JPH03203316A - Epitaxial wafer and manufacture thereof - Google Patents
Epitaxial wafer and manufacture thereofInfo
- Publication number
- JPH03203316A JPH03203316A JP1342933A JP34293389A JPH03203316A JP H03203316 A JPH03203316 A JP H03203316A JP 1342933 A JP1342933 A JP 1342933A JP 34293389 A JP34293389 A JP 34293389A JP H03203316 A JPH03203316 A JP H03203316A
- Authority
- JP
- Japan
- Prior art keywords
- lattice constant
- crystal
- layer
- substrate
- lattice
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title description 4
- 239000000758 substrate Substances 0.000 claims abstract description 28
- 239000000203 mixture Substances 0.000 claims abstract description 20
- 238000000034 method Methods 0.000 claims abstract description 16
- 239000013078 crystal Substances 0.000 claims description 38
- 239000004065 semiconductor Substances 0.000 claims description 9
- 238000001947 vapour-phase growth Methods 0.000 claims description 8
- 230000007704 transition Effects 0.000 abstract description 9
- 230000007547 defect Effects 0.000 abstract description 4
- 230000015572 biosynthetic process Effects 0.000 abstract 1
- 230000001747 exhibiting effect Effects 0.000 abstract 1
- 235000012431 wafers Nutrition 0.000 description 13
- 239000007789 gas Substances 0.000 description 6
- XYFCBTPGUUZFHI-UHFFFAOYSA-N Phosphine Chemical compound P XYFCBTPGUUZFHI-UHFFFAOYSA-N 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 229910052785 arsenic Inorganic materials 0.000 description 2
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 2
- 239000012159 carrier gas Substances 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000010790 dilution Methods 0.000 description 2
- 239000012895 dilution Substances 0.000 description 2
- 239000012495 reaction gas Substances 0.000 description 2
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- ZSBXGIUJOOQZMP-JLNYLFASSA-N Matrine Chemical compound C1CC[C@H]2CN3C(=O)CCC[C@@H]3[C@@H]3[C@H]2N1CCC3 ZSBXGIUJOOQZMP-JLNYLFASSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- RBFQJDQYXXHULB-UHFFFAOYSA-N arsane Chemical compound [AsH3] RBFQJDQYXXHULB-UHFFFAOYSA-N 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000002488 metal-organic chemical vapour deposition Methods 0.000 description 1
- 230000005693 optoelectronics Effects 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
Landscapes
- Recrystallisation Techniques (AREA)
- Led Devices (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明はエピタキシャル成長方法にょるウェーハに係り
、特に格子ミスマツチのあるヘテロ接合を有するエピタ
キシャルウェーハとその成長方法に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a wafer produced by an epitaxial growth method, and more particularly to an epitaxial wafer having a heterojunction with lattice mismatch and a method for growing the same.
近年、オプトエレクトロニクス分野の発展には目ざまし
いものがあり、中でも発光ダイオード(LED)やレー
ザーダイオード(LD)の研究開発が盛んに行われてい
る。ここで用いられる材料の一つにGaAsPがあり、
周期律表第V族のヒ素(As)とガリウム(G a)と
の混合比によって赤色から赤外色帯で直接遷移型の結晶
構造をとることができることから注目を浴びている。こ
の系で問題となるのは結晶格子のミスマツチによる結晶
性の低下である。たとえば、基板として使用するGaA
s単結晶の格子定数は5.653オングストローム(人
)であり、このGaAs基板上にGaAs1−xPXを
エピタキシャル成長させる場合、x−0,3のG a
A S o、y P o、a結晶の格子定数は5.59
21 (人)であり、基板との格子ミスマツチは1.1
%である。ここで格子ミスマツチとは次式で示される割
合をいう:
(エピタキシャル成長結晶の格子
(基板結晶の格子定数)
表面エピタキシャル成長結晶のXが、x−0,4のG
a A S o、e P o、4結晶の格子定数は5.
5718 (人)であり、格子ミスマツチは1.4%と
なる。In recent years, there has been remarkable progress in the field of optoelectronics, with research and development of light emitting diodes (LEDs) and laser diodes (LDs) being actively conducted. One of the materials used here is GaAsP,
It is attracting attention because it can form a direct transition type crystal structure in the red to infrared color band depending on the mixing ratio of arsenic (As), which belongs to Group V of the periodic table, and gallium (Ga). The problem with this system is a decrease in crystallinity due to crystal lattice mismatch. For example, GaA used as a substrate
The lattice constant of the s single crystal is 5.653 angstroms, and when GaAs1-xPX is epitaxially grown on this GaAs substrate, the GaAs of x-0,3 is
The lattice constant of A S o, y P o, a crystal is 5.59
21 (person), and the lattice mismatch with the board is 1.1
%. Here, lattice mismatch refers to the ratio expressed by the following formula: (Lattice of epitaxially grown crystal (lattice constant of substrate crystal)
a A S o, e P o, the lattice constant of the four crystals is 5.
5718 (people), and the grid mismatch is 1.4%.
基板として使用される化合物半導体単結晶の格子定数は
GaAsの5.853人のほか、InPでは5.868
7人、GaPでは5.450人である。GaP基板上に
GaAs1□PXのエピタキシャル成長層を載せる場合
の格子ミスマツチはG、aAso、Po、3の場合は2
.6%、G a A S o、a P o、4の場合は
2.2%程度となる。The lattice constant of the compound semiconductor single crystal used as a substrate is 5.853 for GaAs and 5.868 for InP.
7 people, and 5.450 people in GaP. The lattice mismatch when placing an epitaxial growth layer of GaAs1□PX on a GaP substrate is G, aAso, Po, 2 in the case of 3.
.. 6%, and in the case of G a A So, a P o, 4, it is about 2.2%.
このようにエピタキシャル成長結晶の格子定数は、基板
結晶の格子定数よりも大きくなる場合もあるし、小さく
なる場合もある。いずれにしても両者の格子定数が異な
るが故に、その隔たりが大きくなる程エピタキシャル成
長結晶の結晶性が悪くなり、そのようなエピタキシャル
ウェーハから作製した半導体素子は、電気的性質も劣っ
たものとなる。In this way, the lattice constant of the epitaxially grown crystal may be larger or smaller than the lattice constant of the substrate crystal. In any case, since the lattice constants of the two are different, the larger the gap between them, the worse the crystallinity of the epitaxially grown crystal becomes, and the semiconductor devices produced from such epitaxial wafers also have inferior electrical properties.
従来、このような格子ミスマツチを有するエピタキシャ
ル成長を行う場合には、s3図(a)に示すように基板
の格子定数からエピタキシャル成長結晶の格子定数まで
、徐々に格子定数を変化させる組成勾配層を設ける方法
が行われていた。この場合、組成勾配層の組成変化を表
面の一定組成層の格子定数を越えるまで変化させ、しか
る後、−定組成のエピタキシャル成長を行う方法も提案
されている(第3図(b)参照、特開昭51−8881
等)。Conventionally, when epitaxial growth with such lattice mismatch is performed, a method is used to provide a composition gradient layer that gradually changes the lattice constant from the lattice constant of the substrate to the lattice constant of the epitaxially grown crystal, as shown in Figure S3 (a). was being carried out. In this case, a method has also been proposed in which the composition of the composition gradient layer is changed until it exceeds the lattice constant of the constant composition layer on the surface, and then -constant composition epitaxial growth is performed (see Figure 3(b), Kaisho 51-8881
etc).
しかし、この構造では一定組成層までの濃度勾配が大き
く、格子ミスマツチの影響を十分に低減することができ
ない。すなわち、格子ミスマツチのある系の接合におい
て、成長層の歪みや欠陥の発生を低減させることができ
ず、それ故LED素子にした場合に高輝度、高発光効率
の素子を得ることが困難であった。However, in this structure, the concentration gradient up to a constant composition layer is large, and the influence of lattice mismatch cannot be sufficiently reduced. In other words, in bonding systems with lattice mismatches, it is not possible to reduce distortion in the grown layer and the occurrence of defects, and therefore it is difficult to obtain a device with high brightness and high luminous efficiency when used as an LED device. Ta.
そこでこの濃度勾配を最適化し、格子ミスマツチの影響
を低減させ、もって高輝度、高発光効率の発光素子を得
るのが本発明の目的である。Therefore, it is an object of the present invention to optimize this concentration gradient, reduce the influence of lattice mismatch, and thereby obtain a light-emitting element with high luminance and high luminous efficiency.
本発明では格子ミスマツチによるエピタキシャル成長結
晶の結晶性の低下の影響を排除するため、組成勾配領域
の構造を改良し、最適化した。すなわち、本発明のエピ
タキシャルウェーl)は半導体基板上に基板と異なる格
子定数の表面エピタキシャル成長層を有する半導体エピ
タキシャルウェーハにおいて、該基板と該表面エピタキ
シャル成長層の間に、基板結晶の格子定数から表面エピ
タキシャル成長層結晶の格子定数を越える格子定数まで
連続的に変化し、次いで該表面エピタキシャル成長層結
晶の格子定数まで、連続的1二変化する格子定数の中間
エピタキシャル成長層を設けたことを特徴とする。In the present invention, the structure of the composition gradient region was improved and optimized in order to eliminate the influence of lattice mismatch on the crystallinity of epitaxially grown crystals. That is, the epitaxial wafer l) of the present invention is a semiconductor epitaxial wafer having a surface epitaxial growth layer on a semiconductor substrate with a lattice constant different from that of the substrate, in which a surface epitaxial growth layer is formed between the substrate and the surface epitaxial growth layer based on the lattice constant of the substrate crystal. It is characterized by providing an intermediate epitaxial growth layer whose lattice constant changes continuously up to a lattice constant exceeding that of the crystal, and then changes continuously up to the lattice constant of the surface epitaxial growth layer crystal.
また、本発明のエピタキシャルウェーハの製造方法は、
基板と異なる格子定数を有する半導体結晶を気相成長さ
せる方法において、反応ガス組成を気相成長開始時は基
板結晶の格子定数と同じになるように設定し、成長の道
行とともに目標とする結晶の格子定数になるように変化
させ、一担目標とする結晶の格子定数を越えた後、再び
目標とする結晶の格子定数となるように徐々に変化させ
て気相成長を終了することを特徴とする。Further, the method for manufacturing an epitaxial wafer of the present invention includes:
In a method for vapor phase growth of a semiconductor crystal that has a lattice constant different from that of a substrate, the reaction gas composition is set to be the same as the lattice constant of the substrate crystal at the start of vapor phase growth, and the target crystal is grown as the growth progresses. The lattice constant is changed so that the lattice constant becomes the same as that of the target crystal, and after the lattice constant of the target crystal is exceeded, the lattice constant is gradually changed so that the lattice constant becomes the same as that of the target crystal again, and the vapor phase growth is completed. do.
結晶の格子定数は基本的には結晶の組成によって決まる
ものである。また、格子定数はX1回折の手法により測
定することができる。X線回折から得られる格子定数と
結晶組成との関係は、組成の系が決まればベガード則に
より計算で算出することが可能である。The lattice constant of a crystal is basically determined by the composition of the crystal. Furthermore, the lattice constant can be measured by the X1 diffraction technique. The relationship between the lattice constant obtained from X-ray diffraction and the crystal composition can be calculated by Vegard's law once the composition system is determined.
第1図に本発明による格子定数のミスマツチを有するエ
ピタキシャルウェーハの構造を格子定数で示した。図中
基板(A)は格子定数αを有する単結晶基板である。こ
の基板(A)の表11jaに格子定数βを有するエピタ
キシャル成長層(B)を載せたいのであるが、この際格
子定数αとβとの間には数%の違いがある。そこで基板
(A)の表j[aの上にまず格子定数遷移層(C)およ
び(D)をエピタキシャル成長させ、しかる後、−窓格
子定数βを有するエピタキシャル成R階(B)を載せる
。この際、基板(A)の表面aからCまでの間は格子定
数を徐々に変化させ、しかも点Cにおける格子定数γは
βを越えるようないわゆるオーバーシュート構造を備え
た格子定数遷移層(C)とする。FIG. 1 shows the structure of an epitaxial wafer having mismatched lattice constants according to the present invention in terms of lattice constants. The substrate (A) in the figure is a single crystal substrate having a lattice constant α. It is desired to place an epitaxial growth layer (B) having a lattice constant β on Table 11ja of this substrate (A), but in this case, there is a difference of several percent between the lattice constants α and β. Therefore, first, lattice constant transition layers (C) and (D) are epitaxially grown on the surface j[a of the substrate (A), and then an epitaxial transition layer (B) having a -window lattice constant β is placed thereon. At this time, the lattice constant changes gradually from surface a to surface C of the substrate (A), and the lattice constant transition layer (C ).
γがβを越える程度は格子定数のミスマツチ量の115
〜1/lO程度が適当である。さらに0点に達した後、
再び格子定数を徐々に変化させて目標とするエピタキシ
ャル成長層(B)の格子定数βに近づけるための、格子
定数遷移層(D)を設ける。The extent to which γ exceeds β is the amount of lattice constant mismatch, 115
~1/1O is appropriate. After reaching 0 points,
A lattice constant transition layer (D) is provided to gradually change the lattice constant again to bring it closer to the target lattice constant β of the epitaxial growth layer (B).
この時の格子定数の変化の程度は、第1図グラフ■で示
すように(C)層の勾配と同じでもよいし、第1図グラ
フ■で示すように、(C) Wの勾配よりも緩やかにし
ても良い。緩やかにした方が歪の発生が少なく、後の窓
格子定数のエピタキシャル成長にとって好ましい。この
場合は(C)層の勾配の1/3程度にとれば充分である
。The degree of change in the lattice constant at this time may be the same as the slope of the (C) layer, as shown in graph 1 in Figure 1, or it may be greater than the slope of (C) W, as shown in graph 1 in Figure 1. You can make it more gradual. The gentler the distortion, the less strain will occur, which is preferable for later epitaxial growth of the window lattice constant. In this case, it is sufficient to set the gradient to about 1/3 of the gradient of layer (C).
次に本発明のエピタキシャルウェーハの製造方法につい
て説明する。格子定数は結晶の組成によって決定される
ものであるから、格子定数を変化させるにはエピタキシ
ャル成長させる結晶の組成を時々刻々変化させていくの
が最も簡単である。それには気相成長法により、反応ガ
ス組成を変化させることにより達成できる。たとえばM
OCVD法によりQ a A 81−x PX結晶をエ
ピタキシャル成長させる場合、第1図のa点でエピタキ
シャル成長を開始した後C点に達するまではヒ素源とな
るたとえばアルシン(A s Ha )ガス量を徐々に
減じ、反対にリン源となるたとえばフォスヒン(PH3
)ガス量を徐々に増加していく。0点に達したならば、
ガス量を上記と逆に変化させていき、第1図す点に達し
た時点で(B)層の組成になるようにm!L、以後一定
組成(B)層のエピタキシャル成長を行う。Next, a method for manufacturing an epitaxial wafer according to the present invention will be explained. Since the lattice constant is determined by the composition of the crystal, the easiest way to change the lattice constant is to constantly change the composition of the epitaxially grown crystal. This can be achieved by changing the reaction gas composition using a vapor phase growth method. For example, M
When epitaxially growing a Q a A 81-x PX crystal by the OCVD method, after epitaxial growth starts at point a in Figure 1, the amount of arsine (A s Ha ) gas, for example, which serves as an arsenic source, is gradually reduced until reaching point C. For example, phosphin (PH3), which is a phosphorus source,
) Gradually increase the amount of gas. If it reaches 0 points,
The gas amount is changed in the opposite manner to the above, and when the point shown in Figure 1 is reached, the composition of the layer (B) is reached. L. Thereafter, a constant composition (B) layer is epitaxially grown.
格子定数の変化の割合が異なる格子定数間の接合で発生
する歪みや欠陥に重大な影響を与えることから、本発明
では格子定数の変化率を最適化したものである。特にオ
ーバーシュート構造をとりその後も徐々に変化させるこ
とにより一担発生した歪を実質的に和らげているものと
推定される。In the present invention, the rate of change in the lattice constant is optimized because the rate of change in the lattice constant has a significant effect on distortions and defects that occur in junctions between different lattice constants. In particular, it is presumed that by taking an overshoot structure and then gradually changing it, the distortion that has occurred is substantially alleviated.
次に本発明の実施例をあげて説明する。 Next, examples of the present invention will be described.
格子定数5.858人のGaAsrlt粘品基板上にM
OCVD法を用いて格子定数5.5718人のG a
A S o、e P o、4結晶をエピタキシャル成長
させた。この場合理論上の格子ミスマツチ度は1,4%
である。MOCVDは通常の方法に従い、使用した反応
ガスはT M G 、A s Hs (10%Ar希
釈)、PH3(10%Ar希釈)あり、キャリアガスと
して超高純度H2ガスを使用した。ガス流量は表1に示
すように調整した。M on a GaAsrlt viscous substrate with a lattice constant of 5.858.
Ga of lattice constant 5.5718 using OCVD method
A So, e Po, 4 crystals were epitaxially grown. In this case, the theoretical lattice mismatch degree is 1.4%
It is. MOCVD was carried out according to a conventional method, and the reaction gases used were TMG, As Hs (10% Ar dilution), and PH3 (10% Ar dilution), and ultra-high purity H2 gas was used as a carrier gas. The gas flow rate was adjusted as shown in Table 1.
表 1
すなわち、エピタキシャル成長開始直後である′!s1
図a点に相当する時点ではA s H3: 845(S
CCM) 、PH3ナシでスタートし、以後2時間かけ
て徐々にA s Haを減じPH3を増加させる調整を
行ない、第1図C地点に相当する時点ではA s H:
185 (S CCM) 、P Hs :160(SC
CM)とした。その後12分かけてA s Haを徐々
に増し、PH3を減する調整をして第1図す点に相当す
る時点ではA s Hs : 200 (S CCM)
。Table 1 In other words, immediately after the start of epitaxial growth′! s1
At the point corresponding to point a in the diagram, A s H3: 845 (S
CCM), starting with no PH3, and then gradually reducing A s Ha and increasing PH 3 over the next 2 hours, and at the point corresponding to point C in Figure 1, A s H:
185 (SCCM), P Hs: 160 (SC
CM). After that, the A s Ha was gradually increased and the PH3 was decreased over 12 minutes, and at the point corresponding to the point shown in Figure 1, the A s Hs was 200 (SCCM).
.
PH3: 150(S CCM)とし、以後一定条件に
したまま1時間エピタキシャル戊長をさせた。The pH was set to 150 (SCCM), and epitaxial elongation was continued for 1 hour under constant conditions.
この間TMGは20 (S CCM) 、キャリアガス
のH2は5.000(S CCM)の一定量で流し続け
た。During this time, TMG continued to flow at a constant rate of 20 (SCCM) and H2 as a carrier gas continued to flow at a constant rate of 5.000 (SCCM).
このようにして得られたエピタキシャルウェーハの格子
定数を測定した結果を第2図に示す。測定の結果、Ga
As基板とG a A 8 o、a P o、nエピタ
キシャル成長層との格子ミスマツチ度は1.8%であっ
たが、C点のオーバーシュートした部分での格子ミスマ
ツチ度は0.4%にちぢまっていた。また、格子定数遷
移層の厚みは約IIuIMであり、tlとt2部分の勾
配ははり同じであった。FIG. 2 shows the results of measuring the lattice constant of the epitaxial wafer thus obtained. As a result of the measurement, Ga
The degree of lattice mismatch between the As substrate and the G a A 8 o, a P o, n epitaxial growth layer was 1.8%, but the degree of lattice mismatch at the overshooting part of point C was only 0.4%. It was. Further, the thickness of the lattice constant transition layer was approximately IIuIM, and the slopes of the tl and t2 portions were almost the same.
この構造のウェーハ表面でのX線ロッキングカーブの半
値幅は200秒と急峻であり、良好な結晶が成長してい
ることがわかった。The half width of the X-ray rocking curve on the wafer surface of this structure was as steep as 200 seconds, indicating that good crystal growth was occurring.
以上のように、オーバーシュート構造における組成の変
化の勾配(格子定数の変化の勾配に対応する)を小さく
することにより、格子ミスマツチのある系での接合にお
いて、歪みや欠陥の発生を低減させる上で大きな効果が
得られる。As described above, by reducing the gradient of composition change (corresponding to the gradient of lattice constant change) in the overshoot structure, it is possible to reduce the occurrence of distortion and defects in bonding systems with lattice mismatch. A big effect can be obtained.
第1図は、本発明のウェーハの格子定数の構造を説明す
る図、
第2図は、本発明の実施例のウェーハの格子定数の構造
を示す図、
第3図は、従来のウェーハの格子定数の構造を示す図で
ある。
1・・・基 板 2・・・格子定数遷移層3
・・・一定組成層FIG. 1 is a diagram explaining the structure of the lattice constant of the wafer of the present invention, FIG. 2 is a diagram showing the structure of the lattice constant of the wafer of the embodiment of the present invention, and FIG. 3 is the diagram of the lattice constant of the wafer of the conventional method. It is a figure showing the structure of a constant. 1...Substrate 2...Lattice constant transition layer 3
・・・Constant composition layer
Claims (1)
キシャル成長層を有する半導体エピタキシャルウェーハ
において、該基板と該表面エピタキシャル成長層の間に
、基板結晶の格子定数から表面エピタキシャル成長層結
晶の格子定数を越える格子定数まで連続的に変化し、次
いで該表面エピタキシャル成長層結晶の格子定数まで、
連続的に変化する格子定数の中間エピタキシャル成長層
を具備してなることを特徴とする半導体エピタキシャル
ウェーハ。 2)基板と異なる格子定数を有する半導体結晶を気相成
長させる方法において、反応ガス組成を気相成長開始時
は基板結晶の格子定数と同じになるように設定し、成長
の道行とともに目標とする結晶の格子定数になるように
変化させ、一担目標とする結晶の格子定数を越えたのち
、再び目標とする結晶の格子定数となるように徐々に変
化させて気相成長を終了することを特徴とする気相成長
方法。[Scope of Claims] 1) In a semiconductor epitaxial wafer having a surface epitaxially grown layer on a semiconductor substrate with a lattice constant different from that of the substrate, a method is provided between the substrate and the surface epitaxially grown layer based on the lattice constant of the substrate crystal. The lattice constant changes continuously until the lattice constant exceeds the lattice constant, and then until the lattice constant of the surface epitaxial growth layer crystal,
A semiconductor epitaxial wafer comprising an intermediate epitaxial growth layer with a continuously changing lattice constant. 2) In a method of vapor phase growth of a semiconductor crystal having a lattice constant different from that of the substrate, the reactive gas composition is set to be the same as the lattice constant of the substrate crystal at the start of vapor phase growth, and the target is set along with the growth process. The lattice constant is changed to match the lattice constant of the crystal, and once it exceeds the lattice constant of the target crystal, the lattice constant is gradually changed to the lattice constant of the target crystal again to complete the vapor phase growth. Characteristic vapor phase growth method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1342933A JPH03203316A (en) | 1989-12-29 | 1989-12-29 | Epitaxial wafer and manufacture thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1342933A JPH03203316A (en) | 1989-12-29 | 1989-12-29 | Epitaxial wafer and manufacture thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH03203316A true JPH03203316A (en) | 1991-09-05 |
Family
ID=18357641
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1342933A Pending JPH03203316A (en) | 1989-12-29 | 1989-12-29 | Epitaxial wafer and manufacture thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH03203316A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6608328B2 (en) * | 2001-02-05 | 2003-08-19 | Uni Light Technology Inc. | Semiconductor light emitting diode on a misoriented substrate |
JP2015096460A (en) * | 2013-09-27 | 2015-05-21 | ウルトラテック インク | Epitaxial growth of compound semiconductor using lattice adjusting domain matching epitaxy |
-
1989
- 1989-12-29 JP JP1342933A patent/JPH03203316A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6608328B2 (en) * | 2001-02-05 | 2003-08-19 | Uni Light Technology Inc. | Semiconductor light emitting diode on a misoriented substrate |
JP2015096460A (en) * | 2013-09-27 | 2015-05-21 | ウルトラテック インク | Epitaxial growth of compound semiconductor using lattice adjusting domain matching epitaxy |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS6115577B2 (en) | ||
KR20000025914A (en) | Gan compound semiconductor and growing method thereof | |
US20110003420A1 (en) | Fabrication method of gallium nitride-based compound semiconductor | |
JPH01289108A (en) | Heteroepitaxy | |
JPH02170413A (en) | Compound semiconductor device | |
JPH09255496A (en) | Method for growing gallium nitride crystal | |
JPH03203316A (en) | Epitaxial wafer and manufacture thereof | |
TW202144631A (en) | Compound semiconductor epitaxial wafer and method for manufacturing the same having improved crystallinity and improved brightness at low cost | |
JP3301371B2 (en) | Method for manufacturing compound semiconductor epitaxial wafer | |
JPH0997921A (en) | Manufacture of iii-v compd. semiconductor | |
JPH03163884A (en) | Epitaxial wafer and manufacture thereof | |
JPS61106497A (en) | Method for growing epitaxial film of gallium phosphide and arsenide | |
JP2003173977A (en) | Method for manufacturing compound semiconductor | |
JP2519232B2 (en) | Method for producing compound semiconductor crystal layer | |
JPH05343740A (en) | Gallium arsenide phosphide epitaxial wafer | |
JPH0760790B2 (en) | Compound semiconductor substrate | |
JPH09199757A (en) | Compound semiconductor epitaxial wafer | |
JP3116415B2 (en) | Semiconductor wafer and method of manufacturing the same | |
KR100309402B1 (en) | A method for manufacturing compound semiconductor epitaxial wafer | |
JP2021182615A (en) | Compound semiconductor epitaxial wafer and method for manufacturing the same | |
JPH0214513A (en) | Formation of compound semiconductor layer | |
JP2880984B2 (en) | Compound semiconductor substrate | |
JPH06314659A (en) | Crystal growing method for gallium nitride compound semiconductor film | |
JPH0737819A (en) | Semiconductor wafer and manufacture thereof | |
JPH07249582A (en) | Crystal growth method |