JPH0456706A - Manufacture of iridium sintered body - Google Patents

Manufacture of iridium sintered body

Info

Publication number
JPH0456706A
JPH0456706A JP2165276A JP16527690A JPH0456706A JP H0456706 A JPH0456706 A JP H0456706A JP 2165276 A JP2165276 A JP 2165276A JP 16527690 A JP16527690 A JP 16527690A JP H0456706 A JPH0456706 A JP H0456706A
Authority
JP
Japan
Prior art keywords
iridium
sintered body
powder
sintering
executing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2165276A
Other languages
Japanese (ja)
Other versions
JP2902060B2 (en
Inventor
Koichi Sakairi
弘一 坂入
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanaka Kikinzoku Kogyo KK
Original Assignee
Tanaka Kikinzoku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanaka Kikinzoku Kogyo KK filed Critical Tanaka Kikinzoku Kogyo KK
Priority to JP2165276A priority Critical patent/JP2902060B2/en
Publication of JPH0456706A publication Critical patent/JPH0456706A/en
Application granted granted Critical
Publication of JP2902060B2 publication Critical patent/JP2902060B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To manufacture an iridium sintered body having no surface contamination, low surface roughness, smooth surface condition and high sintered density by executing heat treatment to the iridium powder, compacting with a metallic mold, executing the sintering after executing the specific pre-burning to this and further, recompacting with the metallic mold. CONSTITUTION:The iridium powder chemically precipitated and deposited, is treated in the temp. range of 400-800 deg.C under H2 gas stream to remove adsorbed material. This treated iridium powder is compacted with the metallic mold at 0.5-5ton/cm<2> pressure. The sintering is executed to this green compact after executing the pre-burning under H2 or vacuum condition at 800-1400 deg.C. The adsorbed material is perfectly removed with this pre-burning and also involved gas at the time of compacting, is removed. Further, this sintered body is recompressed by using the metallic mold setting clearance to 0.02-0.3mm with this sintered body. By this method, the surface roughness on the sintered body is made to little.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、ルツボ、電極材料及び装飾品として用いられ
るイリジウム焼結体の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for producing an iridium sintered body used as a crucible, an electrode material, and a decorative article.

(従来の技術) 従来からルツボ及び電極材料等を作る場合には、貴金属
の中でも高い融点と優れた耐蝕性を有するイリジウムが
用いられてきたが、室温での塑性加工が困難である為、
ビーム溶解イリジウムを熱間で加工する方法が採られて
きた。
(Prior art) Iridium, which has a high melting point and excellent corrosion resistance among noble metals, has traditionally been used to make crucibles and electrode materials, but since it is difficult to process plastically at room temperature,
Hot processing of beam-melted iridium has been adopted.

(発明が解決しようとする課題) ところで、上記のビーム溶解イリジウムを熱間加工を行
うと、加工金型や圧延ロールなどによる表面汚染が生じ
、これを除去する作業が必要であった。このような表面
汚染層の除去作業は歩留りの低下をもたらすと共に汚染
イリジウムの回収、精製作業が困難であった。
(Problems to be Solved by the Invention) By the way, when the above-mentioned beam-melted iridium is subjected to hot processing, surface contamination occurs due to processing dies, rolling rolls, etc., and it is necessary to remove this contamination. Removal of such a surface contamination layer resulted in a decrease in yield, and it was difficult to recover and purify the contaminated iridium.

一方、粉末焼結法による製造方法も用いられてきたが、
ビーム溶解法と比較して真比重が得られにくく、表面粗
度も著しく荒いものであった。
On the other hand, a manufacturing method using powder sintering has also been used,
Compared to the beam melting method, it was difficult to obtain true specific gravity, and the surface roughness was also extremely rough.

そこで本発明は、溶解、圧延法のような表面汚染が生ぜ
ず、また粉末焼結法のように表面粗度が著しく荒くなる
ことがないイリジウム焼結体の製造方法を提供しようと
するものである。
Therefore, the present invention aims to provide a method for producing an iridium sintered body that does not cause surface contamination as in the case of melting and rolling methods, and that does not cause the surface roughness to become extremely rough as in the powder sintering method. be.

(課題を解決するための手段) 上記課題を解決するための本発明のイリジウム焼結体の
製造方法は、化学的に析出沈降させたイリジウム粉末を
H2気流中400〜800℃の温度範囲で処理する工程
と、その処理をしたイリジウム粉末を圧力0.5〜5t
on/crlで金型にて成形する工程と、そのイリジウ
ム粉末成形体をH2又は真空中800〜1400℃にて
予備焼成した後焼結を行う工程と、そのイリジウム焼結
体を該焼結体とのクリアランスを0.02〜0.3mm
に設定した金型を用いて再圧縮する工程との諸工程から
なるものである。
(Means for Solving the Problems) In order to solve the above problems, the method for producing an iridium sintered body of the present invention is to process chemically precipitated and precipitated iridium powder in a H2 stream at a temperature range of 400 to 800°C. The process of
a step of molding the iridium powder compact in a mold on/crl, a step of pre-firing the iridium powder compact at 800 to 1400°C in H2 or vacuum and then sintering it, and converting the iridium sintered compact into the sintered compact. Clearance with 0.02~0.3mm
It consists of various steps including the step of recompressing using a mold set as follows.

本発明のイリジウム焼結体の製造方法において、化学的
に析出沈降させたイリジウム粉末をH2気流中400〜
800℃の温度範囲で処理するとしたのは、化学沈降法
による粉末は一次粒子径が細か(表面エネルギーが多い
ために焼結を促進するものであるが、反面吸着物が多い
ので、これを除去することが必要であるからで、こ、二
で吸着物除去をH2気流中400〜800℃で行うと限
定した理由は、400℃未満では吸着物の除去が不完全
でイリジウム焼結体表面にふ(れが生じ、800℃を超
えるとイリジウム粉末の焼結の進行がみられ、イリジウ
ム粉末が粗大化するからである。
In the method for producing an iridium sintered body of the present invention, chemically precipitated and precipitated iridium powder is added to
The reason for processing at a temperature range of 800°C is that the powder produced by chemical precipitation has a small primary particle size (high surface energy, which promotes sintering, but on the other hand, there are many adsorbed substances, so this is removed). This is because it is necessary to remove the adsorbate in the second step, and the reason why we limited the adsorbed material removal to 400 to 800°C in H2 gas flow is that below 400°C, the removal of adsorbate is incomplete and the surface of the iridium sintered body is damaged. This is because sagging occurs, and if the temperature exceeds 800°C, sintering of the iridium powder will proceed and the iridium powder will become coarse.

また上記のように処理したイリジウム粉末を圧力0.5
〜5ton/airで金型にて成形するとしたのは、0
,5ton/cr1未満の圧力では金型離型時に粉末が
くずれ易くなり、5ton/cdを超えると成形時にと
じ込められたガスが焼結時に抜けきらず、焼結密度の低
下をもたらすからである。
In addition, the iridium powder treated as described above was applied under a pressure of 0.5
It is assumed that molding is performed using a mold at ~5 ton/air.
This is because if the pressure is less than 5 ton/cd, the powder will easily crumble when the mold is released, and if it exceeds 5 ton/cd, the gas trapped during molding will not be able to escape during sintering, resulting in a decrease in sintered density.

さらに前記のように成形したイリジウム粉末成形体をH
2又は真空中800−1400℃にて予備焼成した後焼
結を行うとしたのは、まず予備焼成で粉末の吸着物を完
全に除去すると共に成形時のまき込みガスを抜くためで
あり、ここで予備焼成温度を800〜1400℃と限定
した理由は、800℃未満では上記効果が薄く、140
0℃を超えると焼成の進行が早すぎるためにガスが完全
に抜けきらないからである。
Furthermore, the iridium powder molded body molded as described above was
2. The reason why sintering is performed after preliminary firing at 800-1400°C in vacuum is to completely remove adsorbed substances in the powder in the preliminary firing and to remove the gas mixed in during molding. The reason why the pre-firing temperature was limited to 800 to 1400°C is that below 800°C, the above effect is weak, and 140°C
This is because if the temperature exceeds 0°C, the firing progresses too quickly and the gas cannot be completely released.

尚前述の最初の工程における吸着物除去の雰囲気と第3
の工程における予備焼成の雰囲気をH2又は真空中とし
たのは、酸化性ガスではイリジウムが酸化し、不活性ガ
スでは粉末の吸着物を分解除去することが難しいからで
ある。
It should be noted that the atmosphere for removing adsorbate in the first step mentioned above and the atmosphere in the third step
The reason why the atmosphere for the preliminary firing in step (2) was set to H2 or vacuum is because iridium is oxidized with an oxidizing gas, and it is difficult to decompose and remove the adsorbed powder with an inert gas.

さらに前記のように予備焼成した後焼成したイリジウム
焼結体を、該焼結体とのクリアランスを0.02〜0.
3Mに設定した金型を用いて再圧縮するとしたのは、再
圧縮をすることで焼結体表面の面粗度を少なくするため
で、金型とのクリアランスが0.02mm未満ではイリ
ジウム焼結体が金型に入りにくくなり、0.3mmを超
えるとイリジウムの伸びが小さいために再圧縮中に焼結
体が破壊してしまうからである。
Further, the iridium sintered body pre-fired and fired as described above is set at a clearance of 0.02 to 0.
The reason for recompressing using a mold set to 3M is to reduce the surface roughness of the sintered body surface by recompressing, and if the clearance with the mold is less than 0.02 mm, iridium sintering This is because it becomes difficult for the body to fit into the mold, and if it exceeds 0.3 mm, the elongation of iridium is small and the sintered body will break during recompression.

(作用) 上記本発明のイリジウム焼結体の製造方法は、化学的に
沈降析出させたイリジウム粉末をH2気流中400〜8
00℃の温度範囲で処理するので、吸着物の除去が十分
に行われてイリジウム粉末の表面にふくれが生ぜず、し
かもイリジウム粉末の焼結の進行が見られず、粗大化す
ることがない。またこのように処理したイリジウム粉末
を圧力0.5〜5ton/cotで金型にて成形するの
で、金型離型時にイリジウム粉末が(ずれず、且つ成形
時にとじ込められるガスを次工程の予備焼成時に抜くこ
とができ、焼結密度を低下することがない。さらにこの
ように成形したイリジウム粉末成形体をH2又は真空中
800〜1400℃にて予備焼成した後焼結を行うので
、予備焼成で粉末の吸着物が完全に除去され、且つ前記
成形時のまき込みガスを完全に抜(ことができ、良好な
焼結が行われる。そしてこのように予備焼成温度結した
イリジウム焼結体を、該焼結体とのクリアランスを0.
02〜0.3mmに設定した金型を用いて再圧縮するの
で、焼結体表面の面粗度を少な(できる。かくして表面
汚染が無く、滑らかな表面状態で焼結密度の十分なイリ
ジウム焼結体が得られる。
(Function) In the method for producing an iridium sintered body of the present invention, chemically precipitated iridium powder is added to
Since the treatment is carried out in a temperature range of 0.000C, adsorbed matter is sufficiently removed and no blistering occurs on the surface of the iridium powder, and furthermore, no progress of sintering of the iridium powder is observed, and no coarsening occurs. In addition, since the iridium powder treated in this way is molded in a mold at a pressure of 0.5 to 5 ton/cot, the iridium powder does not shift when the mold is released, and the gas trapped during molding is used as a reserve for the next process. It can be pulled out during firing, and the sintered density will not decrease.Furthermore, the iridium powder compact formed in this way is pre-fired at 800 to 1400°C in H2 or vacuum, and then sintered. In this step, the adsorbed matter of the powder is completely removed, and the gas introduced during the molding process can be completely removed, resulting in good sintering. , the clearance with the sintered body is 0.
Since recompression is performed using a mold set to 0.02 to 0.3 mm, the surface roughness of the sintered body can be reduced.In this way, there is no surface contamination, and the iridium sintered body has a smooth surface condition and sufficient sintering density. Solids are obtained.

(実施例) 本発明のイリジウム焼結体の製造方法の一実施例を比較
例と共に説明する。
(Example) An example of the method for manufacturing an iridium sintered body of the present invention will be described together with a comparative example.

下記の表に各工程の条件により直径20mm、重さ10
gのディスク状イリジウム焼結体を製作した後、焼結密
度を測定した。ここで使用した化学沈降法によるイリジ
ウム粉末は純度99.99%以上の平均粒子径5μmの
ものを用い、 で行った。
The table below shows the diameter of 20 mm and weight of 10 mm depending on the conditions of each process.
After manufacturing the disk-shaped iridium sintered body of g, the sintered density was measured. The iridium powder obtained by the chemical precipitation method used here had a purity of 99.99% or more and an average particle diameter of 5 μm.

(以下余白) 焼結は2000°Cの温度 上記の表で判るように比較例1〜3及び5〜9は焼結密
度が低く、実施例と比較例4では、真密度22.4 g
 /cut’に近い焼結密度が得られた。この実施例と
比較例4のサンプルをクリアランス0.farmと0.
4mmの再圧縮金型を用い、10ton/cofの圧力
で圧縮したところ、比較例4のサンプルは破壊したか、
実施例のサンプルは表面粗度1μmの滑らかな表面状態
が得られた。
(Left below) Sintering temperature is 2000°C As can be seen from the table above, Comparative Examples 1 to 3 and 5 to 9 have low sintered densities, and Examples and Comparative Example 4 have a true density of 22.4 g.
A sintered density close to /cut' was obtained. The samples of this example and comparative example 4 were used with a clearance of 0. farm and 0.
When compressed at a pressure of 10 tons/cof using a 4 mm recompression mold, the sample of Comparative Example 4 was destroyed.
The sample of the example had a smooth surface with a surface roughness of 1 μm.

(発明の効果) 以上の通り本発明のイリジウム焼結体の製造方法によれ
ば、表面汚染が無く、表面粗度が低く、滑らかな表面状
態で焼結密度の高いイリジウム焼結体を得ることができ
る。
(Effects of the Invention) As described above, according to the method for producing an iridium sintered body of the present invention, an iridium sintered body with no surface contamination, low surface roughness, smooth surface condition, and high sintered density can be obtained. I can do it.

出願人  田中貴金属工業株式会社Applicant: Tanaka Kikinzoku Kogyo Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 1)化学的に析出沈降させたイリジウム粉末をH_2気
流中400〜800℃の温度範囲で処理する工程と、そ
の処理をしたイリジウム粉末を圧力0.5〜5ton/
cm^2で金型にて成形する工程と、そのイリジウム粉
末成形体をH_2又は真空中800〜1400℃にて予
備焼成した後焼結を行う工程と、そのイリジウム焼結体
を該焼結体とのクリアランスを0.02〜0.3mmに
設定した金型を用いて再圧縮する工程との諸工程からな
るイリジウム焼結体の製造方法。
1) Process of treating the chemically precipitated iridium powder in a H_2 gas stream at a temperature range of 400 to 800°C, and applying the treated iridium powder to a pressure of 0.5 to 5 tons/
A step of molding the iridium powder compact in a mold at cm^2, a step of pre-firing the iridium powder compact at 800 to 1400°C in H_2 or vacuum and then sintering it, and converting the iridium sintered compact into the sintered compact. A method for producing an iridium sintered body, which comprises steps of recompressing using a mold with a clearance of 0.02 to 0.3 mm.
JP2165276A 1990-06-22 1990-06-22 Method for producing iridium sintered body Expired - Fee Related JP2902060B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2165276A JP2902060B2 (en) 1990-06-22 1990-06-22 Method for producing iridium sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2165276A JP2902060B2 (en) 1990-06-22 1990-06-22 Method for producing iridium sintered body

Publications (2)

Publication Number Publication Date
JPH0456706A true JPH0456706A (en) 1992-02-24
JP2902060B2 JP2902060B2 (en) 1999-06-07

Family

ID=15809256

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2165276A Expired - Fee Related JP2902060B2 (en) 1990-06-22 1990-06-22 Method for producing iridium sintered body

Country Status (1)

Country Link
JP (1) JP2902060B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017099635A1 (en) * 2015-12-09 2017-06-15 Общество С Ограниченной Ответственностью Научно-Производственное Объединение "Металлы Урала" Method for producing articles from iridium metal

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017099635A1 (en) * 2015-12-09 2017-06-15 Общество С Ограниченной Ответственностью Научно-Производственное Объединение "Металлы Урала" Method for producing articles from iridium metal
RU2633203C2 (en) * 2015-12-09 2017-10-11 Общество С Ограниченной Ответственностью Научно-Производственное Объединение "Металлы Урала" Metallic iridium articles production method
EP3388170A4 (en) * 2015-12-09 2019-07-03 Obschestvo S Ogranichennoi Otvetstvennostyu Nauchno - Proizvodstvennoe Ob''Edinenie ''Metally Urala'' Method for producing articles from iridium metal
US10717150B2 (en) 2015-12-09 2020-07-21 OOO NPO “Metally Urala” Method for producing articles from iridium metal

Also Published As

Publication number Publication date
JP2902060B2 (en) 1999-06-07

Similar Documents

Publication Publication Date Title
JPH10183341A (en) Tungsten or molybdenum target
KR100792151B1 (en) Uranium oxide sintered material with controlled grain morphology and preparation method thereof
JP3764315B2 (en) Tungsten material and manufacturing method thereof
JPH0456706A (en) Manufacture of iridium sintered body
JPH0532458A (en) Heat-treating apparatus for semiconductor, high-purity silicon carbide part for semiconductor heat-treating apparatus and its production
US4318876A (en) Method of manufacturing a dense silicon carbide ceramic
US3625680A (en) Method for producing porous uranium
JPH03213142A (en) Method for purifying particulate material
JP3869057B2 (en) Low density molybdenum sintered body and method for producing the same
US4375443A (en) Process for producing electrically-conductive articles from silicon powder by treatment in the presence of boron oxide
JP3297547B2 (en) Method for producing silicon carbide sintered body
JPH02111663A (en) Porous conductive material
JPH02271919A (en) Production of fine powder of titanium carbide
JPS6140747B2 (en)
JP2605847B2 (en) Manufacturing method of zinc oxide whiskers
JPH02116678A (en) Production of sintered silicon carbide body
JPH02133387A (en) Production of graphite boat for zone melting and refining
JPS6256371A (en) Manufacture of silicon carbide sintered body
JPH1161392A (en) Production of sputtering target for forming ru thin film
JP2825338B2 (en) Method for producing silicon carbide ceramics
JP2958569B2 (en) Atmospheric pressure sintered h-BN ceramic sintered body processing method
JPH0733547A (en) Production of porous silicon carbide sintered compact
JPH07258769A (en) Production of silver-oxide electrical contact material
JPH05246704A (en) Production for artificial diamond or artificial diamond powder
JP2584035B2 (en) Method for producing zinc oxide whiskers

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees