表の通りであ
った。
[Example] Preparation of raw material slurry Add 100 Q of quicklime per 1 liter of water at 60°C, hydrate by stirring for 1 hour, classify in water using 0.5 mm rJ6 to remove coarse particles, and remove calcium hydroxide. A slurry (A>) was obtained. Part of it was classified using a liquid cyclone to separate and remove coarse particles to obtain a calcium hydroxide slurry (B). (A)
The particle size distribution of the solid content of ) and (B) was as shown in Table 1.

第1表 次に脱炭酸処理後の海水に、水酸化カルシウムスラリー
(A)をDHが10.8になるまで徐々に攪拌しながら
加えて、水酸化マグネシウムを生成させ、これを沈降濃
縮してMgO換算40MMの粗製水酸化マグネシウムス
ラリーを得た。その一部に体積で20倍の水を加えて攪
拌した後、沈降濃縮してMQO換算200(7/ 文の
水酸化マグネシウムスラリー(A>を1qた。次に粗製
水酸化マグネシウムスラリーの残りを液体サイクロンで
分級し、その一部はそのまま沈降濃縮して、また他の一
部は体積で20倍の水を加えて攪拌した後、沈降濃縮し
てそれぞれMCJO換算200M1の水酸化マグネシウ
ムスラリー(B)および(C)を得た。
Table 1 Next, calcium hydroxide slurry (A) was gradually added to the seawater after decarboxylation treatment while stirring until the DH reached 10.8 to produce magnesium hydroxide, which was then sedimented and concentrated. A crude magnesium hydroxide slurry having an MgO content of 40 MM was obtained. After adding 20 times the volume of water to a portion and stirring, it was sedimented and concentrated to obtain 1 q of magnesium hydroxide slurry (A> with an MQO equivalent of 200 (7/m). Next, the remainder of the crude magnesium hydroxide slurry was Classified with a liquid cyclone, part of it is sedimented and concentrated as it is, and the other part is mixed with 20 times the volume of water and stirred, then sedimented and concentrated to form a magnesium hydroxide slurry (B ) and (C) were obtained.

各水酸化マグネシウムスラリーの固形分の粒度分布は第
2表の通りでめった。
The particle size distribution of the solid content of each magnesium hydroxide slurry was determined as shown in Table 2.

第2表 実施例1〜4 水酸化カルシウムスラリー(B、)と水酸化マグネシウ
ムスラリー(C)を焼成物基準でMC10が30.40
.60.75重量%となる様に各々配合し、混合した後
、真空濾過して1qたケークを箱型屹燥器で乾燥し、得
られた乾燥物を粉砕した後に1t/Cm’の加圧下でア
ムスラー成形渫を用いて成形体とした。得られた成形体
の灼熱基準の化学組成および乾燥物基準のC1含有ωお
よび乾燥物基準の密度を第3表に示した。この成形体を
5mm以下に粉砕して1700’Cで1時間焼成した。
Table 2 Examples 1 to 4 MC10 of calcium hydroxide slurry (B) and magnesium hydroxide slurry (C) was 30.40 based on the fired product.
.. After mixing, the cake was vacuum filtered and 1 q was dried in a box type dryer. A molded body was made using an Amsler molding machine. Table 3 shows the chemical composition of the obtained molded body on a scorching heat basis, the C1 content ω on a dry basis, and the density on a dry basis. This compact was crushed into pieces of 5 mm or less and fired at 1700'C for 1 hour.

冷却して得られたカルシア・マグネシア系クリンカーの
物性を第4表に示した。これら得られた実施例1〜4の
クリンカーの研磨面の反射顕微鏡写真を各々、第1−a
〜第1−d図に示す。
Table 4 shows the physical properties of the calcia-magnesia clinker obtained by cooling. Reflection micrographs of the polished surfaces of the clinkers of Examples 1 to 4 obtained are shown in 1-a.
- Shown in Figure 1-d.

実施例5 水酸化カルシウムスラリー(B)と水酸化マグネシウム
スラリー(C)を、焼成物WeでMgOが30重量%と
なる様に配合し、混合した後フィルタープレスを用いて
30kl;l/Cm’で加圧濾過してケークを得た。得
られたケークの灼熱基準の化学組成および乾燥物基準の
C1含有量および乾燥物基準の密度を第3表に示した。
Example 5 Calcium hydroxide slurry (B) and magnesium hydroxide slurry (C) were blended so that MgO was 30% by weight in the fired product We, and after mixing, a filter press was used to prepare 30kl; l/Cm' A cake was obtained by pressure filtration. Table 3 shows the chemical composition of the obtained cake on a burning basis, the C1 content on a dry basis, and the density on a dry basis.

以下実施例1と同様に焼成を行い、冷却して得られたカ
ルシア・マグネシア系クリンカーの物性を第4表に示し
た。
Table 4 shows the physical properties of the calcia-magnesia clinker obtained by firing and cooling in the same manner as in Example 1.

実施例6 実施例2のカルシア・マグネシア系クリンカーをCO2
分圧30%を含むガス中で700’C。
Example 6 The calcia-magnesia clinker of Example 2 was converted into CO2
700'C in a gas containing 30% partial pressure.

20分間処理を行った。冷却して得られたカルシア・マ
グネシア系クリンカーの表面の電子顕微鏡写真を第2図
に示す。また、これらクリンカーを2.00mm〜3.
66mmに分級し、相対密度65%、気温20’Cの空
気中に静買して重量増加を測定した。経過日数と重量増
加率の関係を第3図にプロットした。比較のために、未
処理のもの(実施例2)もあわせてプロットした。ここ
でO印は実施例2、・印は実施例6に対応する。
The treatment was carried out for 20 minutes. FIG. 2 shows an electron micrograph of the surface of the calcia-magnesia clinker obtained by cooling. In addition, these clinkers are 2.00 mm to 3.0 mm.
It was classified into 66 mm, and the relative density was 65%, and the weight increase was measured by standing in air at a temperature of 20'C. The relationship between elapsed days and weight increase rate is plotted in FIG. For comparison, an untreated sample (Example 2) was also plotted. Here, the O mark corresponds to Example 2, and the * mark corresponds to Example 6.

比較例1 水酸化カルシウムスラリー(B)と水酸化マグネシウム
スラリー(C)を焼成物基準でM CJ Oが7重量%
になる様に配合した以外は、実施例5と同様に焼成を行
った。ケークの灼熱基準の化学組成および乾燥物基準の
CI含有量および乾燥物基準の密度を第3表に示した。
Comparative Example 1 Calcium hydroxide slurry (B) and magnesium hydroxide slurry (C) were mixed with MCJO of 7% by weight based on the fired product.
Firing was performed in the same manner as in Example 5, except that the ingredients were blended so as to be as follows. The chemical composition of the cake on a burning basis, the CI content on a dry matter basis and the density on a dry matter basis are shown in Table 3.

冷却して得られたカルシア・マグネシア系クリンカーの
物性を第4表に示した。
Table 4 shows the physical properties of the calcia-magnesia clinker obtained by cooling.

比較例2 水酸化カルシウムスラリー(B)と水酸化マグネシウム
スラリー(C)とざらに試薬の塩化第二鉄水溶液を、焼
成物基準でMCl0が30重量%Fe2O3が0.30
重量%になる様に配合し混合する以外は実施例5と同様
に行った。ケークの灼熱基準の化学組成および乾燥物基
準の01含有量および乾燥物基準の密度を第3表に示し
た。冷却して得られたカルシア・マグネシア系クリンカ
ーの物性を第4表に示す。
Comparative Example 2 Calcium hydroxide slurry (B), magnesium hydroxide slurry (C), and a ferric chloride aqueous solution of Sarani reagent were mixed to have MCl0 of 30% by weight and Fe2O3 of 0.30% based on the fired product.
The same procedure as in Example 5 was carried out except that the ingredients were blended and mixed in such a manner as to achieve a weight percentage. The chemical composition of the cake on a burning basis, the 01 content on a dry basis and the density on a dry basis are shown in Table 3. Table 4 shows the physical properties of the calcia-magnesia clinker obtained by cooling.

比較例3 加圧成形を行わず真空濾過により得られたケークを乾燥
して得られた乾燥物を直接焼成する以外は、実施例1と
同様に行った。ケークの灼熱基準の化学組成および乾燥
物基準のCI含有量および乾燥物基準の密度を第3表に
示した。冷却して得られたカルシア・マグネシア系クリ
ンカーの物性を第4表に示す。
Comparative Example 3 The same procedure as in Example 1 was carried out, except that the cake obtained by vacuum filtration was dried without pressure molding, and the dried product obtained was directly fired. The chemical composition of the cake on a burning basis, the CI content on a dry matter basis and the density on a dry matter basis are shown in Table 3. Table 4 shows the physical properties of the calcia-magnesia clinker obtained by cooling.

比較例4 水酸化カルシウムスラリー(B)と水酸化マグネシウム
スラリー(B)を焼成物基準でMgOが30重重量にな
る様に配合した以外は実施例5と同様にして行った。ケ
ークの灼熱基準の化学組成および乾燥物基準の01含有
量および乾燥物基準の密度を第3表に示した。
Comparative Example 4 The same procedure as in Example 5 was carried out except that the calcium hydroxide slurry (B) and the magnesium hydroxide slurry (B) were mixed so that the MgO content was 30% by weight based on the fired product. The chemical composition of the cake on a burning basis, the 01 content on a dry basis and the density on a dry basis are shown in Table 3.

冷却して得られたカルシア・マグネシア系クリンカーの
物性を第4表に示す。
Table 4 shows the physical properties of the calcia-magnesia clinker obtained by cooling.

比較例5 水酸化カルシウムスラリー(A)と水酸化マグネシウム
スラリー(A>を焼成物基準でMgOが30重型組にな
る様に配合した以外は実施例5と同様に行った。ケーク
の灼熱基準の化学組成および乾燥物基準のC1含有最お
よび乾燥物基準の密度を第3表に示した。冷却して得ら
れたカルシア・マグネシア系クリンカーの物性を第4表
に示す。
Comparative Example 5 The same procedure as in Example 5 was carried out except that the calcium hydroxide slurry (A) and the magnesium hydroxide slurry (A> were blended so that the MgO content was 30 heavy based on the baked product. The chemical composition and the C1-containing material on a dry basis and the density on a dry basis are shown in Table 3.The physical properties of the calcia-magnesia clinker obtained by cooling are shown in Table 4.

第3表 1!4表 [発明の効果コ 本発明によれば高純度、高密度かつ非常に耐消化性に優
れるカルシア・マグネシア系クリンカーが1qられる。
Table 3 Tables 1 and 4 [Effects of the Invention] According to the present invention, 1 q of calcia-magnesia clinker having high purity, high density and excellent digestibility is produced.

これはその優れた↑主賓から製鋼炉用耐大物をはじめと
する様々な分野への使用が期待される。
This product is expected to be used in a variety of fields, including large-sized materials for steel-making furnaces due to its superior properties.

【図面の簡単な説明】[Brief explanation of drawings]

第1−8図〜第1−d図は、本発明のカルシア・マグネ
シア系クリンカーの研磨面の反射顕微鏡写真、 第2図は実施例6のクリンカーの表面の電子顕微鏡写真
、 第3図は本発明のクリンカーの耐消化性(重量増加率)
を示すグラフである。 特許出願人 新日本化学工業株式会社 代理人 弁理士 小 松 秀 岳 代理人 弁理士 旭     宏 4= J−a ;j、:+ i−c iン( 僚μm 峰 ・) εバ L−−一一一、J 0jJm
Figures 1-8 to 1-d are reflection micrographs of the polished surface of the calcia-magnesia clinker of the present invention, Figure 2 is an electron micrograph of the surface of the clinker of Example 6, and Figure 3 is the book. Digestion resistance (weight increase rate) of the clinker of the invention
This is a graph showing. Patent applicant Shin Nippon Chemical Industry Co., Ltd. agent Patent attorney Hidetake Komatsu Agent Patent attorney Hiroshi Asahi 4= J-a; 11, J 0jJm

Claims (6)

【特許請求の範囲】[Claims] (1)組成が灼熱基準、重量%で表わして、CaO+M
gO98.5以上 MgO10〜75 かつ、相対密度が96%以上であり、カルシア結晶の平
均粒径が15μm以下であることを特徴とするカルシア
・マグネシア系クリンカー。
(1) The composition is based on scorching heat, expressed in weight %, CaO + M
A calcia-magnesia clinker characterized in that gO is 98.5 or more, MgO is 10 to 75, the relative density is 96% or more, and the average particle size of calcia crystals is 15 μm or less.
(2)マグネシア結晶の平均粒径が15μm以下である
特許請求の範囲第(1)項に記載のカルシア・マグネシ
ア系クリンカー。
(2) The calcia-magnesia clinker according to claim (1), wherein the average particle size of magnesia crystals is 15 μm or less.
(3)組成が灼熱基準、重量%で表わして、CaO+M
gO98.8以上 MgO10〜75 Fe_2O_30.2未満 その他の不純物 1.0未満 ただし、上記不純物のうち、 B_2O_30.4未満 SiO_20.4未満 Al_2O_30.15未満 である特許請求の範囲第(1)項記載のカルシア・マグ
ネシア系クリンカー。
(3) The composition is CaO+M expressed in weight percent on a scorching heat basis.
gO98.8 or more MgO10-75 Less than Fe_2O_30.2 Other impurities Less than 1.0 However, among the above impurities, less than B_2O_30.4, less than SiO_20.4, less than Al_2O_30.15, as described in claim (1) Calcia/magnesia clinker.
(4)表面がマグネシアと炭酸カルシウムからなる特許
請求の範囲第(1)項または第(2)項に記載のカルシ
ア・マグネシア系クリンカー。
(4) The calcia-magnesia clinker according to claim (1) or (2), the surface of which is composed of magnesia and calcium carbonate.
(5)水酸化カルシウム原料および水酸化マグネシウム
原料中の粗粒を除去して粒度分布が44μm以下が99
重量%以上、かつ、25μm以下が90重量%以上であ
る高純度のこれらの原料を混合、成形して、密度が1.
2g/cm^3以上の成形体とし、この成形体を焼成す
ることを特徴とするカルシア・マグネシア系クリンカー
の製造方法。
(5) When the coarse particles in the calcium hydroxide raw material and magnesium hydroxide raw material are removed, the particle size distribution is 44 μm or less.
These high-purity raw materials, in which 90% by weight or more is 25 μm or less by weight, are mixed and molded to have a density of 1.
A method for producing a calcia-magnesia clinker, which comprises forming a compact of 2 g/cm^3 or more and firing the compact.
(6)焼成して得られたカルシア・マグネシア系クリン
カーをCO_2分圧で5%以上含有するガス中で、10
分間以上550〜750℃に加熱して、クリンカー表面
のCaOを炭酸化する特許請求の範囲第(5)項記載の
カルシア・マグネシア系クリンカーの製造方法。
(6) Calcia-magnesia clinker obtained by firing in a gas containing 5% or more of CO_2 partial pressure.
The method for producing a calcia-magnesia-based clinker according to claim (5), wherein CaO on the surface of the clinker is carbonated by heating at 550 to 750° C. for more than a minute.
JP61107618A 1986-05-13 1986-05-13 Calcia magnesia base clinker and manufacture Granted JPS62265164A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61107618A JPS62265164A (en) 1986-05-13 1986-05-13 Calcia magnesia base clinker and manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61107618A JPS62265164A (en) 1986-05-13 1986-05-13 Calcia magnesia base clinker and manufacture

Publications (2)

Publication Number Publication Date
JPS62265164A true JPS62265164A (en) 1987-11-18
JPH04944B2 JPH04944B2 (en) 1992-01-09

Family

ID=14463739

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61107618A Granted JPS62265164A (en) 1986-05-13 1986-05-13 Calcia magnesia base clinker and manufacture

Country Status (1)

Country Link
JP (1) JPS62265164A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01278438A (en) * 1988-04-30 1989-11-08 Ube Chem Ind Co Ltd Magnesia-calcia clinker
JP2007326769A (en) * 2006-05-08 2007-12-20 Setsuo Kobayashi Magnesium-based slow-dissolving agent and its production method
WO2019142353A1 (en) * 2018-01-22 2019-07-25 吉澤石灰工業株式会社 Powder and uses thereof
KR20200025787A (en) * 2018-08-31 2020-03-10 (주)포스코케미칼 Porous and Light Seawater Magnesia Clinker And its Mnaufacturing Method
KR20210079917A (en) * 2019-12-20 2021-06-30 (주)포스코케미칼 Refractory composition of firing magnesia spinel with cement clinker coating and alkali penetration resistance

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01278438A (en) * 1988-04-30 1989-11-08 Ube Chem Ind Co Ltd Magnesia-calcia clinker
JP2007326769A (en) * 2006-05-08 2007-12-20 Setsuo Kobayashi Magnesium-based slow-dissolving agent and its production method
WO2019142353A1 (en) * 2018-01-22 2019-07-25 吉澤石灰工業株式会社 Powder and uses thereof
KR20200025787A (en) * 2018-08-31 2020-03-10 (주)포스코케미칼 Porous and Light Seawater Magnesia Clinker And its Mnaufacturing Method
KR20210079917A (en) * 2019-12-20 2021-06-30 (주)포스코케미칼 Refractory composition of firing magnesia spinel with cement clinker coating and alkali penetration resistance

Also Published As

Publication number Publication date
JPH04944B2 (en) 1992-01-09

Similar Documents

Publication Publication Date Title
EP0001327B1 (en) Magnesium aluminate spinel bonded refractory and method of making
JP3303221B2 (en) Refractory brick as tin bath brick
WO2022237717A1 (en) High-purity compact calcium hexa-aluminate-based refractory material and preparation method therefor
JPS62265164A (en) Calcia magnesia base clinker and manufacture
JPS61256961A (en) Calcia clinker and manufacture
US4212679A (en) Method of making magnesite grain
JPH0755857B2 (en) Clinker and refractory composed of spinel structure and corundum structure
JPH0794343B2 (en) Magnesia clinker and method for producing the same
JPS62182154A (en) Calcia sintered body and manufacture
JPH01197315A (en) Calcium hydroxide
JPS6044262B2 (en) magnesia clinker
JP3121442B2 (en) Refractory
US4681863A (en) High-density magnesia-calcia clinker and process for production thereof
JPH0692723A (en) Zirconia-contaning magnesia-alumina type spinel clinker and refractrory obtained using the same
JPS5820902B2 (en) Manufacturing method of magnesia clinker
US1267686A (en) Refractory furnace-lining and process of making.
JP2749662B2 (en) Magnesia clinker and manufacturing method thereof
JPS6051658A (en) High density high purity calcia sintered body and manufacture
JP3681199B2 (en) Casting calcia and magnesia clinker and method for producing the same
JPH0138072B2 (en)
JPH0755856B2 (en) Clinker and refractory with spinel structure
JP3771607B2 (en) Digestion resistant calcia magnesia clinker and method for producing the same
JP3510642B2 (en) Magnesia clinker and manufacturing method thereof
JPH07108803B2 (en) Magnesia-alumina spinel refractory and manufacturing method thereof
JP2985106B2 (en) Reduction resistant magnesia clinker and method for producing the same

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees