JPH07249582A - Crystal growth method - Google Patents

Crystal growth method

Info

Publication number
JPH07249582A
JPH07249582A JP3810194A JP3810194A JPH07249582A JP H07249582 A JPH07249582 A JP H07249582A JP 3810194 A JP3810194 A JP 3810194A JP 3810194 A JP3810194 A JP 3810194A JP H07249582 A JPH07249582 A JP H07249582A
Authority
JP
Japan
Prior art keywords
crystal
iii
growth
group
mol ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3810194A
Other languages
Japanese (ja)
Inventor
Shigekazu Minagawa
重量 皆川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP3810194A priority Critical patent/JPH07249582A/en
Publication of JPH07249582A publication Critical patent/JPH07249582A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent the reduction in the yield of an element and to increase the light emission efficiency by increasing a mol ratio of V group element and III group element in a gas flowing into a crystal growth oven for a part directly related to emission of light and decreasing the mol ratio for the other parts when growing AlGaInP crystal. CONSTITUTION:When performing epitaxial growth of AlGaInP solid solution crystal onto GaAsP substrate crystal from gaseous phase, the mol ratio between phosphine which is V group feed gas which becomes the raw material and an organic metal compound which is III group raw material is set to 300 or larger. For example, Ga (0.7) In (0.3) P crystal is allowed to grow by 2mu on the GaAsP substrate crystal at 700 deg.C with organic metal trimethylaluminum, triethylgallium, trimethylindium, and phosphine as raw materials. The curve of the photoluminescence intensity of the crystal versus V/III growth indicates that the photoluminescence intensity increases along with V/III and begins to converge from approximately 300.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は化合物半導体デバイスの
製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a compound semiconductor device.

【0002】[0002]

【従来の技術】AlGaInP系固溶体結晶は可視領域
の発光素子として広く用いられている。これらの素子は
GaAsを基板結晶としてほぼこれと格子整合する組成
Ga(0.5)In(0.5)PならびにこのGaの一部
をAlで置換した組成を有する結晶で形成されている。
2. Description of the Related Art AlGaInP type solid solution crystals are widely used as light emitting devices in the visible region. These elements are formed of a crystal having a composition Ga (0.5) In (0.5) P that is substantially lattice-matched with GaAs as a substrate crystal and a composition in which a part of this Ga is replaced with Al.

【0003】発光波長をより短くするには、AlやGa
の割合を増し、Inを減らして禁制帯幅を大きくする必
要があるが、そうすると結晶の格子定数が基板結晶であ
るGaAsよりも小さくなって格子整合条件を大きく外
れる。このような場合には良質な結晶を得ることができ
ない。したがってGaAsより格子定数の小さな結晶を
基板結晶に用いる必要がある。
To make the emission wavelength shorter, Al or Ga is used.
It is necessary to increase the ratio of In and decrease In to increase the forbidden band width, but then the lattice constant of the crystal becomes smaller than that of GaAs which is the substrate crystal, and the lattice matching condition is largely deviated. In such a case, good quality crystals cannot be obtained. Therefore, it is necessary to use a crystal having a smaller lattice constant than GaAs for the substrate crystal.

【0004】その一つにGaAsP結晶があげられる。
これはGaAs結晶の上にまずGaAsをエピタキシャ
ル成長し、ついでPを含むGaAsP層をつけるのであ
るが、このときにPの組成を徐々に増加させていく。こ
うすると成長層の格子定数がPの含有量に応じて徐々に
小さくなっていく組成グレーデッド層が形成される。こ
の層が格子歪を緩和し、格子不整合によって生じる転位
の密度を低下させる働きがあり、結晶性の向上に役立
つ。Pの含有量を目的とする格子定数を持った組成まで
高め、以後、その組成に固定した組成一定のGaAsP
層をつける。
One of them is GaAsP crystal.
In this method, GaAs is first epitaxially grown on a GaAs crystal, and then a GaAsP layer containing P is attached. At this time, the P composition is gradually increased. In this way, a composition graded layer is formed in which the lattice constant of the growth layer gradually decreases according to the P content. This layer has a function of relaxing lattice strain and reducing the density of dislocations caused by lattice mismatch, which is useful for improving crystallinity. The content of P is increased to a composition having a desired lattice constant, and thereafter, GaAsP having a constant composition is fixed to the composition.
Add layers.

【0005】このようにして得られた、たとえばGaA
s(0.6)P(0.4)なるGaAsP基板結晶に対して
はGa(0.7)In(0.3)PあるいはこのGaの一
部をAlで置換した(Al,Ga)InPを格子整合し
た状態でエピタキシャル成長することができる。この説
明ではGaAsから始めてGaAsP基板結晶を作る方
法を述べたが、GaP結晶のうえにGaPから始め、し
だいにAsの含有量を増やしていく方法でGaAsP基
板結晶を得ることもできる。このようにして得られた基
板結晶の上に前述のようにほぼ格子整合するAlGaI
nP系の結晶を成長するが、この層の結晶性が良好であ
ることが望まれる。
Thus obtained, for example, GaA
For a GaAsP substrate crystal of s (0.6) P (0.4), Ga (0.7) In (0.3) P or (Al, Ga) InP in which a part of this Ga is replaced by Al Can be epitaxially grown in a lattice-matched state. In this description, the method of making a GaAsP substrate crystal starting from GaAs was described, but it is also possible to obtain a GaAsP substrate crystal by starting from GaP on top of GaP and gradually increasing the As content. AlGaI almost lattice-matched as described above on the substrate crystal thus obtained
Although an nP-based crystal is grown, it is desired that this layer has good crystallinity.

【0006】[0006]

【発明が解決しようとする課題】AlGaInP系の結
晶を成長するときには通常有機金属気相エピタキシャル
成長法が用いられる。この成長方法における重要な変数
の一つにいわゆるV/III と表す比、つまり、結晶成長
炉に流入するガス中のV族元素とIII 族元素のモル比が
ある。この値によって結晶の性質が左右される。ここで
問題にしているAlGaInP/GaAsP系の場合
は、発光効率とモフォロジがV/III によって変化する
が、その方向が互いに逆になる。すなわち、発光効率を
高くするにはV/III を大きくとる必要があるというこ
とを見出したが、一方で成長丘の発達が著しくなり、モ
フォロジの悪化による素子の歩留低下を招く。したがっ
てこの相反する現象を制御する必要が生じた。
When growing an AlGaInP type crystal, a metal organic vapor phase epitaxial growth method is usually used. One of the important variables in this growth method is the so-called V / III ratio, that is, the molar ratio between the group V element and the group III element in the gas flowing into the crystal growth furnace. This value affects the properties of the crystal. In the case of the AlGaInP / GaAsP system, which is a problem here, the luminous efficiency and the morphology change depending on V / III, but the directions are opposite to each other. That is, it has been found that it is necessary to increase V / III in order to increase the luminous efficiency, but on the other hand, the growth hills are significantly developed, and the yield of the device is reduced due to the deterioration of morphology. Therefore, it was necessary to control these contradictory phenomena.

【0007】[0007]

【課題を解決するための手段】成長丘は結晶層の厚さが
増すにしたがって発達するので成長層が薄ければその影
響は小さい。したがって発光に直接関係する部分のみを
高いV/III において成長し、その他の部分を低いV/
III で成長すれば良いことが判った。この領域はホモp
n接合では注入された少数キャリアの拡散長がそれに相
当し、ダブルヘテロ接合ではクラッド層に挾まれた活性
層がこれにあたる。
Since the growth hill develops as the thickness of the crystal layer increases, its influence is small if the growth layer is thin. Therefore, only the portion directly related to light emission grows at high V / III, and the other portion grows at low V / III.
It turns out that it is good to grow in III. This region is homo p
In the n-junction, this corresponds to the diffusion length of the injected minority carriers, and in the double heterojunction, this corresponds to the active layer sandwiched by the cladding layers.

【0008】[0008]

【作用】高いV/III では結晶中のV族原子、すなわ
ち、Pに関係する欠陥が減少すると考えられ、したがっ
て発光効率が高くなると考えられる。他方、V/III が
高い場合になぜ成長丘が発達しやすく、低い場合に結晶
面が平坦になるかはいまのところ明らかではなく、結晶
成長機構の解明に待たなければならない。
It is considered that at a high V / III, defects related to the group V atom in the crystal, that is, P, are reduced, and therefore the luminous efficiency is increased. On the other hand, it is not clear at present why the growth hills tend to develop when V / III is high and the crystal plane becomes flat when V / III is low, and it is necessary to wait for the clarification of the crystal growth mechanism.

【0009】[0009]

【実施例】【Example】

(実施例1)有機金属トリメチルアルミニウム,トリエ
チルガリウム,トリメチルインジウム、ならびにフォス
フィンを原料として700℃においてGaAsP基板結
晶上にGa(0.7)In(0.3)P結晶を2μ成長す
る。この結晶のフォトルミネッセンス強度を成長時のV
/III に対してプロットすると図1のようになる。これ
から明らかなようにフォトルミネッセンス強度はV/II
I と共に増加して約300あたりから収斂しはじめる。
したがって、フォトルミネッセンス強度のみから見れば
結晶をV/III が300以上で成長すれば良いことにな
る。しかし、このあたりから成長丘の生成が目立ち始
め、V/III が900では約2000個/cm2 に達す
る。
(Example 1) A Ga (0.7) In (0.3) P crystal was grown to a thickness of 2 μ on a GaAsP substrate crystal at 700 ° C. using organometallic trimethylaluminum, triethylgallium, trimethylindium, and phosphine as raw materials. The photoluminescence intensity of this crystal is determined by the V
When plotted against / III, the result is shown in Fig. 1. As is clear from this, the photoluminescence intensity is V / II.
It increases with I and begins to converge around 300.
Therefore, from the viewpoint of only the photoluminescence intensity, it is sufficient to grow the crystal with V / III of 300 or more. However, from around this point, the growth hills started to be conspicuous, and when V / III was 900, it reached about 2000 / cm 2 .

【0010】(実施例2)上記実施例と同様にしてGa
AsP基板結晶の上にAl(0.5)Ga(0.2)In
(0.3)P/Ga(0.7)In(0.3)P/Al
(0.5)Ga(0.2)In(0.3)Pなる構造のダブ
ルヘテロ接合を形成する。各層の厚さはそれぞれ1μ,
0.5μ,1μである。これらの結晶層を成長するとき
に、V/IIIが200と終始一定にしたものと真中の発光層
Ga(0.7)In(0.3)Pを成長するときだけV/
III を900としたもののフォトルミネッセンス強度を
比べると、後者のほうが5倍高い値を示すことが判っ
た。いずれの結晶でも成長丘の密度は約300個/cm2
と低い値を示す。これに対してすべての結晶層をV/II
I が400で成長した場合には成長丘密度は1000個
/cm2 を示し、フォトルミネッセンス強度も上記の二種
類の結晶の中間に留まった。
(Embodiment 2) As in the above embodiment, Ga
Al (0.5) Ga (0.2) In on AsP substrate crystal
(0.3) P / Ga (0.7) In (0.3) P / Al
A double heterojunction having a structure of (0.5) Ga (0.2) In (0.3) P is formed. The thickness of each layer is 1μ,
It is 0.5μ and 1μ. When growing these crystal layers, V / III was kept constant at 200, and V / III was V / III only when growing the middle light emitting layer Ga (0.7) In (0.3) P.
Comparing the photoluminescence intensities of III to 900, it was found that the latter showed a value five times higher. The density of growth hills is about 300 pieces / cm 2 for all crystals.
And a low value. On the other hand, all crystal layers are V / II
When I was grown at 400, the density of growth hills was 1000 / cm 2 , and the photoluminescence intensity remained in the middle of the above two kinds of crystals.

【0011】(実施例3)ダブルヘテロ接合でクラッド
層である二つのAlGaInP層にそれぞれZnならび
にSiをド−プすることにより、発光層Ga(0.7)
In(0.3)Pを挾んでpn接合を形成することがで
きる。このウエファのp側とn側にそれぞれオ−ミック
電極をつけてから3mm角のチップに切り出すと発光ダイ
オ−ドが得られる。発光層のみをV/IIIが900で成
長した発光ダイオ−ドはV/IIIが200で作ったものに比
べて3倍強い発光を示す。
(Embodiment 3) The light emitting layer Ga (0.7) is formed by doping Zn and Si into two AlGaInP layers, which are clad layers in a double heterojunction, respectively.
A pn junction can be formed by sandwiching In (0.3) P. Light-emitting diodes are obtained by attaching ohmic electrodes to the p-side and the n-side of the wafer and then cutting the wafer into chips of 3 mm square. A light emitting diode in which only the light emitting layer was grown at V / III of 900 shows a light emission three times stronger than that of a light emitting diode made at V / III of 200.

【0012】以上の実施例では発光層としてGaInP
結晶を用いた場合について説明したが、Ga原子の一部
をAlで置換したAlGaInP結晶においても同様の
関係が成立する。
In the above embodiments, GaInP is used as the light emitting layer.
Although the case of using a crystal has been described, the same relationship holds for an AlGaInP crystal in which a part of Ga atoms is replaced with Al.

【0013】[0013]

【発明の効果】本発明によればAlGaInP系の結晶
をGaAsP基板の上に成長する場合、発光層のみを高
いV/IIIで成長しその他の部分を低いV/IIIで成長し
た結晶は、終始高いV/IIIあるいは低いV/IIIで成長
した結晶に比べて高い発光強度を示す。
According to the present invention, when an AlGaInP-based crystal is grown on a GaAsP substrate, a crystal in which only the light emitting layer is grown at a high V / III and the other portions are grown at a low V / III is always maintained. It exhibits higher emission intensity than a crystal grown at high V / III or low V / III.

【図面の簡単な説明】[Brief description of drawings]

【図1】結晶成長時の供給ガス中のV族元素に対するII
I 族元素のモル比と室温におけるGa(0.7)In
(0.3)Pのフォトルミネッセンス強度の関係を示す
測定図。
FIG. 1 II for group V elements in the supply gas during crystal growth
Molar ratio of Group I elements and Ga (0.7) In at room temperature
The measurement figure which shows the relationship of the photoluminescence intensity of (0.3) P.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】AlGaInP固溶体結晶をGaAsP基
板結晶の上に気相からエピタキシャル成長する際に、そ
の原料となるV族の原料ガスであるフォスフィンとIII
族の原料である有機金属化合物のモル比を300以上に
設定したことを特徴とする結晶成長方法。
1. When a AlGaInP solid solution crystal is epitaxially grown from a vapor phase on a GaAsP substrate crystal, phosphine which is a group V source gas and III
A crystal growth method, characterized in that the molar ratio of the organometallic compound as a raw material of the group is set to 300 or more.
【請求項2】請求項1において、電子と正孔が再結合す
る活性領域およびその近傍のみを前記のモル比で成長さ
せ結晶成長方法。
2. The crystal growth method according to claim 1, wherein only the active region where electrons and holes are recombined and the vicinity thereof are grown at the above molar ratio.
JP3810194A 1994-03-09 1994-03-09 Crystal growth method Pending JPH07249582A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3810194A JPH07249582A (en) 1994-03-09 1994-03-09 Crystal growth method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3810194A JPH07249582A (en) 1994-03-09 1994-03-09 Crystal growth method

Publications (1)

Publication Number Publication Date
JPH07249582A true JPH07249582A (en) 1995-09-26

Family

ID=12516089

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3810194A Pending JPH07249582A (en) 1994-03-09 1994-03-09 Crystal growth method

Country Status (1)

Country Link
JP (1) JPH07249582A (en)

Similar Documents

Publication Publication Date Title
JP3771952B2 (en) Method for growing single crystal III-V compound semiconductor layer, method for manufacturing light emitting element, and method for manufacturing transistor
US8174042B2 (en) Method of growing semiconductor heterostructures based on gallium nitride
US20010023946A1 (en) Crystal growth method for nitride semiconductor, nitride semiconductor light emitting device, and method for producing the same
JP2000091234A (en) Manufacture of iii-v nitride compound semiconductor
JP3740744B2 (en) Semiconductor growth method
US6525345B1 (en) Semiconductor photonic device
JP3458007B2 (en) Semiconductor light emitting device
JPH08293473A (en) Epitaxial wafer and compound semiconductor light emitting element and their manufacture
JPH0936429A (en) Fabrication of iii-v compound semiconductor
TW202144631A (en) Compound semiconductor epitaxial wafer and method for manufacturing the same having improved crystallinity and improved brightness at low cost
JPH07249582A (en) Crystal growth method
JPH08125221A (en) Semiconductor light-emitting element
US6320208B1 (en) II-VI compound semiconductor device
JPH0745909A (en) Vapor growth method for deformation quantum well semiconductor lasor
JPH0897469A (en) Semiconductor light emitting device
JP3344189B2 (en) Semiconductor device having distributed Bragg reflection mirror multilayer film
US7195991B2 (en) Method for producing an electromagnetic radiation-emitting semiconductor chip and a corresponding electromagnetic radiation-emitting semiconductor chip
JP2006253403A (en) Growing method of light emitting diode epitaxial wafer
JP3859990B2 (en) Method for producing compound semiconductor
JP2645055B2 (en) Double hetero wafer and double hetero junction type semiconductor laser device
JP2001015803A (en) AlGaInP LIGHT EMITTING DIODE
JP3432444B2 (en) Semiconductor light emitting device
JPH10107317A (en) Gan element substrate, its manufacturing method and gan element
JPH08116092A (en) Semiconductor light emitting element and its manufacture
JP3561243B2 (en) Compound semiconductor growth method and compound semiconductor light emitting device