JPH03207823A - Method for determining material heating curve in heating furnace - Google Patents

Method for determining material heating curve in heating furnace

Info

Publication number
JPH03207823A
JPH03207823A JP312190A JP312190A JPH03207823A JP H03207823 A JPH03207823 A JP H03207823A JP 312190 A JP312190 A JP 312190A JP 312190 A JP312190 A JP 312190A JP H03207823 A JPH03207823 A JP H03207823A
Authority
JP
Japan
Prior art keywords
temperature
furnace
slab
temp
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP312190A
Other languages
Japanese (ja)
Other versions
JP3007107B2 (en
Inventor
Makoto Tsuruta
誠 鶴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2003121A priority Critical patent/JP3007107B2/en
Publication of JPH03207823A publication Critical patent/JPH03207823A/en
Application granted granted Critical
Publication of JP3007107B2 publication Critical patent/JP3007107B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To determine a material heating curve capable of improving precision in the rolling dimensions at the time of determining the curve for a heating furnace by taking the furnace temp. correction amt. inputted by an operator into consideration. CONSTITUTION:The furnace temp. setting means 106 for a heating furnace 101 is formed with an actual temp. calculating means 20, a heating curve calculating means 21, a set furnace temp. calculating means 22 and a parameter change calculating means 23 and periodically started. The present material temp. is calculated by the means 20 using the actual furnace temp. based on the material information such as the dimensions and weight of the material in the furnace, extraction temp. and in-furnace conveyance information from a material information means 102. The parameter is changed by the means 23 based on the set furnace temp. correction value from an operator input means 107, a heating curve for each material is determined by the means 21 based on the input value from the means 20 and 23, and the set furnace temp. is indicated to a fuel flow controller 103 through the means 22. Consequently, a heating curve matching the image of an operator is determined.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、熱間圧延ラインにおける加熱炉の材料昇温
曲線決定方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for determining a material temperature rise curve of a heating furnace in a hot rolling line.

〔従来の技術〕[Conventional technology]

第4図は、例えば特公昭5B−18401号公報に示さ
れた従来の連続加熱炉の制御方法における鋼片の装入温
度を経過時間によって求める場合の行程を示す説明図で
ある。この発明は加熱炉の炉内温度を鯛片の温度に応じ
て制御しようとするもので、綱片の温度測定は種々実施
されているが、造塊後から加熱炉装入までの経過時間に
よって求める場合について説明する。
FIG. 4 is an explanatory diagram showing a process in which the charging temperature of a steel billet is determined based on elapsed time in the conventional continuous heating furnace control method disclosed in, for example, Japanese Patent Publication No. 5B-18401. This invention attempts to control the temperature inside the heating furnace according to the temperature of the sea bream pieces, and various temperature measurements of the sea bream pieces have been carried out. Let us explain how to find it.

まず、連続鋳造鋼片は溶鋼を連続鋳造した後、所定の綱
片寸法に切断される(ステップS T4.1)。
First, continuously cast steel pieces are cut into predetermined lengths after continuously casting molten steel (step ST4.1).

この時、鋼片温度は連続鋳造装置に付随する水冷制御に
よって一定値(約800″C)に制御され、温度計によ
って測定される。温調片として連続加熱炉に装入される
鋼片は切断後数時間経過した後、加熱炉に装入される.
この時、当該綱片の切断時刻、該時刻の鋼片温度、連続
加熱炉への装入時刻、鋼片寸法により下記の伝熱方程式
により装入温度θ、1を算出する(ステップST2)。
At this time, the temperature of the steel billet is controlled to a constant value (approximately 800"C) by the water cooling control attached to the continuous casting equipment, and is measured with a thermometer.The temperature of the steel billet charged into the continuous heating furnace as a temperature control piece is A few hours after cutting, it is loaded into a heating furnace.
At this time, the charging temperature θ, 1 is calculated using the following heat transfer equation based on the cutting time of the rope, the temperature of the steel slab at the time, the time of charging into the continuous heating furnace, and the dimensions of the steel slab (step ST2).

但し、θ(t.x)  :材料温度 t :時刻(切断時刻からの経過時間)X :厚方向座
標(0≦X≦H/2) P :材料密度 C :材料比熱 λ :材料熱伝導率 H :スラブ厚 初期条件 θ(0,x)=θ。
However, θ(t.x): Material temperature t: Time (elapsed time from cutting time) H: Slab thickness initial condition θ(0,x)=θ.

θ。二連続鋳造終了時鋼片温度 境界条件 ■中心 ■ 表 面 ?・■・θ (t, O )  =4.88・εθy ? :雰囲気との輻射率 θ■P :雰囲気温度 なお、装入時間までの経過時間t=nとするとき、次式
の如く装入温度θ1としては厚み方向の平均温度を採用
する. 装入温度θ.7が求まれば、加熱炉内では該装入温度θ
iを初期値として該鋼片の抽出予測温度が目標抽出温度
と一致するように各帯の炉温度を制御し、抽出までの各
帯残在炉時間を基に伝熱方程式を各帯炉温を仮定した上
で解き(ステップST4.3 ,  ST4.4 ’)
 、抽出温度を予測して目標値との偏差があった場合に
は再度仮定した炉温を修正して一致するまで繰り返し計
算を行い、設定炉温を求め、その結果で材料の昇温曲線
を決定する(ステップST4.5). 〔発明が解決しようとする課題〕 従来の加熱炉の材料昇温曲線決定方法は以上のように行
われているので、一度仮定した炉温で予測と目的の偏差
があった場合の修正量を試行錯誤で行わざるを得ず、ま
た伝熱方程式を解いているため炉内のスラブ(鋼片)本
数が多くなると計算に時間がかかり、オンライン向きで
ない。また、圧延工程を考慮すると、スキッド(滑り部
材)間とスキッド部の温度差について(以下、均熱度と
略称)何も考慮していないため圧延時の寸法精度が低下
する等の課題があった. また、求めた設定炉温か必ずしもオペレータのイメージ
に一致するとは限らず、その場合加熱炉制御帯とのマン
マシンインターフェースが無いと介入ができず、結局自
動から手動に切り換えられて操作することになり、自動
化の適用率が下がるなどの課題があった. この発明は上記のような課題を解消するためになされた
もので、昇温曲線を短時間で決定できると共に、スキッ
ド部およびスキッド間の2種類の温度条件を取り込み圧
延時の寸法精度を向上させることができ、また自動制御
の適用率を上昇させることができる加熱炉の材料昇温曲
線決定方法を得ることを目的とする. 〔課題を解決するための手段〕 この発明に係る加熱炉の材料昇温曲線決定方法は、スキ
ッド部とスキッド間の2種類のスラブ平均温度をスラブ
の温度予測数式モデルによって求め、そのスラブ平均温
度を用いて各帯炉温に対する抽出時のスラブ平均温度感
度を抽出時スラブ平均温度感度式によって求め、スラブ
が各帯にある時の修正量を修正炉温計算式によって求め
て各帯炉温を修正し、前記修正炉温計算式の計算周期中
にオペレータが炉温修正値を入力すると各修正値をパラ
メータ計算式によって求め、修正して次周期へ反映する
ようにしたものである。
θ. Billet temperature at the end of two continuous casting Boundary conditions ■ Center ■ Surface?・■・θ (t, O) =4.88・εθy? : Emissivity with the atmosphere θ■P :Ambient temperature When the elapsed time until the charging time t=n, the average temperature in the thickness direction is used as the charging temperature θ1 as shown in the following equation. Charging temperature θ. 7, the charging temperature θ in the heating furnace
Using i as the initial value, the furnace temperature of each zone is controlled so that the predicted extraction temperature of the steel slab matches the target extraction temperature, and the heat transfer equation is calculated for each zone furnace temperature based on the remaining furnace time of each zone until extraction. Solve by assuming (step ST4.3, ST4.4')
If the extraction temperature is predicted and there is a deviation from the target value, the assumed furnace temperature is corrected again and calculations are repeated until they match to find the set furnace temperature, and the temperature rise curve of the material is calculated using the results. Determine (step ST4.5). [Problem to be solved by the invention] Since the conventional method for determining the material temperature rise curve of a heating furnace is performed as described above, it is necessary to calculate the amount of correction when there is a deviation between the predicted and desired furnace temperature once assumed. It has to be done by trial and error, and since the heat transfer equation is solved, calculations take time when the number of slabs (steel slabs) in the furnace increases, so it is not suitable for online calculations. In addition, when considering the rolling process, there were issues such as a decrease in dimensional accuracy during rolling because no consideration was given to the temperature difference between the skids (sliding members) and the skid part (hereinafter referred to as uniformity). .. In addition, the determined furnace temperature does not necessarily match the operator's image, and in that case, without a man-machine interface with the furnace control zone, intervention is not possible, and the operation ends up switching from automatic to manual. , there were issues such as a decline in the application rate of automation. This invention was made to solve the above-mentioned problems, and it is possible to determine the temperature rise curve in a short time, and improves dimensional accuracy during rolling by incorporating two types of temperature conditions at the skid part and between the skids. The purpose of this study is to obtain a method for determining the material temperature rise curve of a heating furnace that can increase the application rate of automatic control. [Means for Solving the Problems] A method for determining a material temperature rise curve for a heating furnace according to the present invention is to obtain two types of slab average temperatures between the skid portion and the skid using a slab temperature prediction formula model, and calculate the slab average temperature. The slab average temperature sensitivity during extraction for each zone furnace temperature is determined using the slab average temperature sensitivity formula during extraction, and the correction amount when the slab is in each zone is determined using the modified furnace temperature calculation formula, and each zone furnace temperature is calculated using When the operator inputs a furnace temperature correction value during the calculation cycle of the corrected furnace temperature calculation formula, each correction value is determined by the parameter calculation formula, and the correction is reflected in the next cycle.

〔作 用〕[For production]

この発明に係る加熱炉の材料昇温曲線決定方法は、スキ
ッド部とスキッド間の2種類のスラブ平均温度をスラブ
平均温度計算式によって求め、次に予測モデルを用いて
炉温に対する抽出時のスラブ温度感度を抽出時スラブ平
均温度感度式の計算によって求める。さらに抽出目標温
度と目標均熱度による各帯必要炉温を感度と調整ゲイン
と予測モデルとを用いて収束計算を行い昇温曲線を決定
する。また、オペレータがオンライン中に各帯炉温修正
量を入力すると、その修正量をパラメータ計算式によっ
て求めオンライン修正してオペレータのイメージに合う
制御を可能にする.〔発明の実施例〕 以下、この発明の一実施例を図に沿って説明する。第1
図は加熱炉の概念図を示すもので、それぞれの制御帯を
安定に維持するために、各制御帯を例えば、予熱帯,加
熱帯および均熱帯の3ゾーンに分け温度制御する. また、第2図は加熱炉の制御方式を示すブロック図であ
り、図において、炉温設定手段106は現状温度計算手
段20、昇温曲線計算手段21、設定炉温計算手段22
、オペレータ介入時のバラメータ変更計算手段23で構
戒される.前記現状温度計算手段20にはパラメータと
して材料情報手段102から情報が与えられる。また、
101はゾーン分けされた加熱炉で複数組の燃料流量制
御器103を有し、各ゾーン毎に独立して温度制御を可
能とするため、炉温検出器104および燃焼用バーナ1
05を備えている。オンライン中にオペレータがオペレ
ータ入力手段107により設定炉温修正値を入力した場
合には、該オペレータ入力手段107を通してパラメー
タ変更計算手段23で、抽出目標温度、目標均熱度およ
び調整ゲインのいずれかを修正する.そしてこのパラメ
ータを基に次の周期から昇温曲線計算手段2lでオペレ
ータのイメージに合うような材料の昇温曲線を決定する
. 次に第3図のフローチャートを参照して材料昇温曲線決
定の計算方法について説明する。
The method for determining the material temperature rise curve of a heating furnace according to the present invention is to obtain two types of slab average temperatures between the skid part and the skid using a slab average temperature calculation formula, and then use a prediction model to calculate the temperature of the slab at the time of extraction relative to the furnace temperature. Temperature sensitivity is determined by calculating the slab average temperature sensitivity formula during extraction. Furthermore, a convergence calculation is performed on the required furnace temperature for each zone based on the extraction target temperature and target soaking degree using the sensitivity, adjustment gain, and prediction model to determine the temperature increase curve. In addition, when the operator inputs the amount of correction for each zone temperature while online, the amount of correction is calculated using a parameter calculation formula and is corrected online to enable control that matches the operator's image. [Embodiment of the Invention] An embodiment of the invention will be described below with reference to the drawings. 1st
The figure shows a conceptual diagram of a heating furnace. In order to maintain each control zone stably, each control zone is divided into three zones, for example, a preheating zone, a heating zone, and a soaking zone, and the temperature is controlled. Further, FIG. 2 is a block diagram showing the control system of the heating furnace.
, the parameter change calculation means 23 at the time of operator intervention. Information is given to the current temperature calculation means 20 from the material information means 102 as a parameter. Also,
101 is a heating furnace divided into zones and has multiple sets of fuel flow rate controllers 103, and in order to enable independent temperature control for each zone, a furnace temperature detector 104 and a combustion burner 1 are installed.
It is equipped with 05. When the operator inputs a set furnace temperature correction value using the operator input means 107 while online, the parameter change calculation means 23 corrects any of the extraction target temperature, target soaking degree, and adjustment gain through the operator input means 107. do. Based on these parameters, the temperature rise curve calculation means 2l determines a material temperature rise curve that matches the operator's image from the next cycle. Next, a calculation method for determining a material temperature increase curve will be explained with reference to the flowchart in FIG.

まず、スラブ平均温度の方程式を(1), (2)式に
示す. θ、.=01+(θ、.−,一θ*=>expr  a
,i・tt#>・・・・・・・・・ (1) /(θ,8−θji−1 )      ・・・・・・
・・・ (2)ここで、θji’スラブ平均温度 aハ:修正係数 θ,.:設定炉温 C.:比熱 t,:予測残在炉時間 γ :比重 H :スラブ厚 σ :ステファンボルツマン定数 i :帯(i=1.3) j :スキッド部/間 (j−1.2)(1)式は予測
残在炉時間LL、スラブ厚H、設定炉温θ,.が与えら
れれば、各帯出側スラブ平均温度θ、.が求まる(スラ
ブの温度予測数式モデル)。
First, the equations for the slab average temperature are shown in equations (1) and (2). θ,. =01+(θ,.-,-θ*=>expr a
, i・tt#>・・・・・・・・・ (1) /(θ,8−θji−1) ・・・・・・
... (2) Here, θji' slab average temperature ac: correction coefficient θ, . : Set furnace temperature C. : Specific heat t, : Predicted remaining furnace time γ : Specific gravity H : Slab thickness σ : Stefan Boltzmann constant i : Band (i=1.3) j : Skid part/space (j-1.2) Equation (1) is Predicted remaining furnace time LL, slab thickness H, set furnace temperature θ, . is given, the average temperature of each strip exit side slab θ, . is calculated (slab temperature prediction formula model).

まず、ステップSTIではテーブル値にて各帯炉温初期
値θ,8をセットする.なお、(3)式の抽?時スラブ
平均温度感度式を用いれば各帯炉温θ1で偏微分するこ
とにより各帯炉温に対するスラブ平均温度感度が求まる
. Fjk一θθj3/θθ■     ・・・・・・・・
・(3)(j =1. 2 . k=1. 3)ステッ
プST2で(1). (2)式より抽出時のスラブ平均
温度θ、1が求まり、そしてステップST3で(4),
 (5)式を満足するか否かのチェックを行う.・・・
・・・・・・ (4) (5) ここで、jはスラブの存在している帯である。
First, in step STI, initial values θ and 8 of each zone furnace temperature are set using table values. In addition, the draw of equation (3)? Using the slab average temperature sensitivity formula, the slab average temperature sensitivity for each zone temperature can be found by partial differentiation with respect to each zone furnace temperature θ1. Fjk - θθj3/θθ■ ・・・・・・・・・
- (3) (j = 1. 2. k = 1. 3) (1) in step ST2. From equation (2), the slab average temperature θ,1 during extraction is determined, and in step ST3, (4),
Check whether formula (5) is satisfied. ...
...... (4) (5) Here, j is the belt where the slab exists.

続いて、ステップST4で(3)式によりスラブ平均温
度感度が求まる.ここでステップST5において、次の
ケース分けにより(4), (5)式を満足していなけ
れば修正炉温の修正量Δθ.を求める(修正炉温計算式
)。
Subsequently, in step ST4, the slab average temperature sensitivity is determined using equation (3). Here, in step ST5, if equations (4) and (5) are not satisfied based on the following case classification, the correction amount Δθ of the corrected furnace temperature. (modified furnace temperature calculation formula).

(i) スラブが予熱帯に存在する場合 (a) (4),(5)式共に満足しない場合 ここで、 βはテーブル値あるいはオンライン計 算値。(i) If the slab is in the preheating zone (a) If both equations (4) and (5) are not satisfied here, β is a table value or an online calculation. calculation value.

(b) (5)式のみ満足する場合 ここで、 βI β2 はテーブル値あるいはオ ンライン計算値である。(b) When only formula (5) is satisfied here, βI β2 is a table value or an This is an online calculation value.

(ii) スラブが加熱帯に存在する場合 (a) (4) (5)式共に満足しない場合 (b) (5)式のみ満足する場合 ?こで、αはテーブル値あるいはオンライン計算値であ
る。
(ii) When the slab exists in the heating zone (a) When both equations (4) and (5) are not satisfied (b) When only equation (5) is satisfied? Here, α is a table value or an online calculated value.

(ii)スラブが均熱帯に存在する場合pus’Δθ,
3−θ13AIM−θ..   −−−−・−(10)
こうして、上記式を解くことで修正量Δθ■が求まる。
(ii) If the slab exists in the soaking zone, pus'Δθ,
3-θ13AIM-θ. .. -----・-(10)
In this way, the correction amount Δθ■ can be found by solving the above equation.

θ,iにΔθ.1を加算する(θ,、+Δθ,,→θ,
.)。そして(4), (5)式を満足するようになる
までステップST2〜ST5の処理を繰り返す。
θ, i is Δθ. Add 1 (θ,, +Δθ,, →θ,
.. ). Then, the processing in steps ST2 to ST5 is repeated until equations (4) and (5) are satisfied.

もし、この周期中にオペレータが炉温修正値を入力して
いる場合にはステップST6にてテーブル値あるいは計
算値β,β1.β2,α、抽出目標温度修正、目標均熱
度修正を行い、次周期へ反映ずる(ステップST7),
ステップST5にて求まっている当該スラブの存在帯必
要炉温をオペレータの炉温修正値により修正して、その
修正量を補充するために、以下の処理を行って対応する
If the operator inputs the furnace temperature correction value during this cycle, the table value or the calculated value β, β1 . β2, α, extraction target temperature and target soaking degree are corrected and reflected in the next cycle (step ST7),
In order to correct the necessary furnace temperature for the existing zone of the slab determined in step ST5 using the operator's furnace temperature correction value and replenish the correction amount, the following process is performed.

(iv)スラブが予熱帯に存在する場合(a) (4)
 , (5)式共に満足しない場合?11)を収束計算
して次式ゲインを次周期へ反映する。
(iv) If the slab exists in the preheating zone (a) (4)
, What if both equations (5) are not satisfied? 11) is convergently calculated and the gain of the following equation is reflected in the next cycle.

β=(θ,1−θ■M)バθ、一θ,!1′)B ,,
g= (θ,isam十〇,t””)/2  (i=1
.2)(b) (5)式のみ満足する場合 β1=(θ1−θ,.’)/(θ,,一〇,一)β2=
(θ,2−θ−z’)/(θg3−θ,♂)(v)スラ
ブが加熱帯に存在する場合 (a) (4) , (5)式共に満足しない場合・・
・・・・・・・(13) (13)式を収束計算してΔΔθ(目標均熱度修正量)
を次周期へ反映する。
β=(θ, 1-θ■M) θ, -θ,! 1')B,,
g= (θ, isam10, t””)/2 (i=1
.. 2) (b) When only formula (5) is satisfied β1 = (θ1 - θ,.') / (θ,, 10, 1) β2 =
(θ, 2-θ-z')/(θg3-θ, ♂) (v) When the slab exists in the heating zone (a) When both equations (4) and (5) are not satisfied...
・・・・・・・・・(13) Convergent calculation of equation (13) to calculate ΔΔθ (target uniformity degree correction amount)
will be reflected in the next cycle.

(b) (5)式のみ満足する場合 FI3・Δθ,,=θ,AI′一θI3   ・・・・
・・(14)(14)式を収束計算して次式ゲインを次
周期へ反映する。
(b) When only formula (5) is satisfied FI3・Δθ,,=θ,AI′−θI3...
...(14) Convergently calculate the equation (14) and reflect the gain of the following equation to the next cycle.

α=(θ.2−0.2κ)バθ,,−θg一)(vi)
スラブが均熱帯に存在する場合ステップST5で求まっ
た炉温をオペレータ修正値により修正してその炉温にて
(1)式で抽出時スラブ平均温度を求め抽出目標温度と
の偏差を次周期へ反映する. Δθ = θ1,一θ.^1M こうして、それぞれの場合に応じて次周期へ反映させる
変数は異なるが、ステップST5に用いるテーブル値β
,β1,β2,αあるいはΔθ,ΔΔθを目標値に反映
させて、オペレータのイメージに合うような材料の昇温
曲線が求められるようになる。
α=(θ.2−0.2κ)baθ,,−θg−)(vi)
If the slab exists in the soaking zone, the furnace temperature determined in step ST5 is corrected by the operator correction value, and at that furnace temperature, the average temperature of the slab during extraction is calculated using equation (1), and the deviation from the extraction target temperature is transferred to the next cycle. reflect. Δθ = θ1, −θ. ^1M In this way, although the variables to be reflected in the next cycle differ depending on each case, the table value β used in step ST5
, β1, β2, α or Δθ, ΔΔθ are reflected in the target values to obtain a material temperature rise curve that matches the operator's image.

次にこの発明の一実施例に基づく加熱炉制御について第
2図を参照して説明する。
Next, heating furnace control based on one embodiment of the present invention will be explained with reference to FIG. 2.

第2図において、複数の制御帯に分割された加熱炉10
1には燃焼用バーナ105、炉温検出器104が配置さ
れており、炉温設定手段106により設定された各制御
帯毎の設定温度になるように燃料流量制御器103によ
って流量がt?ilJllIされている。102は材料
情報手段であり、炉内の材料の寸法,重量,抽出温度,
炉内搬送情報等の材料情報を炉温設定手段106に指示
する。また、オンライン中にオペレータが設定炉温修正
値を入力した場合、オペレータ入力手段107により炉
温設定手段106は認識する。
In FIG. 2, a heating furnace 10 divided into a plurality of control zones
1, a combustion burner 105 and a furnace temperature detector 104 are arranged, and the fuel flow rate controller 103 controls the flow rate to t? so that the temperature reaches the set temperature for each control zone set by the furnace temperature setting means 106. It has been ilJllI. Reference numeral 102 is a material information means, which provides information on the dimensions, weight, extraction temperature, etc. of the material in the furnace.
Material information such as in-furnace conveyance information is instructed to the furnace temperature setting means 106. Further, when the operator inputs a set furnace temperature correction value while online, the furnace temperature setting means 106 recognizes it by the operator input means 107.

炉温設定手段106は現状温度計算手段20と昇温曲線
計算手段21と設定炉温計算手段22とオペレータ介入
時のパラメータ変更計算手段23とからなっており、周
期的に起動される.現状温度計算手段20は材料情報を
基にして実績炉温を用いて現在の材料温度を計算する。
The furnace temperature setting means 106 consists of a current temperature calculation means 20, a temperature increase curve calculation means 21, a set furnace temperature calculation means 22, and a parameter change calculation means 23 upon operator intervention, and is activated periodically. The current temperature calculation means 20 calculates the current material temperature using the actual furnace temperature based on the material information.

昇温曲線計算千段2lは上述したように各材料毎の昇温
曲線を決定する.設定炉温計算手段22は求まった設定
炉温を燃料流量制御器LO3に指示する。
Temperature rise curve calculation 1,000 stages 2L determines the temperature rise curve for each material as described above. The set furnace temperature calculation means 22 instructs the determined furnace temperature to the fuel flow rate controller LO3.

また、オペレータ人力手段107より得た設定炉温修正
値はパラメータ変更計算手段23で各パラメータを変更
し、このパラメータで昇温曲線計算手段21は昇温曲線
を決定する. 〔発明の効果〕 以上のようにこの発明によれば、スキッド部とスキッド
間の2種類のスラブ平均温度を温度予測数式モデルによ
って予測し、その予測数式モデルを用いて炉温に対する
スラブ平均温度感度を求め、各帯炉温を修正炉温計算式
を用いて修正し材料昇温曲線を決定する際に、オペレー
タが炉温修正量を入力するとその修正量を考慮するよう
にしたので計算時間も短縮され、加熱炉のオンライン制
御に適切であると共に、スラブの圧延寸法精度を向上さ
せ、オペレータのイメージに合うような昇温曲線を決定
することができる効果がある。
Further, the set furnace temperature correction value obtained by the operator manual means 107 is used to change each parameter in the parameter change calculation means 23, and the temperature rise curve calculation means 21 determines the temperature rise curve using these parameters. [Effects of the Invention] As described above, according to the present invention, two types of slab average temperatures at the skid portion and between the skids are predicted by a temperature prediction formula model, and the slab average temperature sensitivity to furnace temperature is calculated using the prediction formula model. When determining the material temperature rise curve by correcting each zone furnace temperature using the corrected furnace temperature calculation formula, the amount of correction is taken into account when the operator inputs the furnace temperature correction amount, reducing calculation time. It is shortened and suitable for online control of the heating furnace, and has the effect of improving the dimensional accuracy of slab rolling and determining a temperature increase curve that suits the operator's image.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は加熱炉の一般的な構威を示す概念図、第2図は
この発明の一実施例による加熱炉の制御方法を示すブロ
ック図、第3図はこの発明の一実施例による材料昇温曲
線決定の計算方法を示すフローチャート、第4図は従来
の連続加熱炉におけるスラブ装入温度を経過時間によっ
て求める場合の行程を示す説明図である。 図において、101は加熱炉、106は炉温設定手段で
ある. なお、図中、同一符号は同一、又は相当部分を示す.
FIG. 1 is a conceptual diagram showing the general structure of a heating furnace, FIG. 2 is a block diagram showing a method of controlling a heating furnace according to an embodiment of the present invention, and FIG. 3 is a material diagram showing a method of controlling a heating furnace according to an embodiment of the present invention. FIG. 4 is a flowchart showing a calculation method for determining a temperature increase curve. FIG. 4 is an explanatory diagram showing a process when the slab charging temperature in a conventional continuous heating furnace is determined based on elapsed time. In the figure, 101 is a heating furnace, and 106 is a furnace temperature setting means. In addition, the same reference numerals in the figures indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】[Claims] 複数の制御帯を有しスラブを装入して連続的に加熱抽出
する加熱炉における材料昇温曲線を決定する加熱炉の材
料昇温曲線決定方法において、前記加熱炉のスキッド部
とスキッド間の2種類のスラブ平均温度をスラブの温度
予測数式モデルによって算出し、前記スラブ平均温度を
用いて各帯炉温に対する抽出時のスラブ平均温度感度を
抽出時スラブ平均温度感度式によって算出し、前記スラ
ブが各帯にある時の修正炉温の修正量を修正炉温計算式
によって求めて前記各帯炉温を修正し、前記修正炉温計
算式の計算周期中にオペレータが炉温修正値を入力する
と抽出目標温度修正および目標均熱度修正値、修正炉温
計算ゲインをパラメータ計算式によって算出し、抽出目
標温度との偏差を修正し、次周期へ反映することを特徴
とする加熱炉の材料昇温曲線決定方法。
In a method for determining a material temperature rise curve for a heating furnace, which determines a material temperature rise curve in a heating furnace that has a plurality of control zones and continuously heats and extracts slabs, Two types of slab average temperatures are calculated using a slab temperature prediction formula model, and using the slab average temperature, the slab average temperature sensitivity at the time of extraction for each zone furnace temperature is calculated by the slab average temperature sensitivity formula at the time of extraction, The correction amount of the corrected furnace temperature when is in each zone is determined by the corrected furnace temperature calculation formula, and each zone furnace temperature is corrected, and the operator inputs the furnace temperature correction value during the calculation cycle of the corrected furnace temperature calculation formula. Then, the extraction target temperature correction, target soaking degree correction value, and correction furnace temperature calculation gain are calculated by the parameter calculation formula, and the deviation from the extraction target temperature is corrected and reflected in the next cycle. Temperature curve determination method.
JP2003121A 1990-01-10 1990-01-10 Material heating curve determination method for heating furnace Expired - Fee Related JP3007107B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003121A JP3007107B2 (en) 1990-01-10 1990-01-10 Material heating curve determination method for heating furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003121A JP3007107B2 (en) 1990-01-10 1990-01-10 Material heating curve determination method for heating furnace

Publications (2)

Publication Number Publication Date
JPH03207823A true JPH03207823A (en) 1991-09-11
JP3007107B2 JP3007107B2 (en) 2000-02-07

Family

ID=11548528

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003121A Expired - Fee Related JP3007107B2 (en) 1990-01-10 1990-01-10 Material heating curve determination method for heating furnace

Country Status (1)

Country Link
JP (1) JP3007107B2 (en)

Also Published As

Publication number Publication date
JP3007107B2 (en) 2000-02-07

Similar Documents

Publication Publication Date Title
JPS6111289B2 (en)
US4606529A (en) Furnace controls
KR101956365B1 (en) System for control temperature pattern of strip in continuous annealing line and the method of the same
JP6035817B2 (en) Automatic combustion control method and apparatus for continuous heating furnace
JP4598586B2 (en) Cooling control method, apparatus, and computer program
JP3710572B2 (en) Heating furnace control device
JPH03207823A (en) Method for determining material heating curve in heating furnace
JP4598580B2 (en) Cooling control method, apparatus, and computer program
JPH03140415A (en) Method for determining material heating-up curve in heating furnace
JPS61261433A (en) Method for controlling temperature of heating furnace
JPS5913575B2 (en) Control method for heating furnace for steel ingots
JP2716551B2 (en) Heating furnace material heating curve determination method
JP2006274401A (en) Method for automatically controlling combustion in continuous heating furnace
JPH03264620A (en) Method for deciding temperature raising curve of material in heating furnace
JPH0565883B2 (en)
JPS6133884B2 (en)
JPH05255762A (en) Method for controlling furnace temperature of continuous heating furnace
JPH09209044A (en) Operation of continuous type steel cast slab heating furnace
JP2023125249A (en) Correction device and correction method for slab temperature model, furnace temperature control device and furnace temperature control method for heating furnace and manufacturing method of steel plate
JPS5818401B2 (en) Continuous heating furnace control method
JPS6411686B2 (en)
JP2023125248A (en) Correction device and correction method for slab temperature model, furnace temperature control device and furnace temperature control method for heating furnace and manufacturing method of steel plate
JPH06306453A (en) Method for eliminating skid mark in continuous heating furnace
JPS609087B2 (en) Heating control method for continuous heating furnace
JP2010247234A (en) Method, device and computer program for controlling cooling

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071126

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081126

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees