JP2010247234A - Method, device and computer program for controlling cooling - Google Patents

Method, device and computer program for controlling cooling Download PDF

Info

Publication number
JP2010247234A
JP2010247234A JP2010111957A JP2010111957A JP2010247234A JP 2010247234 A JP2010247234 A JP 2010247234A JP 2010111957 A JP2010111957 A JP 2010111957A JP 2010111957 A JP2010111957 A JP 2010111957A JP 2010247234 A JP2010247234 A JP 2010247234A
Authority
JP
Japan
Prior art keywords
cooling
steel sheet
temperature information
segment
longitudinal direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010111957A
Other languages
Japanese (ja)
Inventor
Tatsuichiro Shimoi
辰一郎 下井
Yoshihiko Himuro
善彦 桧室
Hironori Ueno
博則 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2010111957A priority Critical patent/JP2010247234A/en
Publication of JP2010247234A publication Critical patent/JP2010247234A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Control Of Metal Rolling (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To make high-accuracy dynamic control possible and to reduce effect on the manufacture of material. <P>SOLUTION: A device 100 for controlling cooling controls a cooling system 4 for cooling a steel sheet 1 with the quantity of cooling water so that cooling density is approximately constant during the sheet 1 is cooled and passed while conveying a steel sheet 1 after finish rolling, and includes: a scheduled cooling history obtaining part 101 for calculating the passing speed of the sheet in accordance with the target cooling finishing temperature information and reflecting it to the cooling system 4, and obtaining the scheduled cooling history of the steel sheet 1 by the cooling system 4; a real intermediate temperature information obtaining part 102 for obtaining a real intermediate temperature information in a predetermined portion in the longitudinal direction of the steel sheet 1 at the intermediate position M of the cooling system 4; and a sheet passing speed correcting part 103 for correcting the sheet passing speed which is reflected to the cooling system 4 on the basis of the scheduled cooling history obtained by the scheduled cooling history obtaining part 101 and the real intermediate temperature information obtained by the real intermediate temperature obtaining part 102. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、熱間圧延された鋼板を冷却する冷却装置を制御する冷却制御方法、装置、及びコンピュータプログラムに関する。   The present invention relates to a cooling control method, apparatus, and computer program for controlling a cooling device for cooling a hot-rolled steel sheet.

熱間圧延された主に厚鋼板を水冷により加速冷却し、焼入れ効果等を得るようにした鋼板製造ラインが稼動している。この熱間圧延鋼板の冷却は鋼板の材質造り込み上重要な工程の一つであり、その特性を決定付けるパラメータとしては、主に「鋼板の冷却開始温度」、「冷却強度」、「鋼板の冷却終了温度」が挙げられる。   A steel plate production line is operating in which hot rolled steel plates are accelerated and cooled by water cooling to obtain a quenching effect. This cooling of hot-rolled steel sheet is one of the important processes in building the material of the steel sheet, and the parameters that determine its characteristics are mainly “cooling start temperature of steel sheet”, “cooling strength”, “ Cooling end temperature ".

ところで、上述したパラメータのうち「鋼板の冷却開始温度」は仕上圧延工程の仕上温度で決定付けられ、また、「冷却強度」は所望の材質造り込みの前提条件として決定付けられることから、オンライン上での冷却制御においては「鋼板の冷却終了温度」が最も重要となる。   By the way, among the parameters described above, the “cooling start temperature of the steel sheet” is determined by the finishing temperature of the finish rolling process, and the “cooling strength” is determined as a precondition for building a desired material. In the cooling control, the “cooling end temperature of the steel sheet” is the most important.

従来から、冷却通板中の鋼板の温度を計測し、冷却終了温度が所望の温度となるように鋼板の上面や下面に噴射する冷却水量を変動させて、温度誤差を修正するようにした冷却制御が提案されている(例えば特許文献1)。   Conventionally, the temperature of the steel plate in the cooling plate is measured, and the cooling error amount is corrected by changing the amount of cooling water sprayed on the upper and lower surfaces of the steel plate so that the cooling end temperature becomes the desired temperature. Control has been proposed (for example, Patent Document 1).

特公平7−41303号公報Japanese Patent Publication No. 7-41303 特開2003−138318号公報JP 2003-138318 A 特開平6−71315号公報JP-A-6-71315

しかしながら、冷却装置では大量の冷却水が使用されるため、冷却通板中に冷却水量を変動させるのでは、その応答性に劣ってしまい、高精度なダイナミック制御が困難であるという問題がある。   However, since a large amount of cooling water is used in the cooling device, there is a problem that if the amount of cooling water is varied in the cooling plate, the response is inferior and high-precision dynamic control is difficult.

また、冷却通板中に冷却水量を変動させることは、重要なパラメータの一つである「冷却強度」そのものを変化させることになるため、材質造り込みへの影響が懸念される。   In addition, changing the amount of cooling water in the cooling plate changes the “cooling strength”, which is one of the important parameters, and there is a concern about the influence on the material build-up.

本発明は上記のような点に鑑みてなされたものであり、高精度なダイナミック制御を可能にし、かつ、材質造り込みへの影響も少なくすることを目的とする。   The present invention has been made in view of the above points, and an object of the present invention is to enable high-precision dynamic control and to reduce the influence on material fabrication.

本発明の冷却制御方法は、複数の冷却ゾーンを備え、中間位置に温度計が配置された冷却装置であり、冷却通板中は単位時間当たりの温度差である冷却強度が略一定となるような冷却水量で、仕上圧延後の鋼板を搬送しながら冷却する冷却装置を制御する冷却制御方法であって、
前記鋼板の長手方向の各セグメントiでの冷却開始温度情報と、前記冷却装置の各冷却ゾーンにおいて予め設定される製造標準値の冷却水量と、予め設定される目標冷却終了温度情報TE*と、前記冷却装置の使用ゾーンの全長とに基づいて通板速度を算出して前記冷却装置に反映させるとともに、該通板速度に基づいて前記鋼板の長手方向の各セグメントiでの予定全冷却時間tei *を算出する手順と、
前記通板速度に基づいて前記鋼板の長手方向の各セグメントiが前記中間位置に達するまでの予定前段冷却時間tcbi *を算出する手順と、
前記通板速度と前記鋼板の長手方向の各セグメントiでの冷却開始温度情報とに基づいて、前記鋼板の長手方向の各セグメントiでの前記中間位置における予定中間温度情報TIi *を算出する手順と、
前記鋼板の長手方向の各セグメントiが前記中間位置から冷却終了位置に達するまでの予定後段冷却時間tcfi *を、前記予定全冷却時間tei *から前記予定前段冷却時間tcbi *を減算して算出する手順と、
前記目標冷却終了温度情報TE*、前記予定中間温度情報TIi *、及び前記予定後段冷却時間tcfi *に基づいて、前記鋼板の長手方向の各セグメントiが前記中間位置から前記冷却終了位置に達するまでの期間での予定冷却強度Vcfi *を求める手順と、
からなる予定冷却履歴取得手順と、
前記冷却装置の中間位置における前記鋼板の長手方向の各セグメントiでの実績中間温度情報TIi Rを、前記温度計により計測される前記鋼板の表面温度を各セグメントiで定周期に読み込んで取得する手順と、
前記鋼板の通板状況をトラッキングして、前記実績中間温度情報TIi Rの指定距離分である複数のセグメント分についての平均値を算出して、平均値の実績中間温度TIRを求める手順と、
からなる実績中間温度情報取得手順と、
前記予定冷却履歴取得手順により取得される前記予定冷却強度Vcfi *を用いて複数のセグメント分の平均値を算出して、前記鋼板の所定の部位が前記中間位置から冷却終了位置に達するまでの予定冷却強度平均Vcf*を算出する手順と、
前記目標冷却終了温度情報TE*、前記実績中間温度情報取得手順により取得される実績中間温度情報TIR、及び前記予定冷却強度平均Vcf*に基づいて、前記鋼板の所定の部位の温度が前記目標冷却終了温度情報を満たすための、前記中間位置から冷却終了位置に達するまでの必要後段冷却時間tcfRを算出する手順と、
前記鋼板の長手方向の各セグメントiが前記中間位置に達するまでの冷却時間tcbi Rを実測して複数のセグメント分の平均値を算出して、前記鋼板の所定の部位が前記中間位置に達するまでの実績前段冷却時間tcbRを算出する手順と、
前記必要後段冷却時間tcfRと前記実績前段冷却時間tcbRとを加算して、前記鋼板の所定の部位の必要全冷却時間tei´を算出する手順と、
前記鋼板の各セグメントiの予定全冷却時間tei *と、前記鋼板の所定の複数のセグメントの前記予定前段冷却平均時間tcb*と必要後段冷却時間tcfRと必要全冷却時間tei´とに基づいて、通板速度を修正する手順と、
からなる通板速度修正手順とを有する点に特徴を有する。
本発明の冷却制御装置は、複数の冷却ゾーンを備え、中間位置に温度計が配置された冷却装置であり、冷却通板中は単位時間当たりの温度差である冷却強度が略一定となるような冷却水量で、仕上圧延後の鋼板を搬送しながら冷却する冷却装置を制御する冷却制御装置であって、
前記鋼板の長手方向の各セグメントiでの冷却開始温度情報と、前記冷却装置の各冷却ゾーンにおいて予め設定される製造標準値の冷却水量と、予め設定される目標冷却終了温度情報TE*と、前記冷却装置の使用ゾーンの全長とに基づいて通板速度を算出して前記冷却装置に反映させるとともに、該通板速度に基づいて前記鋼板の長手方向の各セグメントiでの予定全冷却時間tei *を算出し、
前記通板速度に基づいて前記鋼板の長手方向の各セグメントiが前記中間位置に達するまでの予定前段冷却時間tcbi *を算出し、
前記通板速度と前記鋼板の長手方向の各セグメントiでの冷却開始温度情報とに基づいて、前記鋼板の長手方向の各セグメントiでの前記中間位置における予定中間温度情報TIi *を算出し、
前記鋼板の長手方向の各セグメントiが前記中間位置から冷却終了位置に達するまでの予定後段冷却時間tcfi *を、前記予定全冷却時間tei *から前記予定前段冷却時間tcbi *を減算して算出し、
前記目標冷却終了温度情報TE*、前記予定中間温度情報TIi *、及び前記予定後段冷却時間tcfi *に基づいて、前記鋼板の長手方向の各セグメントiが前記中間位置から前記冷却終了位置に達するまでの期間での予定冷却強度Vcfi *を求める、予定冷却履歴取得手段と、
前記冷却装置の中間位置における前記鋼板の長手方向の各セグメントiでの実績中間温度情報TIi Rを、前記温度計により計測される前記鋼板の表面温度を各セグメントiで定周期に読み込んで取得し、
前記鋼板の通板状況をトラッキングして、前記実績中間温度情報TIi Rの指定距離分である複数のセグメント分についての平均値を算出して、平均値の実績中間温度TIRを求める実績中間温度情報取得手段と、
前記予定冷却履歴取得手段により取得される前記予定冷却強度Vcfi *を用いて複数のセグメント分の平均値を算出して、前記鋼板の所定の部位が前記中間位置から冷却終了位置に達するまでの予定冷却強度平均Vcf*を算出し、
前記目標冷却終了温度情報TE*、前記実績中間温度情報取得手段により取得される実績中間温度情報TIR、及び前記予定冷却強度平均Vcf*に基づいて、前記鋼板の所定の部位の温度が前記目標冷却終了温度情報を満たすための、前記中間位置から冷却終了位置に達するまでの必要後段冷却時間tcfRを算出し、
前記鋼板の長手方向の各セグメントiが前記中間位置に達するまでの冷却時間tcbi Rを実測して複数のセグメント分の平均値を算出して、前記鋼板の所定の部位が前記中間位置に達するまでの実績前段冷却時間tcbRを算出し、
前記必要後段冷却時間tcfRと前記実績前段冷却時間tcbRとを加算して、前記鋼板の所定の部位の必要全冷却時間tei´を算出し、
前記鋼板の各セグメントiの予定全冷却時間tei *と、前記鋼板の所定の複数のセグメントの前記予定前段冷却平均時間tcb*と必要後段冷却時間tcfRと必要全冷却時間tei´とに基づいて、通板速度を修正する通板速度修正手段とを備えた点に特徴を有する。
本発明のコンピュータプログラムは、複数の冷却ゾーンを備え、中間位置に温度計が配置された冷却装置であり、冷却通板中は単位時間当たりの温度差である冷却強度が略一定となるような冷却水量で、仕上圧延後の鋼板を搬送しながら冷却する冷却装置を制御するコンピュータプログラムであって、
前記鋼板の長手方向の各セグメントiでの冷却開始温度情報と、前記冷却装置の各冷却ゾーンにおいて予め設定される製造標準値の冷却水量と、予め設定される目標冷却終了温度情報TE*と、前記冷却装置の使用ゾーンの全長とに基づいて通板速度を算出して前記冷却装置に反映させるとともに、該通板速度に基づいて前記鋼板の長手方向の各セグメントiでの予定全冷却時間tei *を算出する処理と、
前記通板速度に基づいて前記鋼板の長手方向の各セグメントiが前記中間位置に達するまでの予定前段冷却時間tcbi *を算出する処理と、
前記通板速度と前記鋼板の長手方向の各セグメントiでの冷却開始温度情報とに基づいて、前記鋼板の長手方向の各セグメントiでの前記中間位置における予定中間温度情報TIi *を算出する処理と、
前記鋼板の長手方向の各セグメントiが前記中間位置から冷却終了位置に達するまでの予定後段冷却時間tcfi *を、前記予定全冷却時間tei *から前記予定前段冷却時間tcbi *を減算して算出する処理と、
前記目標冷却終了温度情報TE*、前記予定中間温度情報TIi *、及び前記予定後段冷却時間tcfi *に基づいて、前記鋼板の長手方向の各セグメントiが前記中間位置から前記冷却終了位置に達するまでの期間での予定冷却強度Vcfi *を求める処理と、
からなる予定冷却履歴取得処理と、
前記冷却装置の中間位置における前記鋼板の長手方向の各セグメントiでの実績中間温度情報TIi Rを、前記温度計により計測される前記鋼板の表面温度を各セグメントiで定周期に読み込んで取得する処理と、
前記鋼板の通板状況をトラッキングして、前記実績中間温度情報TIi Rの指定距離分である複数のセグメント分についての平均値を算出して、平均値の実績中間温度TIRを求める処理と、
からなる実績中間温度情報取得処理と、
前記予定冷却履歴取得処理により取得される前記予定冷却強度Vcfi *を用いて複数のセグメント分の平均値を算出して、前記鋼板の所定の部位が前記中間位置から冷却終了位置に達するまでの予定冷却強度平均Vcf*を算出する処理と、
前記目標冷却終了温度情報TE*、前記実績中間温度情報取得処理により取得される実績中間温度情報TIR、及び前記予定冷却強度平均Vcf*に基づいて、前記鋼板の所定の部位の温度が前記目標冷却終了温度情報を満たすための、前記中間位置から冷却終了位置に達するまでの必要後段冷却時間tcfRを算出する処理と、
前記鋼板の長手方向の各セグメントiが前記中間位置に達するまでの冷却時間tcbi Rを実測して複数のセグメント分の平均値を算出して、前記鋼板の所定の部位が前記中間位置に達するまでの実績前段冷却時間tcbRを算出する処理と、
前記必要後段冷却時間tcfRと前記実績前段冷却時間tcbRとを加算して、前記鋼板の所定の部位分の必要全冷却時間tei´を算出する処理と、
前記鋼板の各セグメントiの予定全冷却時間tei *と、前記鋼板の所定の複数のセグメントの前記予定前段冷却平均時間tcb*と必要後段冷却時間tcfRと必要全冷却時間tei´とに基づいて、通板速度を修正する処理と、
からなる通板速度修正処理とをコンピュータに実行させる点に特徴を有する。
The cooling control method of the present invention is a cooling device having a plurality of cooling zones and having a thermometer arranged at an intermediate position, and the cooling intensity, which is a temperature difference per unit time, is substantially constant in the cooling plate. A cooling control method for controlling a cooling device that cools while transporting a steel sheet after finish rolling with a sufficient amount of cooling water,
Cooling start temperature information in each segment i in the longitudinal direction of the steel sheet, a manufacturing standard value cooling water amount preset in each cooling zone of the cooling device, preset target cooling end temperature information TE * , The plate passing speed is calculated based on the total length of the use zone of the cooling device and reflected in the cooling device, and the scheduled total cooling time te in each segment i in the longitudinal direction of the steel plate is calculated based on the plate passing speed. the procedure for calculating i * ,
A procedure for calculating a scheduled pre-stage cooling time tcb i * until each segment i in the longitudinal direction of the steel sheet reaches the intermediate position based on the plate passing speed;
Based on the plate passing speed and the cooling start temperature information in each segment i in the longitudinal direction of the steel sheet, the planned intermediate temperature information TI i * at the intermediate position in each segment i in the longitudinal direction of the steel sheet is calculated. Procedure and
Subtract the scheduled subsequent cooling time tcf i * until each segment i in the longitudinal direction of the steel sheet reaches the cooling end position from the intermediate position, and subtract the scheduled preliminary cooling time tcb i * from the scheduled total cooling time te i * And the procedure to calculate
Based on the target cooling end temperature information TE * , the planned intermediate temperature information TI i * , and the planned post-stage cooling time tcf i * , each segment i in the longitudinal direction of the steel sheet moves from the intermediate position to the cooling end position. A procedure for obtaining a planned cooling strength Vcf i * in a period until it reaches,
Scheduled cooling history acquisition procedure consisting of
Acquire actual temperature information TI i R for each segment i in the longitudinal direction of the steel sheet at an intermediate position of the cooling device by reading the surface temperature of the steel sheet measured by the thermometer at regular intervals in each segment i And the steps to
A procedure for tracking the sheet passing state of the steel sheet, calculating an average value for a plurality of segments corresponding to a specified distance of the actual intermediate temperature information TI i R , and obtaining an average intermediate temperature TI R ,
The actual intermediate temperature information acquisition procedure consisting of:
The average value for a plurality of segments is calculated using the planned cooling intensity Vcf i * acquired by the planned cooling history acquisition procedure, and the predetermined part of the steel sheet reaches the cooling end position from the intermediate position. A procedure for calculating the planned cooling intensity average Vcf * ;
Based on the target cooling end temperature information TE * , the actual intermediate temperature information TI R acquired by the actual intermediate temperature information acquisition procedure, and the planned cooling intensity average Vcf * , the temperature of a predetermined part of the steel sheet is the target temperature. A procedure for calculating a necessary post-stage cooling time tcf R until the cooling end position is reached from the intermediate position to satisfy the cooling end temperature information;
The cooling time tcb i R until each segment i in the longitudinal direction of the steel sheet reaches the intermediate position is measured to calculate an average value for a plurality of segments, and a predetermined part of the steel sheet reaches the intermediate position. The procedure for calculating the actual pre-stage cooling time tcb R up to
A step of adding the necessary post-stage cooling time tcf R and the actual pre-stage cooling time tcb R to calculate a necessary total cooling time te i ′ of a predetermined part of the steel sheet;
The scheduled total cooling time te i * of each segment i of the steel sheet, the scheduled pre-cooling average time tcb * , the necessary post-cooling time tcf R, and the necessary total cooling time te i ′ of the predetermined plurality of segments of the steel sheet Based on the procedure to correct the plate speed,
It has a feature in that it has a plate speed correcting procedure.
The cooling control device of the present invention is a cooling device having a plurality of cooling zones and having a thermometer at an intermediate position, and the cooling intensity, which is a temperature difference per unit time, is substantially constant in the cooling passage plate. A cooling control device that controls a cooling device that cools the steel plate after finish rolling while conveying with a sufficient amount of cooling water,
Cooling start temperature information in each segment i in the longitudinal direction of the steel sheet, a manufacturing standard value cooling water amount preset in each cooling zone of the cooling device, preset target cooling end temperature information TE * , The plate passing speed is calculated based on the total length of the use zone of the cooling device and reflected in the cooling device, and the scheduled total cooling time te in each segment i in the longitudinal direction of the steel plate is calculated based on the plate passing speed. i *
Based on the plate passing speed, calculate a scheduled pre-stage cooling time tcb i * until each segment i in the longitudinal direction of the steel plate reaches the intermediate position,
Based on the sheet passing speed and the cooling start temperature information in each segment i in the longitudinal direction of the steel sheet, the planned intermediate temperature information TI i * at the intermediate position in each segment i in the longitudinal direction of the steel sheet is calculated. ,
Subtract the scheduled subsequent cooling time tcf i * until each segment i in the longitudinal direction of the steel sheet reaches the cooling end position from the intermediate position, and subtract the scheduled preliminary cooling time tcb i * from the scheduled total cooling time te i * Calculated,
Based on the target cooling end temperature information TE * , the planned intermediate temperature information TI i * , and the planned post-stage cooling time tcf i * , each segment i in the longitudinal direction of the steel sheet moves from the intermediate position to the cooling end position. A planned cooling history obtaining means for obtaining a planned cooling intensity Vcf i * in a period until it reaches,
Acquire actual temperature information TI i R for each segment i in the longitudinal direction of the steel sheet at an intermediate position of the cooling device by reading the surface temperature of the steel sheet measured by the thermometer at regular intervals in each segment i And
Track the sheet passing condition of the steel sheet, calculate an average value for a plurality of segments corresponding to a specified distance of the actual intermediate temperature information TI i R , and determine an average actual intermediate temperature TI R Temperature information acquisition means;
The average value for a plurality of segments is calculated using the planned cooling intensity Vcf i * acquired by the planned cooling history acquisition means, and the predetermined part of the steel sheet reaches the cooling end position from the intermediate position. Calculate the expected cooling intensity average Vcf *
Based on the target cooling end temperature information TE * , the actual intermediate temperature information TI R acquired by the actual intermediate temperature information acquisition means, and the planned cooling strength average Vcf * , the temperature of a predetermined part of the steel sheet is the target temperature. Calculating the necessary post-stage cooling time tcf R until the cooling end position is reached from the intermediate position in order to satisfy the cooling end temperature information;
The cooling time tcb i R until each segment i in the longitudinal direction of the steel sheet reaches the intermediate position is measured to calculate an average value for a plurality of segments, and a predetermined part of the steel sheet reaches the intermediate position. To calculate the previous stage cooling time tcb R until
The required post-stage cooling time tcf R and the actual pre-stage cooling time tcb R are added to calculate a necessary total cooling time te i ′ for a predetermined part of the steel sheet,
The scheduled total cooling time te i * of each segment i of the steel sheet, the scheduled pre-cooling average time tcb * , the necessary post-cooling time tcf R, and the necessary total cooling time te i ′ of the predetermined plurality of segments of the steel sheet On the basis of this, the present invention is characterized in that it includes a threading speed correcting means for correcting the threading speed.
The computer program of the present invention is a cooling device having a plurality of cooling zones and having a thermometer arranged at an intermediate position, and the cooling intensity that is a temperature difference per unit time is substantially constant in the cooling plate. A computer program for controlling a cooling device that cools a steel sheet after finish rolling with a cooling water amount,
Cooling start temperature information in each segment i in the longitudinal direction of the steel sheet, a manufacturing standard value cooling water amount preset in each cooling zone of the cooling device, preset target cooling end temperature information TE * , The plate passing speed is calculated based on the total length of the use zone of the cooling device and reflected in the cooling device, and the scheduled total cooling time te in each segment i in the longitudinal direction of the steel plate is calculated based on the plate passing speed. processing to calculate i * ;
A process of calculating a scheduled pre-stage cooling time tcb i * until each segment i in the longitudinal direction of the steel sheet reaches the intermediate position based on the plate passing speed;
Based on the plate passing speed and the cooling start temperature information in each segment i in the longitudinal direction of the steel sheet, the planned intermediate temperature information TI i * at the intermediate position in each segment i in the longitudinal direction of the steel sheet is calculated. Processing,
Subtract the scheduled subsequent cooling time tcf i * until each segment i in the longitudinal direction of the steel sheet reaches the cooling end position from the intermediate position, and subtract the scheduled preliminary cooling time tcb i * from the scheduled total cooling time te i * Processing to calculate,
Based on the target cooling end temperature information TE * , the planned intermediate temperature information TI i * , and the planned post-stage cooling time tcf i * , each segment i in the longitudinal direction of the steel sheet moves from the intermediate position to the cooling end position. A process for obtaining a planned cooling strength Vcf i * in a period until it reaches,
Scheduled cooling history acquisition process consisting of:
Acquire actual temperature information TI i R for each segment i in the longitudinal direction of the steel sheet at an intermediate position of the cooling device by reading the surface temperature of the steel sheet measured by the thermometer at regular intervals in each segment i Processing to
A process of tracking the sheet passing state of the steel sheet, calculating an average value for a plurality of segments corresponding to a specified distance of the actual intermediate temperature information TI i R , and obtaining an average intermediate temperature TI R ,
Actual temperature information acquisition process consisting of
The average value for a plurality of segments is calculated using the planned cooling strength Vcf i * acquired by the planned cooling history acquisition process, and the predetermined part of the steel sheet reaches the cooling end position from the intermediate position. A process of calculating a planned cooling intensity average Vcf * ;
Based on the target cooling end temperature information TE * , the actual intermediate temperature information TI R acquired by the actual intermediate temperature information acquisition process, and the planned cooling strength average Vcf * , the temperature of a predetermined part of the steel sheet is the target temperature. A process of calculating a necessary post-stage cooling time tcf R until the cooling end position is reached from the intermediate position to satisfy the cooling end temperature information;
The cooling time tcb i R until each segment i in the longitudinal direction of the steel sheet reaches the intermediate position is measured to calculate an average value for a plurality of segments, and a predetermined part of the steel sheet reaches the intermediate position. A process of calculating the actual pre-stage cooling time tcb R up to
A process of adding the required post-stage cooling time tcf R and the actual pre-stage cooling time tcb R to calculate a required total cooling time te i ′ for a predetermined part of the steel sheet;
The scheduled total cooling time te i * of each segment i of the steel sheet, the scheduled pre-cooling average time tcb * , the necessary post-cooling time tcf R, and the necessary total cooling time te i ′ of the predetermined plurality of segments of the steel sheet Based on the process of correcting the threading speed,
The present invention is characterized in that it causes a computer to execute a sheet feeding speed correction process comprising:

本発明によれば、冷却通板中に、冷却強度が一定となるように冷却水量を制御し、鋼板の冷却終了温度が目標冷却終了温度となるように通板速度を制御するようにしたので、応答性に優れた高精度なダイナミック制御が可能になり、かつ、材質造り込みへの影響も少なくすることができる。   According to the present invention, the amount of cooling water is controlled so that the cooling strength is constant during the cooling plate, and the plate passing speed is controlled so that the cooling end temperature of the steel plate becomes the target cooling end temperature. High-precision dynamic control with excellent responsiveness is possible, and the influence on material fabrication can be reduced.

本発明を適用する鋼板製造ラインの一例を示す図である。It is a figure which shows an example of the steel plate manufacturing line to which this invention is applied. 冷却装置の内部構成例を示す図である。It is a figure which shows the internal structural example of a cooling device. 本実施形態の冷却制御装置を含む制御系の概略構成を示す図である。It is a figure which shows schematic structure of the control system containing the cooling control apparatus of this embodiment. 本実施形態の冷却制御装置による冷却制御処理を説明するためのフローチャートである。It is a flowchart for demonstrating the cooling control process by the cooling control apparatus of this embodiment. 冷却開始からの時間と鋼板の温度変化との関係を示す特性図である。It is a characteristic view which shows the relationship between the time from the start of cooling, and the temperature change of a steel plate. 予定冷却履歴の取得処理について説明するためのフローチャートである。It is a flowchart for demonstrating the acquisition process of a scheduled cooling history. 板厚方向の温度分布を説明するための図である。It is a figure for demonstrating the temperature distribution of a plate | board thickness direction. 実績中間温度情報の取得処理について説明するためのフローチャートである。It is a flowchart for demonstrating the acquisition process of track record intermediate temperature information. 通板速度の修正処理について説明するためのフローチャートである。It is a flowchart for demonstrating the correction process of a boarding speed. 実施例における結果を示す特性図である。It is a characteristic view which shows the result in an Example.

以下、添付図面を参照して、本発明の好適な実施形態について説明する。図1には、本発明が適用される鋼板製造ラインの一例を示す。同図に示すように、不図示の加熱炉や粗圧延機を経て粗形成された鋼板1を目標板厚まで圧延する仕上圧延機2と、仕上圧延後の鋼板1の形状を矯正する矯正機3と、矯正後の鋼板1を加速冷却する冷却装置4とが順次配設されており、加速冷却後の鋼板1が所望の形状及び材質を有する製品となる。   Preferred embodiments of the present invention will be described below with reference to the accompanying drawings. FIG. 1 shows an example of a steel sheet production line to which the present invention is applied. As shown in the figure, a finishing mill 2 that rolls a steel plate 1 that is roughly formed through a heating furnace or a roughing mill (not shown) to a target plate thickness, and a straightening machine that corrects the shape of the steel plate 1 after finish rolling. 3 and a cooling device 4 for accelerating and cooling the straightened steel plate 1 are sequentially disposed, and the steel plate 1 after the accelerated cooling becomes a product having a desired shape and material.

仕上圧延機2の前面位置及び後面位置には、仕上前面温度計5及び仕上後面温度計6がそれぞれ配置される。また、冷却装置4の中間位置Mには、中間位置温度計7が配置される。なお、本実施形態では、各温度計が鋼板1の上面で表面温度を計測する例を説明するが、例えば鋼板1の上面及び下面の両方で表面温度を計測するようにしてもよい。   A finish front surface thermometer 5 and a finish rear surface thermometer 6 are respectively disposed at the front surface position and the rear surface position of the finish rolling mill 2. An intermediate position thermometer 7 is disposed at the intermediate position M of the cooling device 4. In the present embodiment, an example in which each thermometer measures the surface temperature on the upper surface of the steel plate 1 will be described. However, for example, the surface temperature may be measured on both the upper surface and the lower surface of the steel plate 1.

図2は、冷却装置4の内部構成例を示す図である。冷却装置4の内部では、鋼板1を搬送するローラ群41が多数配列されるとともに、各冷却ゾーン1Z〜19Zにおいて鋼板1の上面及び下面に冷却水を噴射するノズル群(不図示)が多数配列される。これらノズル群からの冷却水の噴射は流量制御弁によってそれぞれ制御され、鋼板の板厚や板長等の諸条件によって使用ゾーン数や各ノズルからの噴射量を調整できるようになっている。図示例では、冷却ゾーン1Z〜7Zと冷却ゾーン8Z〜11Zとの間に中間位置温度計7が配置されている(中間位置M)。   FIG. 2 is a diagram illustrating an internal configuration example of the cooling device 4. Inside the cooling device 4, many roller groups 41 which convey the steel plate 1 are arranged, and many nozzle groups (not shown) which inject cooling water to the upper surface and the lower surface of the steel plate 1 are arranged in each of the cooling zones 1Z to 19Z. Is done. The cooling water injection from these nozzle groups is controlled by flow control valves, respectively, and the number of use zones and the injection amount from each nozzle can be adjusted according to various conditions such as the plate thickness and plate length of the steel plate. In the illustrated example, the intermediate position thermometer 7 is disposed between the cooling zones 1Z to 7Z and the cooling zones 8Z to 11Z (intermediate position M).

図3は、本実施形態の冷却制御装置100を含む制御系の概略構成を示す図である。冷却制御装置100には、仕上圧延機2を含む各圧延機の総括的な制御を行う圧延制御装置200と、主に生産管理を行う生産管理装置300と、冷却制御装置100から出力される各種データを表示したり、冷却制御装置100に対してオペレータからの入力等を出力したりするデータ入出力装置400と、中間位置温度計7とが接続する。   FIG. 3 is a diagram illustrating a schematic configuration of a control system including the cooling control device 100 of the present embodiment. The cooling control device 100 includes a rolling control device 200 that performs overall control of each rolling mill including the finish rolling mill 2, a production management device 300 that mainly performs production management, and various types of output that are output from the cooling control device 100. A data input / output device 400 that displays data or outputs an input from an operator to the cooling control device 100 and the intermediate position thermometer 7 are connected.

また、冷却制御装置100には、冷却装置4の各冷却ゾーン1Z〜19Zの流量制御弁501を制御して冷却水量を制御する冷却水量制御装置500と、鋼板1を搬送する際に駆動される冷却装置4の鋼板送りモータ601を制御して通板速度を制御する通板速度制御装置600とが接続する。   Further, the cooling control device 100 is driven when the steel sheet 1 is conveyed, and the cooling water amount control device 500 that controls the flow rate control valve 501 of each cooling zone 1Z to 19Z of the cooling device 4 to control the cooling water amount. A plate feed speed controller 600 that controls the plate feed speed by controlling the steel plate feed motor 601 of the cooling device 4 is connected.

すなわち、冷却制御装置100は、中間位置温度計7、圧延制御装置200、生産管理装置300、及びデータ入出力装置400等から入力されるデータに基づいて、冷却水量制御装置500や通板速度制御装置600を介して冷却水量や通板速度の制御を行う。   That is, the cooling control device 100 is based on data input from the intermediate position thermometer 7, the rolling control device 200, the production management device 300, the data input / output device 400, etc. The amount of cooling water and the plate passing speed are controlled via the device 600.

特に本実施形態の冷却制御装置100は、仕上圧延後の鋼板1を搬送しながら、冷却水量制御装置500に所要の冷却水量を送信することで、冷却装置の注水量を制御するとともに、冷却装置4の中間位置Mにおける鋼板1の実績中間温度情報に基づき通板速度制御装置600を介して通板速度を制御するものである。   In particular, the cooling control device 100 of the present embodiment controls the water injection amount of the cooling device by transmitting the required cooling water amount to the cooling water amount control device 500 while conveying the steel sheet 1 after finish rolling, and the cooling device 4, the sheet passing speed is controlled via the sheet passing speed control device 600 based on the actual intermediate temperature information of the steel sheet 1 at the intermediate position M.

より具体的に、本実施形態の冷却制御装置100は、目標冷却終了温度情報に応じて通板速度を算出して冷却装置4に反映させるとともに、冷却装置4による鋼板1の予定冷却履歴を取得する予定冷却履歴取得部101と、冷却装置4の中間位置Mにおける鋼板1の長手方向の所定の部位での実績中間温度情報を取得する実績中間温度情報取得部102と、予定冷却履歴取得部101により取得される予定冷却履歴と実績中間温度情報取得部102により取得される実績中間温度情報とに基づいて、冷却装置4に反映させた通板速度を修正する通板速度修正部103とを備える。   More specifically, the cooling control device 100 according to the present embodiment calculates the plate passing speed according to the target cooling end temperature information and reflects it in the cooling device 4, and acquires the scheduled cooling history of the steel plate 1 by the cooling device 4. Scheduled cooling history acquisition unit 101, actual intermediate temperature information acquisition unit 102 that acquires actual intermediate temperature information at a predetermined portion in the longitudinal direction of the steel sheet 1 at the intermediate position M of the cooling device 4, and planned cooling history acquisition unit 101 A through-plate speed correcting unit 103 that corrects the through-plate speed reflected in the cooling device 4 based on the planned cooling history acquired by the above and the actual intermediate temperature information acquired by the actual intermediate temperature information acquiring unit 102. .

図4は、本実施形態の冷却制御装置100による冷却制御処理を説明するためのフローチャートである。また、図5は、冷却開始からの時間と鋼板1の温度(板厚方向平均温度)変化との関係を示す特性図である。   FIG. 4 is a flowchart for explaining a cooling control process by the cooling control apparatus 100 of the present embodiment. FIG. 5 is a characteristic diagram showing the relationship between the time from the start of cooling and the temperature of the steel plate 1 (average thickness in the plate thickness direction).

ステップS100では、目標冷却終了温度情報に応じて通板速度を算出して冷却装置4に反映させるとともに、冷却装置4による鋼板1の予定冷却履歴を取得する。以下、図6を参照して、ステップS100の予定冷却履歴の取得処理について説明する。   In step S100, the plate passing speed is calculated according to the target cooling end temperature information and reflected in the cooling device 4, and the scheduled cooling history of the steel plate 1 by the cooling device 4 is acquired. Hereinafter, the process for acquiring the scheduled cooling history in step S100 will be described with reference to FIG.

まず、冷却装置4の入側(冷却開始位置)における鋼板1の長手方向の各セグメントでの冷却開始温度情報を算出する(ステップS101)。   First, the cooling start temperature information in each segment in the longitudinal direction of the steel sheet 1 on the entry side (cooling start position) of the cooling device 4 is calculated (step S101).

具体的には、圧延制御装置200から仕上後面温度計6により計測される鋼板1の表面温度を取得し、仕上圧延終了時点の各セグメントでの板厚方向の温度分布を求める。表面温度から板厚方向の温度分布を求める手法として、板厚方向の温度分布は板厚方向の中間位置で温度が最高となる放物線状となることが知られており、例えば特許文献1に開示された手法を用いて板厚方向11点の温度分布を決定すればよい(図7を参照)。概要を説明すれば、上表面温度TFは、計測された温度である。上表面と板温最高点との温度差ΔTは、下式(1)
ΔT=33.8−3.63h(−0.0371+0.00528h)・TF・・・(1)
但し、ΔT:上表面と板温最高点との温度差、h:板厚
で与える。下表面温度TLは、下式(2)
L=TF+K1ξ(ΔTScon+ΔTSclass)+K2・・・(2)
但し、ξ:学習により得た温度変換係数、ΔTS:学習により得た入側温度上下面温度差、K1,K2:調整要素
により決定する。以上の条件を満たす放物線状の温度分布を決定し、板厚方向の温度分布を決定する。その他にも、詳細な説明は省略するが、表面温度から板厚方向の温度分布を求める手法については特許文献2、3等にも開示されており、いずれの手法を用いてもかまわない。
Specifically, the surface temperature of the steel sheet 1 measured by the finishing back surface thermometer 6 is acquired from the rolling control device 200, and the temperature distribution in the sheet thickness direction in each segment at the end of finishing rolling is obtained. As a method for obtaining the temperature distribution in the plate thickness direction from the surface temperature, the temperature distribution in the plate thickness direction is known to be a parabolic shape having the highest temperature at an intermediate position in the plate thickness direction. What is necessary is just to determine the temperature distribution of the plate | board thickness direction 11 points | pieces using the method (refer FIG. 7). In brief, the upper surface temperature TF is a measured temperature. The temperature difference ΔT between the upper surface and the plate temperature maximum is expressed by the following equation (1)
ΔT = 33.8−3.63h (−0.0371 + 0.00528h) · T F (1)
Where ΔT: temperature difference between the upper surface and the plate temperature maximum point, and h: plate thickness. The lower surface temperature T L is expressed by the following formula (2)
T L = T F + K 1 ξ (ΔT S con + ΔT S class) + K 2 (2)
Where ξ: temperature conversion coefficient obtained by learning, ΔT S : entrance side temperature upper / lower surface temperature difference obtained by learning, K 1 , K 2 : determined by adjustment factors. A parabolic temperature distribution that satisfies the above conditions is determined, and a temperature distribution in the thickness direction is determined. In addition, although a detailed description is omitted, methods for obtaining the temperature distribution in the thickness direction from the surface temperature are disclosed in Patent Documents 2 and 3 and the like, and any method may be used.

そして、仕上圧延終了時点の各セグメントでの板厚方向の温度分布を初期値として、上述した板厚方向11点を計算対象点とし、冷却装置4の冷却開始位置までの温度推移を熱伝導差分方程式を解くことにより、冷却装置4の冷却開始位置における各セグメントでの板厚方向平均温度T0(以下、「冷却開始温度T0」と称する)を冷却開始温度情報として算出する。熱伝導差分方程式を解くことにより温度推移を解析する手法についても、例えば特許文献1に開示されているように、概要を説明すれば、板厚方向の初期温度分布状態に基づいて、板上の代表点における11点を計算対象点として、下式(3)に示す1次元熱伝導差分方程式
Q(i)t+Δt
=Q(i)t+Δt・(λi+1−2λi+λi-1)/ρ・Δx2 (i=1〜11)
ΔQS
=4.88[{(Tg+273)/100}4−{(T(i)+273)/100}4] (i=1、11)
=0 (i=2〜10)・・・(3)
但し、Q(i)t:時刻tでの要素iの含熱量、T(i)t:同温表示、Δt:差分計算の刻み時間(=const,150msec)、ρ:密度、λ:要素iの熱伝導率、Tg:気温、ΔQS:境界条件、Δx:板厚分割厚
を解く。この場合に、板温度Tから含熱量Qへの変換を、
T>880であれば、Q=3.333+0.16T
T≦880であれば、Q=−149.05+0.481・T−1.68×10-4・T2
とし、含熱量Qから温度Tへの変換(含熱量:比熱を0℃からTまで積分した値)を、
Q>144.13であれば、T=−20.8+6.25×Q
0<Q≦144.13であれば、T=1431.5−√(1.162×106−5.95×103×Q)
とする。
And the temperature distribution in the plate thickness direction in each segment at the end of finish rolling is set as an initial value, the above-described 11 points in the plate thickness direction are set as calculation target points, and the temperature transition to the cooling start position of the cooling device 4 is the heat conduction difference By solving the equation, the plate thickness direction average temperature T0 (hereinafter referred to as “cooling start temperature T0”) at each segment at the cooling start position of the cooling device 4 is calculated as cooling start temperature information. As for the technique for analyzing the temperature transition by solving the differential equation of heat conduction, for example, as disclosed in Patent Document 1, the outline will be described based on the initial temperature distribution state in the thickness direction. Using 11 representative points as calculation target points, the one-dimensional heat conduction difference equation Q (i) t + Δ t shown in the following equation (3)
= Q (i) t + Δt · (λ i + 1 -2λ i + λ i-1) / ρ · Δx 2 (i = 1~11)
ΔQ S
= 4.88 [{(Tg + 273) / 100} 4 − {(T (i) +273) / 100} 4 ] (i = 1, 11)
= 0 (i = 2 to 10) (3)
Where Q (i) t : heat content of element i at time t, T (i) t : same temperature display, Δt: difference calculation step time (= const, 150 msec), ρ: density, λ: element i , Tg: temperature, ΔQ S : boundary condition, Δx: plate thickness division thickness. In this case, the conversion from the plate temperature T to the heat content Q is
If T> 880, Q = 3.333 + 0.16T
If T ≦ 880, Q = −149.05 + 0.481 · T−1.68 × 10 −4 · T 2
And conversion from heat content Q to temperature T (heat content: value obtained by integrating specific heat from 0 ° C. to T),
If Q> 144.13, T = -20.8 + 6.25 × Q
If 0 <Q ≦ 144.13, T = 1431.5−√ (1.162 × 10 6 −5.95 × 10 3 × Q)
And

本実施形態では、冷却開始温度T0を、仕上圧延終了時点の各セグメントでの板厚方向の温度分布を初期値として1次元熱伝導差分方程式を解くことにより取得するようにしたが、冷却装置4の入側に温度計を配置しておき、その温度計により計測された温度から取得するようにしてもよい。   In this embodiment, the cooling start temperature T0 is obtained by solving the one-dimensional heat conduction difference equation with the temperature distribution in the thickness direction in each segment at the end of finish rolling as an initial value. A thermometer may be arranged on the entrance side of the slab, and the temperature may be obtained from the temperature measured by the thermometer.

次に、ステップS101で求められた冷却開始温度T0と、製造標準値として生産管理装置300等により設定される各冷却ゾーン1Z〜19Zでの冷却水量と、製造標準値として生産管理装置300等により設定される目標とする冷却終了時点の板厚方向平均温度TE*(以下、「目標冷却終了温度TE*」と称する)と、冷却装置4の使用ゾーンの全長と等に基づいて通板速度を算出し、その通板速度を初期設定速度として冷却装置4に反映させる(ステップS102)。本実施形態では、冷却処理の前提として、冷却通板中は冷却強度が略一定となるように各冷却ゾーン1Z〜19Zでの冷却水量、すなわち使用ゾーン数や各ノズルからの噴射量が制御される。 Next, the cooling start temperature T0 obtained in step S101, the amount of cooling water in each of the cooling zones 1Z to 19Z set by the production management device 300 or the like as the manufacturing standard value, and the production management device 300 or the like as the manufacturing standard value. Based on the set target thickness direction average temperature TE * at the end of cooling (hereinafter referred to as “target cooling end temperature TE * ”), the total length of the use zone of the cooling device 4, and the like, The calculation is reflected in the cooling device 4 as the initial plate speed (step S102). In the present embodiment, as a premise of the cooling process, the amount of cooling water in each of the cooling zones 1Z to 19Z, that is, the number of used zones and the amount of injection from each nozzle is controlled so that the cooling intensity is substantially constant during the cooling plate. The

次に、ステップS102で設定された通板速度に基づいて、鋼板1の各セグメントでの予定全冷却時間tei *(i:セグメントの番号)を算出する(ステップS103)。 Next, the planned total cooling time te i * (i: segment number) in each segment of the steel sheet 1 is calculated based on the sheet passing speed set in step S102 (step S103).

次に、ステップS102で設定された通板速度に基づいて、鋼板1の各セグメントが中間位置Mに達するまでの予定冷却時間tcbi *(以下、「予定前段冷却時間tcbi *」と称する)(i:セグメントの番号)を算出する(ステップS104)。 Next, the scheduled cooling time tcb i * until each segment of the steel sheet 1 reaches the intermediate position M (hereinafter referred to as “scheduled pre-stage cooling time tcb i * ”) based on the sheet passing speed set in step S102. (I: segment number) is calculated (step S104).

次に、鋼板1の各セグメントでの中間位置Mにおける予定板厚方向平均温度TIi *(i:セグメントの番号)(以下、「予定中間温度TIi *」と称する)を予定中間温度情報として算出する(ステップS105)。この場合も、例えば冷却開始温度T0を初期値として、ステップS101にて冷却開始温度T0を算出したのと同様に熱伝導差分方程式を解くことにより温度推移を解析すればよい。 Next, the planned sheet thickness direction average temperature TI i * (i: segment number) (hereinafter referred to as “scheduled intermediate temperature TI i * ”) at the intermediate position M in each segment of the steel sheet 1 is used as the planned intermediate temperature information. Calculate (step S105). Also in this case, for example, the temperature transition may be analyzed by solving the heat conduction difference equation in the same manner as calculating the cooling start temperature T0 in step S101 with the cooling start temperature T0 as an initial value.

次に、鋼板1の各セグメントが中間位置Mから冷却終了位置に達するまでの予定冷却時間tcfi *(以下、「予定後段冷却時間tcfi *」と称する)(i:セグメントの番号)を算出する(ステップS106)。予定後段冷却時間tcfi *は、ステップS103で算出された予定全冷却時間tei *から、ステップS104で算出された予定前段冷却時間tcbi *を減算すれば算出することができる。 Next, a planned cooling time tcf i * (hereinafter referred to as “scheduled post-stage cooling time tcf i * ”) until each segment of the steel sheet 1 reaches the cooling end position from the intermediate position M is calculated (i: segment number). (Step S106). The scheduled post-stage cooling time tcf i * can be calculated by subtracting the planned pre-stage cooling time tcb i * calculated in step S104 from the planned total cooling time te i * calculated in step S103.

そして、目標冷却終了温度TE*、予定中間温度TIi *、及び予定後段冷却時間tcfi *に基づいて、鋼板1の各セグメントが中間位置Mから冷却終了位置に達するまでの期間での予定冷却強度(予定冷速)Vcfi *(i:セグメントの番号)を算出する(ステップS107)。上述したように冷却通板中は冷却強度が一定となるように各冷却ゾーン1Z〜19Zでの冷却水量が制御されるので、中間位置Mから冷却終了位置までの予定冷却強度Vcfi *はほぼリニアに変化するものと扱うことができ、下式(4)
Vcfi *=(TIi *−TE*)/tcfi *・・・(4)
として算出することができる。
Then, based on the target cooling end temperature TE * , the planned intermediate temperature TI i * , and the planned post-stage cooling time tcf i * , the planned cooling in the period until each segment of the steel sheet 1 reaches the cooling end position from the intermediate position M Intensity (scheduled cold speed) Vcf i * (i: segment number) is calculated (step S107). As described above, the amount of cooling water in each of the cooling zones 1Z to 19Z is controlled so that the cooling strength is constant during the cooling plate, so that the planned cooling strength Vcf i * from the intermediate position M to the cooling end position is almost equal. It can be treated as a linear change, and the following formula (4)
Vcf i * = (TI i * −TE * ) / tcf i * (4)
Can be calculated as

図4に説明を戻して、ステップS200では、冷却装置4の中間位置Mにおける鋼板1の長手方向の所定の部位での実績中間温度情報を取得する。以下、図8を参照して、ステップS200の実績中間温度情報の取得処理について説明する。   Returning to FIG. 4, in step S <b> 200, actual intermediate temperature information at a predetermined portion in the longitudinal direction of the steel sheet 1 at the intermediate position M of the cooling device 4 is acquired. Hereinafter, with reference to FIG. 8, the actual intermediate temperature information acquisition process in step S <b> 200 will be described.

まず、中間位置温度計7により計測される鋼板1の表面温度を定周期(各セグメント)で読み込んで、板厚方向平均温度TIi Rを算出する(ステップS201)。表面温度から板厚方向の温度分布を求める手法については既述したとおりである。 First, the surface temperature of the steel plate 1 measured by the intermediate position thermometer 7 is read at regular intervals (each segment), and the plate thickness direction average temperature TI i R is calculated (step S201). The method for obtaining the temperature distribution in the thickness direction from the surface temperature is as described above.

そして、鋼板1の通板状況をトラッキング機能により監視し、指定距離だけ進行するごとに、換言すれば、鋼板1の複数セグメント分について、ステップS201で算出された板厚方向平均温度TIi Rの指定距離分の平均値TIR(以下、「実績中間温度TIR」と称する)を、下式(5)
TIR=Ave(TIi R:i=指定距離分のサンプリング個数分)・・・(5)
により実績中間温度情報として算出する(ステップS202)。なお、指定距離をどの程度のセグメント分とするかは、通板速度の修正制御に有意効果のある長さを過去の実績等から定めればよい。
Then, the sheet passing state of the steel plate 1 is monitored by the tracking function, and in other words, every time the specified distance advances, in other words, for the plurality of segments of the steel plate 1, the plate thickness direction average temperature TI i R calculated in step S201. The average value TI R for the specified distance (hereinafter referred to as “actual intermediate temperature TI R ”) is expressed by the following equation (5)
TI R = Ave (TI i R : i = the number of samplings for the specified distance) (5)
To calculate the actual intermediate temperature information (step S202). In addition, what is necessary is just to determine the length which has a significant effect in correction control of a boarding speed from the past performance etc. how many segments a designated distance is made into.

図4に説明を戻して、ステップS300では、ステップS100により取得される予定冷却履歴とステップS200により取得される実績中間温度TIRとに基づいて、冷却装置4に反映させた通板速度を修正する(ステップS300)。以下、図9を参照して、ステップS300の通板速度の修正処理について説明する。 Returning to FIG. 4, in step S300, the plate speed reflected in the cooling device 4 is corrected based on the planned cooling history acquired in step S100 and the actual intermediate temperature TI R acquired in step S200. (Step S300). Hereinafter, with reference to FIG. 9, the correction process of the sheet feeding speed in step S300 will be described.

まず、鋼板1が指定距離だけ進行するごとに、指定長さ分が中間位置Mから冷却終了位置に達するまでの予定冷却強度平均Vcf*を、上記ステップS107で算出された予定冷却強度Vcfi *を用いて、下式(6)
Vcf*=Ave(Vcfi *:i=指定距離分のサンプリング個数分)・・・(6)
により算出する(ステップS301)。
First, each time the steel sheet 1 advances by a specified distance, the planned cooling intensity average Vcf * until the specified length reaches the cooling end position from the intermediate position M is calculated as the planned cooling intensity Vcf i * calculated in step S107 . Using the following formula (6)
Vcf * = Ave (Vcf i * : i = the number of samplings for the specified distance) (6)
(Step S301).

次に、目標冷却終了温度TE*、ステップS202で算出された実績中間温度TIR、及びステップS301で算出された予定冷却強度平均Vcf*に基づいて、鋼板1の指定長さ分が中間位置Mから冷却終了位置に達するまでの冷却時間tcfR(以下、「必要後段冷却時間tcfR」と称する)を、下式(7)
tcfR=(TIR−TE*)/Vcf*・・・(7)
により算出する(ステップS302)。すなわち、鋼板1の指定長さ分での板厚方向平均温度が目標冷却終了温度TE*となるまでの必要後段冷却時間tcfRを算出する。
Next, based on the target cooling end temperature TE * , the actual intermediate temperature TI R calculated in step S202, and the planned cooling intensity average Vcf * calculated in step S301, the specified length of the steel sheet 1 is set at the intermediate position M. The cooling time tcf R (hereinafter referred to as “necessary post-stage cooling time tcf R ”) from the time until the cooling end position is reached to the following expression (7)
tcf R = (TI R −TE * ) / Vcf * (7)
(Step S302). That is, the necessary post-stage cooling time tcf R until the plate thickness direction average temperature for the specified length of the steel plate 1 reaches the target cooling end temperature TE * is calculated.

次に、鋼板1の各セグメントが中間位置Mに達するまでの冷却時間tcbi Rをトラッキング実測により取得し、鋼板1の指定長さ分の実績前段冷却時間平均tcbRを、下式(8)
tcbR=Ave(Tcbi R:i=指定距離分のサンプリング個数分)・・・(8)
により算出する(ステップS303)。
Next, the cooling time tcb i R until each segment of the steel plate 1 reaches the intermediate position M is obtained by tracking measurement, and the actual pre-stage cooling time average tcb R for the specified length of the steel plate 1 is expressed by the following equation (8).
tcb R = Ave (Tcb i R : i = sampling number for the specified distance) (8)
(Step S303).

次に、ステップS302で算出された必要後段冷却時間tcfRとステップS303で算出された実績前段冷却時間平均tcbRとを用いて、鋼板1の指定長さ分の必要全冷却時間tei´を、下式(9)
tei´=tcbR+tcfR・・・(9)
により算出する(ステップS304)。
Next, using the required post-stage cooling time tcf R calculated in step S302 and the actual pre-stage cooling time average tcb R calculated in step S303, the necessary total cooling time te i ′ for the specified length of the steel sheet 1 is obtained. (9)
te i '= tcb R + tcf R (9)
(Step S304).

次に、修正ゲインGvIを用いて、修正全冷却時間tei´sを、下式(10)
tei´s=tei *−(tei *−tei´)・GvI・・・(10)
により算出する(ステップS305)。ここで、修正ゲインGvIは制御の応答性と収束性を調節するものであり、通常0.8〜1.0の値とするが、実際の温度誤差の大きさや変動に応じて適切に調整すればよい。
Next, using the correction gain Gv I , the correction total cooling time te i ′ s is expressed by the following equation (10)
te i ′ s = te i * − (te i * −te i ′) · Gv I (10)
(Step S305). Here, the correction gain Gv I adjusts the response and convergence of the control, and is normally set to a value of 0.8 to 1.0, but is appropriately adjusted according to the magnitude and fluctuation of the actual temperature error. do it.

次に、必要後段冷却時間と予定後段冷却時間との比率をもって、後段冷却時間修正率KvIjを、下式(11)
KvIj=(te*−tcb*)/(tei´s−tcbR)・・・(11)
但し、te*:指定長さ分の予定全冷却時間平均、tcb*:指定長さ分の予定前段冷却時間平均、j:制御回数インデックスにより算出する(ステップS306)。
Next, the rear stage cooling time correction rate KvI j is calculated from the following equation (11) with the ratio between the required rear stage cooling time and the planned rear stage cooling time.
KvI j = (te * −tcb * ) / (te i ′ s−tcb R ) (11)
However, te * : the average of the planned total cooling time for the specified length, tcb * : the average of the pre-planned cooling time for the specified length, and j: the control frequency index (step S306).

そして、通板速度の修正係数ΔVIjを、下式(12)
ΔVIj=KvIj/KvI(j-1)・・・(12)
により算出し、通板速度の修正設定出力を行う(ステップS307)。なお、ここでは現在の通板速度に対する修正係数ΔVIjを算出するようにしたが、初期設定速度に対する修正係数を算出するようにしてもかまわない。
And the correction coefficient ΔVI j of the sheet feeding speed is expressed by the following equation (12)
ΔVI j = KvI j / KvI (j-1) (12)
And the correction setting output of the sheet feeding speed is performed (step S307). In this example, the correction coefficient ΔVI j for the current sheet feeding speed is calculated. However, the correction coefficient for the initial set speed may be calculated.

これにより、鋼板1の指定長さ分が冷却終了位置に達した時点で目標冷却終了温度TE*を満たすように通板速度を修正することができる。 Thereby, the plate passing speed can be corrected so as to satisfy the target cooling end temperature TE * when the specified length of the steel plate 1 reaches the cooling end position.

図4に説明を戻して、これらステップS200、300の処理を、鋼板1の全長が通過するまで所定回数Jだけ繰返し実行する(ステップS400)。   Returning to FIG. 4, the processes in steps S200 and S300 are repeatedly executed a predetermined number of times J until the entire length of the steel plate 1 passes (step S400).

以上述べたように、冷却通板中に、冷却強度が略一定となるように冷却水量を制御するとともに、鋼板の冷却終了温度が目標冷却終了温度となるように通板速度を制御するようにしたので、応答性に優れた高精度なダイナミック制御が可能になり、かつ、材質造り込みへの影響も少なくすることができる。   As described above, the amount of cooling water is controlled so that the cooling strength becomes substantially constant during cooling passage, and the passage speed is controlled so that the cooling end temperature of the steel plate becomes the target cooling end temperature. As a result, highly accurate dynamic control with excellent responsiveness is possible, and the influence on material fabrication can be reduced.

上記実施形態では、冷却開始温度T0、予定中間温度TIi *、実績中間温度TIR等の各種温度情報として、鋼板1の表面温度ではなく、板厚方向平均温度を用いるようにしたが、これは下記の理由による。すなわち、(1)目標冷却終了温度TE*が板厚方向平均温度で与えられる、(2)鋼板1の表面での温度変化は非常に激しく、大きな誤差が生じて逐次修正が発散するおそれがある、(3)中間位置温度計7は冷却ゾーン間の水切りゾーンに配置されるが、そこでの表面温度は急激な復熱状態にあり、表面温度だけでは正確な情報が得られない等の理由による。 In the above embodiment, as the various temperature information such as the cooling start temperature T0, the planned intermediate temperature TI i * , the actual intermediate temperature TI R, etc., instead of the surface temperature of the steel plate 1, the plate thickness direction average temperature is used. The reason is as follows. That is, (1) the target cooling end temperature TE * is given by the plate thickness direction average temperature, and (2) the temperature change on the surface of the steel plate 1 is very severe, and a large error may occur and the successive corrections may diverge. (3) Although the intermediate position thermometer 7 is disposed in the draining zone between the cooling zones, the surface temperature is in a rapid recuperation state, and accurate information cannot be obtained only by the surface temperature. .

(実施例)
図10に示すように、同一の冷却条件下で、本発明による冷却制御を適用した場合と適用しない場合との結果を比較した。冷却条件は、仕上圧延後の鋼板の板厚を20[mm]、板長を37[m]、冷却開始温度をT0=750[℃]、目標冷却終了温度をTE*=435[℃]、初期通板速度を59.4[m/min]、修正ゲインをGvI=0.9としている。
(Example)
As shown in FIG. 10, under the same cooling conditions, the results were compared between when the cooling control according to the present invention was applied and when it was not applied. The cooling conditions are as follows: the thickness of the steel plate after finish rolling is 20 [mm], the plate length is 37 [m], the cooling start temperature is T0 = 750 [° C.], the target cooling end temperature is TE * = 435 [° C.], The initial sheet passing speed is 59.4 [m / min], and the correction gain is Gv I = 0.9.

図10に示すように、本発明を適用しない場合、実際の冷却終了温度が各板長方向位置で大きく変化するとともに、鋼板の後端に近づくにつれて目標冷却終了温度435[℃]から離れる(高くなる)傾向があった。   As shown in FIG. 10, when the present invention is not applied, the actual cooling end temperature varies greatly at each position in the plate length direction, and moves away from the target cooling end temperature 435 [° C.] as it approaches the rear end of the steel plate (higher). There was a tendency.

それに対して、本発明を適用した場合、実際の冷却終了温度が各板長方向位置でさほど大きく変化することはなく、鋼板の後端付近でも目標冷却終了温度435[℃]近傍にあり、良好な結果が得られた。   On the other hand, when the present invention is applied, the actual cooling end temperature does not change so much at each position in the plate length direction, and is near the target cooling end temperature 435 [° C.] even near the rear end of the steel plate. Results were obtained.

上述した実施形態の冷却制御装置100は、具体的にはCPU、RAM、ROM等を含むコンピュータ装置或いはコンピュータシステムにより構成されるものである。したがって、本発明の各機能処理を実現するために、コンピュータにインストールされるコンピュータプログラム自体も本発明に含まれる。   Specifically, the cooling control apparatus 100 according to the above-described embodiment is configured by a computer apparatus or a computer system including a CPU, a RAM, a ROM, and the like. Accordingly, the present invention includes a computer program itself installed in a computer in order to realize each function processing of the present invention.

また、上記実施形態は、本発明を実施するにあたっての具体化例を示したものに過ぎず、これらによって本発明の技術的範囲が限定的に解釈されてはならないものである。すなわち、本発明はその技術思想又はその主要な特徴から逸脱することなく、様々な形で実施することができる。   Moreover, the said embodiment is only what showed the specific example in implementing this invention, and the technical scope of this invention should not be limitedly interpreted by these. That is, the present invention can be implemented in various forms without departing from the technical idea or the main features thereof.

1 鋼板
2 仕上圧延機
3 矯正機
4 冷却装置
5 仕上前面温度計
6 仕上後面温度計
7 中間位置温度計
100 冷却制御装置
101 予定冷却履歴取得部
102 実績中間温度情報取得部
103 通板速度修正部
DESCRIPTION OF SYMBOLS 1 Steel plate 2 Finishing rolling mill 3 Straightening machine 4 Cooling device 5 Finishing front surface thermometer 6 Finishing rear surface thermometer 7 Intermediate position thermometer 100 Cooling control device 101 Planned cooling history acquisition part 102 Actual intermediate temperature information acquisition part 103 Passing plate speed correction part

Claims (5)

複数の冷却ゾーンを備え、中間位置に温度計が配置された冷却装置であり、冷却通板中は単位時間当たりの温度差である冷却強度が略一定となるような冷却水量で、仕上圧延後の鋼板を搬送しながら冷却する冷却装置を制御する冷却制御方法であって、
前記鋼板の長手方向の各セグメントiでの冷却開始温度情報と、前記冷却装置の各冷却ゾーンにおいて予め設定される製造標準値の冷却水量と、予め設定される目標冷却終了温度情報TE*と、前記冷却装置の使用ゾーンの全長とに基づいて通板速度を算出して前記冷却装置に反映させるとともに、該通板速度に基づいて前記鋼板の長手方向の各セグメントiでの予定全冷却時間tei *を算出する手順と、
前記通板速度に基づいて前記鋼板の長手方向の各セグメントiが前記中間位置に達するまでの予定前段冷却時間tcbi *を算出する手順と、
前記通板速度と前記鋼板の長手方向の各セグメントiでの冷却開始温度情報とに基づいて、前記鋼板の長手方向の各セグメントiでの前記中間位置における予定中間温度情報TIi *を算出する手順と、
前記鋼板の長手方向の各セグメントiが前記中間位置から冷却終了位置に達するまでの予定後段冷却時間tcfi *を、前記予定全冷却時間tei *から前記予定前段冷却時間tcbi *を減算して算出する手順と、
前記目標冷却終了温度情報TE*、前記予定中間温度情報TIi *、及び前記予定後段冷却時間tcfi *に基づいて、前記鋼板の長手方向の各セグメントiが前記中間位置から前記冷却終了位置に達するまでの期間での予定冷却強度Vcfi *を求める手順と、
からなる予定冷却履歴取得手順と、
前記冷却装置の中間位置における前記鋼板の長手方向の各セグメントiでの実績中間温度情報TIi Rを、前記温度計により計測される前記鋼板の表面温度を各セグメントiで定周期に読み込んで取得する手順と、
前記鋼板の通板状況をトラッキングして、前記実績中間温度情報TIi Rの指定距離分である複数のセグメント分についての平均値を算出して、平均値の実績中間温度TIRを求める手順と、
からなる実績中間温度情報取得手順と、
前記予定冷却履歴取得手順により取得される前記予定冷却強度Vcfi *を用いて複数のセグメント分の平均値を算出して、前記鋼板の所定の部位が前記中間位置から冷却終了位置に達するまでの予定冷却強度平均Vcf*を算出する手順と、
前記目標冷却終了温度情報TE*、前記実績中間温度情報取得手順により取得される実績中間温度情報TIR、及び前記予定冷却強度平均Vcf*に基づいて、前記鋼板の所定の部位の温度が前記目標冷却終了温度情報を満たすための、前記中間位置から冷却終了位置に達するまでの必要後段冷却時間tcfRを算出する手順と、
前記鋼板の長手方向の各セグメントiが前記中間位置に達するまでの冷却時間tcbi Rを実測して複数のセグメント分の平均値を算出して、前記鋼板の所定の部位が前記中間位置に達するまでの実績前段冷却時間tcbRを算出する手順と、
前記必要後段冷却時間tcfRと前記実績前段冷却時間tcbRとを加算して、前記鋼板の所定の部位の必要全冷却時間tei´を算出する手順と、
前記鋼板の各セグメントiの予定全冷却時間tei *と、前記鋼板の所定の複数のセグメントの前記予定前段冷却平均時間tcb*と必要後段冷却時間tcfRと必要全冷却時間tei´とに基づいて、通板速度を修正する手順と、
からなる通板速度修正手順とを有することを特徴とする冷却制御方法。
A cooling device with multiple cooling zones and a thermometer placed in the middle position, and after finishing rolling with a cooling water amount that makes the cooling strength, which is the temperature difference per unit time, substantially constant in the cooling plate A cooling control method for controlling a cooling device for cooling while conveying a steel plate of
Cooling start temperature information in each segment i in the longitudinal direction of the steel sheet, a manufacturing standard value cooling water amount preset in each cooling zone of the cooling device, preset target cooling end temperature information TE * , The plate passing speed is calculated based on the total length of the use zone of the cooling device and reflected in the cooling device, and the scheduled total cooling time te in each segment i in the longitudinal direction of the steel plate is calculated based on the plate passing speed. the procedure for calculating i * ,
A procedure for calculating a scheduled pre-stage cooling time tcb i * until each segment i in the longitudinal direction of the steel sheet reaches the intermediate position based on the plate passing speed;
Based on the plate passing speed and the cooling start temperature information in each segment i in the longitudinal direction of the steel sheet, the planned intermediate temperature information TI i * at the intermediate position in each segment i in the longitudinal direction of the steel sheet is calculated. Procedure and
Subtract the scheduled subsequent cooling time tcf i * until each segment i in the longitudinal direction of the steel sheet reaches the cooling end position from the intermediate position, and subtract the scheduled preliminary cooling time tcb i * from the scheduled total cooling time te i * And the procedure to calculate
Based on the target cooling end temperature information TE * , the planned intermediate temperature information TI i * , and the planned post-stage cooling time tcf i * , each segment i in the longitudinal direction of the steel sheet moves from the intermediate position to the cooling end position. A procedure for obtaining a planned cooling strength Vcf i * in a period until it reaches,
Scheduled cooling history acquisition procedure consisting of
Acquire actual temperature information TI i R for each segment i in the longitudinal direction of the steel sheet at an intermediate position of the cooling device by reading the surface temperature of the steel sheet measured by the thermometer at regular intervals in each segment i And the steps to
A procedure for tracking the sheet passing state of the steel sheet, calculating an average value for a plurality of segments corresponding to a specified distance of the actual intermediate temperature information TI i R , and obtaining an average intermediate temperature TI R ,
The actual intermediate temperature information acquisition procedure consisting of:
The average value for a plurality of segments is calculated using the planned cooling intensity Vcf i * acquired by the planned cooling history acquisition procedure, and the predetermined part of the steel sheet reaches the cooling end position from the intermediate position. A procedure for calculating the planned cooling intensity average Vcf * ;
Based on the target cooling end temperature information TE * , the actual intermediate temperature information TI R acquired by the actual intermediate temperature information acquisition procedure, and the planned cooling intensity average Vcf * , the temperature of a predetermined part of the steel sheet is the target temperature. A procedure for calculating a necessary post-stage cooling time tcf R until the cooling end position is reached from the intermediate position to satisfy the cooling end temperature information;
The cooling time tcb i R until each segment i in the longitudinal direction of the steel sheet reaches the intermediate position is measured to calculate an average value for a plurality of segments, and a predetermined part of the steel sheet reaches the intermediate position. The procedure for calculating the actual pre-stage cooling time tcb R up to
A step of adding the necessary post-stage cooling time tcf R and the actual pre-stage cooling time tcb R to calculate a necessary total cooling time te i ′ of a predetermined part of the steel sheet;
The scheduled total cooling time te i * of each segment i of the steel sheet, the scheduled pre-cooling average time tcb * , the necessary post-cooling time tcf R, and the necessary total cooling time te i ′ of the predetermined plurality of segments of the steel sheet Based on the procedure to correct the plate speed,
A cooling control method comprising: a plate passing speed correcting procedure.
前記目標冷却終了温度情報TE*は、前記鋼板の板厚方向平均温度で与えられることを特徴とする請求項1に記載の冷却制御方法。 The cooling control method according to claim 1, wherein the target cooling end temperature information TE * is given by a plate thickness direction average temperature of the steel plate. 前記実績中間温度情報取得手順では、前記冷却装置の中間位置に配置された温度計により計測される前記鋼板の表面温度から板厚方向平均温度を算出し、前記所定の部位での各板厚方向平均温度の平均値を前記実績中間温度情報TIRとして求めることを特徴とする請求項1又は2に記載の冷却制御方法。 In the actual intermediate temperature information acquisition procedure, the plate thickness direction average temperature is calculated from the surface temperature of the steel plate measured by a thermometer arranged at an intermediate position of the cooling device, and each plate thickness direction at the predetermined part The cooling control method according to claim 1, wherein an average value of average temperatures is obtained as the actual intermediate temperature information TI R. 複数の冷却ゾーンを備え、中間位置に温度計が配置された冷却装置であり、冷却通板中は単位時間当たりの温度差である冷却強度が略一定となるような冷却水量で、仕上圧延後の鋼板を搬送しながら冷却する冷却装置を制御する冷却制御装置であって、
前記鋼板の長手方向の各セグメントiでの冷却開始温度情報と、前記冷却装置の各冷却ゾーンにおいて予め設定される製造標準値の冷却水量と、予め設定される目標冷却終了温度情報TE*と、前記冷却装置の使用ゾーンの全長とに基づいて通板速度を算出して前記冷却装置に反映させるとともに、該通板速度に基づいて前記鋼板の長手方向の各セグメントiでの予定全冷却時間tei *を算出し、
前記通板速度に基づいて前記鋼板の長手方向の各セグメントiが前記中間位置に達するまでの予定前段冷却時間tcbi *を算出し、
前記通板速度と前記鋼板の長手方向の各セグメントiでの冷却開始温度情報とに基づいて、前記鋼板の長手方向の各セグメントiでの前記中間位置における予定中間温度情報TIi *を算出し、
前記鋼板の長手方向の各セグメントiが前記中間位置から冷却終了位置に達するまでの予定後段冷却時間tcfi *を、前記予定全冷却時間tei *から前記予定前段冷却時間tcbi *を減算して算出し、
前記目標冷却終了温度情報TE*、前記予定中間温度情報TIi *、及び前記予定後段冷却時間tcfi *に基づいて、前記鋼板の長手方向の各セグメントiが前記中間位置から前記冷却終了位置に達するまでの期間での予定冷却強度Vcfi *を求める、予定冷却履歴取得手段と、
前記冷却装置の中間位置における前記鋼板の長手方向の各セグメントiでの実績中間温度情報TIi Rを、前記温度計により計測される前記鋼板の表面温度を各セグメントiで定周期に読み込んで取得し、
前記鋼板の通板状況をトラッキングして、前記実績中間温度情報TIi Rの指定距離分である複数のセグメント分についての平均値を算出して、平均値の実績中間温度TIRを求める実績中間温度情報取得手段と、
前記予定冷却履歴取得手段により取得される前記予定冷却強度Vcfi *を用いて複数のセグメント分の平均値を算出して、前記鋼板の所定の部位が前記中間位置から冷却終了位置に達するまでの予定冷却強度平均Vcf*を算出し、
前記目標冷却終了温度情報TE*、前記実績中間温度情報取得手段により取得される実績中間温度情報TIR、及び前記予定冷却強度平均Vcf*に基づいて、前記鋼板の所定の部位の温度が前記目標冷却終了温度情報を満たすための、前記中間位置から冷却終了位置に達するまでの必要後段冷却時間tcfRを算出し、
前記鋼板の長手方向の各セグメントiが前記中間位置に達するまでの冷却時間tcbi Rを実測して複数のセグメント分の平均値を算出して、前記鋼板の所定の部位が前記中間位置に達するまでの実績前段冷却時間tcbRを算出し、
前記必要後段冷却時間tcfRと前記実績前段冷却時間tcbRとを加算して、前記鋼板の所定の部位の必要全冷却時間tei´を算出し、
前記鋼板の各セグメントiの予定全冷却時間tei *と、前記鋼板の所定の複数のセグメントの前記予定前段冷却平均時間tcb*と必要後段冷却時間tcfRと必要全冷却時間tei´とに基づいて、通板速度を修正する通板速度修正手段とを備えたことを特徴とする冷却制御装置。
A cooling device with multiple cooling zones and a thermometer placed in the middle position, and after finishing rolling with a cooling water amount that makes the cooling strength, which is the temperature difference per unit time, substantially constant in the cooling plate A cooling control device for controlling a cooling device for cooling while conveying the steel plate of
Cooling start temperature information in each segment i in the longitudinal direction of the steel sheet, a manufacturing standard value cooling water amount preset in each cooling zone of the cooling device, preset target cooling end temperature information TE * , The plate passing speed is calculated based on the total length of the use zone of the cooling device and reflected in the cooling device, and the scheduled total cooling time te in each segment i in the longitudinal direction of the steel plate is calculated based on the plate passing speed. i *
Based on the plate passing speed, calculate a scheduled pre-stage cooling time tcb i * until each segment i in the longitudinal direction of the steel plate reaches the intermediate position,
Based on the sheet passing speed and the cooling start temperature information in each segment i in the longitudinal direction of the steel sheet, the planned intermediate temperature information TI i * at the intermediate position in each segment i in the longitudinal direction of the steel sheet is calculated. ,
Subtract the scheduled subsequent cooling time tcf i * until each segment i in the longitudinal direction of the steel sheet reaches the cooling end position from the intermediate position, and subtract the scheduled preliminary cooling time tcb i * from the scheduled total cooling time te i * Calculated,
Based on the target cooling end temperature information TE * , the planned intermediate temperature information TI i * , and the planned post-stage cooling time tcf i * , each segment i in the longitudinal direction of the steel sheet moves from the intermediate position to the cooling end position. A planned cooling history obtaining means for obtaining a planned cooling intensity Vcf i * in a period until it reaches,
Acquire actual temperature information TI i R for each segment i in the longitudinal direction of the steel sheet at an intermediate position of the cooling device by reading the surface temperature of the steel sheet measured by the thermometer at regular intervals in each segment i And
Track the sheet passing condition of the steel sheet, calculate an average value for a plurality of segments corresponding to a specified distance of the actual intermediate temperature information TI i R , and determine an average actual intermediate temperature TI R Temperature information acquisition means;
The average value for a plurality of segments is calculated using the planned cooling intensity Vcf i * acquired by the planned cooling history acquisition means, and the predetermined part of the steel sheet reaches the cooling end position from the intermediate position. Calculate the expected cooling intensity average Vcf *
Based on the target cooling end temperature information TE * , the actual intermediate temperature information TI R acquired by the actual intermediate temperature information acquisition means, and the planned cooling strength average Vcf * , the temperature of a predetermined part of the steel sheet is the target temperature. Calculating the necessary post-stage cooling time tcf R until the cooling end position is reached from the intermediate position in order to satisfy the cooling end temperature information;
The cooling time tcb i R until each segment i in the longitudinal direction of the steel sheet reaches the intermediate position is measured to calculate an average value for a plurality of segments, and a predetermined part of the steel sheet reaches the intermediate position. To calculate the previous stage cooling time tcb R until
The required post-stage cooling time tcf R and the actual pre-stage cooling time tcb R are added to calculate a necessary total cooling time te i ′ for a predetermined part of the steel sheet,
The scheduled total cooling time te i * of each segment i of the steel sheet, the scheduled pre-cooling average time tcb * , the necessary post-cooling time tcf R, and the necessary total cooling time te i ′ of the predetermined plurality of segments of the steel sheet A cooling control device comprising: a plate passing speed correcting means for correcting a plate passing speed based on the above.
複数の冷却ゾーンを備え、中間位置に温度計が配置された冷却装置であり、冷却通板中は単位時間当たりの温度差である冷却強度が略一定となるような冷却水量で、仕上圧延後の鋼板を搬送しながら冷却する冷却装置を制御するコンピュータプログラムであって、
前記鋼板の長手方向の各セグメントiでの冷却開始温度情報と、前記冷却装置の各冷却ゾーンにおいて予め設定される製造標準値の冷却水量と、予め設定される目標冷却終了温度情報TE*と、前記冷却装置の使用ゾーンの全長とに基づいて通板速度を算出して前記冷却装置に反映させるとともに、該通板速度に基づいて前記鋼板の長手方向の各セグメントiでの予定全冷却時間tei *を算出する処理と、
前記通板速度に基づいて前記鋼板の長手方向の各セグメントiが前記中間位置に達するまでの予定前段冷却時間tcbi *を算出する処理と、
前記通板速度と前記鋼板の長手方向の各セグメントiでの冷却開始温度情報とに基づいて、前記鋼板の長手方向の各セグメントiでの前記中間位置における予定中間温度情報TIi *を算出する処理と、
前記鋼板の長手方向の各セグメントiが前記中間位置から冷却終了位置に達するまでの予定後段冷却時間tcfi *を、前記予定全冷却時間tei *から前記予定前段冷却時間tcbi *を減算して算出する処理と、
前記目標冷却終了温度情報TE*、前記予定中間温度情報TIi *、及び前記予定後段冷却時間tcfi *に基づいて、前記鋼板の長手方向の各セグメントiが前記中間位置から前記冷却終了位置に達するまでの期間での予定冷却強度Vcfi *を求める処理と、
からなる予定冷却履歴取得処理と、
前記冷却装置の中間位置における前記鋼板の長手方向の各セグメントiでの実績中間温度情報TIi Rを、前記温度計により計測される前記鋼板の表面温度を各セグメントiで定周期に読み込んで取得する処理と、
前記鋼板の通板状況をトラッキングして、前記実績中間温度情報TIi Rの指定距離分である複数のセグメント分についての平均値を算出して、平均値の実績中間温度TIRを求める処理と、
からなる実績中間温度情報取得処理と、
前記予定冷却履歴取得処理により取得される前記予定冷却強度Vcfi *を用いて複数のセグメント分の平均値を算出して、前記鋼板の所定の部位が前記中間位置から冷却終了位置に達するまでの予定冷却強度平均Vcf*を算出する処理と、
前記目標冷却終了温度情報TE*、前記実績中間温度情報取得処理により取得される実績中間温度情報TIR、及び前記予定冷却強度平均Vcf*に基づいて、前記鋼板の所定の部位の温度が前記目標冷却終了温度情報を満たすための、前記中間位置から冷却終了位置に達するまでの必要後段冷却時間tcfRを算出する処理と、
前記鋼板の長手方向の各セグメントiが前記中間位置に達するまでの冷却時間tcbi Rを実測して複数のセグメント分の平均値を算出して、前記鋼板の所定の部位が前記中間位置に達するまでの実績前段冷却時間tcbRを算出する処理と、
前記必要後段冷却時間tcfRと前記実績前段冷却時間tcbRとを加算して、前記鋼板の所定の部位分の必要全冷却時間tei´を算出する処理と、
前記鋼板の各セグメントiの予定全冷却時間tei *と、前記鋼板の所定の複数のセグメントの前記予定前段冷却平均時間tcb*と必要後段冷却時間tcfRと必要全冷却時間tei´とに基づいて、通板速度を修正する処理と、
からなる通板速度修正処理とをコンピュータに実行させることを特徴とするコンピュータプログラム。
A cooling device with multiple cooling zones and a thermometer placed in the middle position, and after finishing rolling with a cooling water amount that makes the cooling strength, which is the temperature difference per unit time, substantially constant in the cooling plate A computer program for controlling a cooling device that cools a steel plate while transporting the steel plate,
Cooling start temperature information in each segment i in the longitudinal direction of the steel sheet, a manufacturing standard value cooling water amount preset in each cooling zone of the cooling device, preset target cooling end temperature information TE * , The plate passing speed is calculated based on the total length of the use zone of the cooling device and reflected in the cooling device, and the scheduled total cooling time te in each segment i in the longitudinal direction of the steel plate is calculated based on the plate passing speed. processing to calculate i * ;
A process of calculating a scheduled pre-stage cooling time tcb i * until each segment i in the longitudinal direction of the steel sheet reaches the intermediate position based on the plate passing speed;
Based on the plate passing speed and the cooling start temperature information in each segment i in the longitudinal direction of the steel sheet, the planned intermediate temperature information TI i * at the intermediate position in each segment i in the longitudinal direction of the steel sheet is calculated. Processing,
Subtract the scheduled subsequent cooling time tcf i * until each segment i in the longitudinal direction of the steel sheet reaches the cooling end position from the intermediate position, and subtract the scheduled preliminary cooling time tcb i * from the scheduled total cooling time te i * Processing to calculate,
Based on the target cooling end temperature information TE * , the planned intermediate temperature information TI i * , and the planned post-stage cooling time tcf i * , each segment i in the longitudinal direction of the steel sheet moves from the intermediate position to the cooling end position. A process for obtaining a planned cooling strength Vcf i * in a period until it reaches,
Scheduled cooling history acquisition process consisting of:
Acquire actual temperature information TI i R for each segment i in the longitudinal direction of the steel sheet at an intermediate position of the cooling device by reading the surface temperature of the steel sheet measured by the thermometer at regular intervals in each segment i Processing to
A process of tracking the sheet passing state of the steel sheet, calculating an average value for a plurality of segments corresponding to a specified distance of the actual intermediate temperature information TI i R , and obtaining an average intermediate temperature TI R ,
Actual temperature information acquisition process consisting of
The average value for a plurality of segments is calculated using the planned cooling strength Vcf i * acquired by the planned cooling history acquisition process, and the predetermined part of the steel sheet reaches the cooling end position from the intermediate position. A process of calculating a planned cooling intensity average Vcf * ;
Based on the target cooling end temperature information TE * , the actual intermediate temperature information TI R acquired by the actual intermediate temperature information acquisition process, and the planned cooling strength average Vcf * , the temperature of a predetermined part of the steel sheet is the target temperature. A process of calculating a necessary post-stage cooling time tcf R until the cooling end position is reached from the intermediate position to satisfy the cooling end temperature information;
The cooling time tcb i R until each segment i in the longitudinal direction of the steel sheet reaches the intermediate position is measured to calculate an average value for a plurality of segments, and a predetermined part of the steel sheet reaches the intermediate position. A process of calculating the actual pre-stage cooling time tcb R up to
A process of adding the required post-stage cooling time tcf R and the actual pre-stage cooling time tcb R to calculate a required total cooling time te i ′ for a predetermined part of the steel sheet;
The scheduled total cooling time te i * of each segment i of the steel sheet, the scheduled pre-cooling average time tcb * , the necessary post-cooling time tcf R, and the necessary total cooling time te i ′ of the predetermined plurality of segments of the steel sheet Based on the process of correcting the threading speed,
A computer program for causing a computer to execute a sheet feeding speed correction process comprising:
JP2010111957A 2010-05-14 2010-05-14 Method, device and computer program for controlling cooling Pending JP2010247234A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010111957A JP2010247234A (en) 2010-05-14 2010-05-14 Method, device and computer program for controlling cooling

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010111957A JP2010247234A (en) 2010-05-14 2010-05-14 Method, device and computer program for controlling cooling

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2005095705A Division JP4598580B2 (en) 2005-03-29 2005-03-29 Cooling control method, apparatus, and computer program

Publications (1)

Publication Number Publication Date
JP2010247234A true JP2010247234A (en) 2010-11-04

Family

ID=43310179

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010111957A Pending JP2010247234A (en) 2010-05-14 2010-05-14 Method, device and computer program for controlling cooling

Country Status (1)

Country Link
JP (1) JP2010247234A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015162728A1 (en) * 2014-04-23 2015-10-29 東芝三菱電機産業システム株式会社 Rolling system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015162728A1 (en) * 2014-04-23 2015-10-29 東芝三菱電機産業システム株式会社 Rolling system
CN106232250A (en) * 2014-04-23 2016-12-14 东芝三菱电机产业系统株式会社 Rolling system
JPWO2015162728A1 (en) * 2014-04-23 2017-04-13 東芝三菱電機産業システム株式会社 Rolling system
CN106232250B (en) * 2014-04-23 2018-07-20 东芝三菱电机产业系统株式会社 Rolling system
US10500619B2 (en) 2014-04-23 2019-12-10 Toshiba Mitsubishi-Electric Industrial Systems Corporation Rolling system

Similar Documents

Publication Publication Date Title
TWI224144B (en) Heat treating device, heat treating method, recording medium recording heat treating program and steel product
JP4221002B2 (en) Cooling control method, cooling control device, and cooling water amount calculation device
WO2009011070A1 (en) Method of cooling control, cooling control unit and cooling water quantity computing unit
JP4598586B2 (en) Cooling control method, apparatus, and computer program
KR101516476B1 (en) Apparatus for calculating set value, method of calculating set value, and program recording medium for calculating set value
JP5565200B2 (en) Finishing temperature control device in hot rolling
JP4598580B2 (en) Cooling control method, apparatus, and computer program
JP5310965B1 (en) Hot-rolled steel sheet cooling method
JP4402502B2 (en) Winding temperature controller
CN113423517B (en) Cooling control method and cooling control device for thick steel plate, and manufacturing method for thick steel plate
JP2004034122A (en) Winding temperature controller
JP5493993B2 (en) Thick steel plate cooling control device, cooling control method, and manufacturing method
JP4894686B2 (en) Manufacturing method and manufacturing apparatus for hot-rolled steel sheet
JP2010247234A (en) Method, device and computer program for controlling cooling
JP3596460B2 (en) Heat treatment method for thick steel plate and heat treatment equipment
KR101403240B1 (en) Apparatus and method of controlling coiling temperature of hot rolled steel plate using in-plate learning
JP4349177B2 (en) Steel extraction temperature prediction method for continuous heating furnace
JP3546864B2 (en) Hot rolling method and apparatus
KR100711387B1 (en) Method for controlling longitudinal direction temperature of hot-rolled steel plate
JPH1088236A (en) Apparatus for controlling heating furnace
JP2010167503A (en) Method, device and computer program for controlling cooling
JP5310964B1 (en) Steel plate manufacturing method
JP5381740B2 (en) Thickness control method of hot rolling mill
JP4258341B2 (en) Manufacturing method of high-strength steel sheet with excellent material uniformity in the longitudinal direction of the steel sheet
JP2004331992A (en) Method for predicting temperature of and cooling metal sheet in hot rolling

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121009

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130226