JP3116415B2 - Semiconductor wafer and method of manufacturing the same - Google Patents

Semiconductor wafer and method of manufacturing the same

Info

Publication number
JP3116415B2
JP3116415B2 JP12846891A JP12846891A JP3116415B2 JP 3116415 B2 JP3116415 B2 JP 3116415B2 JP 12846891 A JP12846891 A JP 12846891A JP 12846891 A JP12846891 A JP 12846891A JP 3116415 B2 JP3116415 B2 JP 3116415B2
Authority
JP
Japan
Prior art keywords
gap
layer
substrate
growth
lattice constant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP12846891A
Other languages
Japanese (ja)
Other versions
JPH04229614A (en
Inventor
泰男 細川
峰夫 奥山
豊 斉藤
Original Assignee
昭和電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工株式会社 filed Critical 昭和電工株式会社
Priority to JP12846891A priority Critical patent/JP3116415B2/en
Publication of JPH04229614A publication Critical patent/JPH04229614A/en
Application granted granted Critical
Publication of JP3116415B2 publication Critical patent/JP3116415B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Recrystallisation Techniques (AREA)
  • Led Devices (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は GaPエピタキシャルウェ
ーハに係わり、特に GaP基板上に GaPバッファ層を介し
て格子定数の異なるIn1-yGayP結晶をエピタキシャル成
長させた GaPエピタキシャルウェーハおよびその成長方
法に係わるものである。
The present invention relates relates to a GaP epitaxial wafer, GaP epitaxial wafer and growth method thereof particularly epitaxially grown with different In 1-y Ga y P crystal lattice constant through the GaP buffer layer on the GaP substrate It is related to.

【0002】[0002]

【従来の技術】近年、オプトエレクトロニクス分野の発
展には目ざましいものがあり、中でも発光ダイオード
(LED)やレーザーダイオード(LD)の開発が盛ん
に行われている。たとえばGaAsの基板上に GaAsPをエピ
タキシャル成長させたエピタキシャルウェーハが開発さ
れている。これは周期律表第V族のヒ素(As)とガリウ
ム(Ga)との混晶比を変えることにより赤色から赤外色
帯で直接遷移型の結晶構造をとることから、高輝度、高
発光効率のダイオードが得られるので注目を集めてい
る。同様に橙色から黄色帯のLED用として GaP基板上
に InGaPをエピタキシャル成長させたエピタキシャルウ
ェーハも考えられている。
2. Description of the Related Art In recent years, there has been remarkable progress in the field of optoelectronics. In particular, light-emitting diodes (LEDs) and laser diodes (LDs) have been actively developed. For example, an epitaxial wafer in which GaAsP is epitaxially grown on a GaAs substrate has been developed. This is a high-brightness, high-emission light source, which has a direct transition-type crystal structure in the red to infrared color band by changing the mixed crystal ratio of arsenic (As) and gallium (Ga) in the Periodic Table Group V. Attention has been paid to the efficiency of the diode. Similarly, an epitaxial wafer in which InGaP is epitaxially grown on a GaP substrate for an orange to yellow band LED has been considered.

【0003】これらの構成手段を有するエピタキシャル
ウェーハで問題となるのは、結晶格子のミスマッチによ
る結晶性の低下である。たとえば、基板となる GaPの格
子定数は 5,450Åであるのに対し、 InPの格子定数は5,
8694Åで表面エピタキシャル層In0.3Ga0.7P の格子定数
は5,5758Åであり、格子定数ミスマッチは2.3%程度に
もなる。
A problem with an epitaxial wafer having these constituent means is a decrease in crystallinity due to a mismatch in crystal lattice. For example, the lattice constant of GaP as a substrate is 5,450 5 ,, while the lattice constant of InP is 5,450 は.
At 8694 °, the lattice constant of the surface epitaxial layer In 0.3 Ga 0.7 P is 5,5758 °, and the lattice constant mismatch is as high as about 2.3%.

【0004】このようにエピタキシャル成長の格子定数
と基板の格子定数が異なるため、その隔たりが大きくな
る程エピタキシャル成長結晶の結晶性が悪くなり、その
ようなウェーハから作製した半導体素子は電気的特性も
劣り、高輝度、高発光効率を有するLEDは得られな
い。
As described above, since the lattice constant of epitaxial growth and the lattice constant of the substrate are different, the crystallinity of the epitaxially grown crystal becomes worse as the distance increases, and the semiconductor device manufactured from such a wafer has poor electrical characteristics. An LED having high luminance and high luminous efficiency cannot be obtained.

【0005】図4は GaP基板上にその格子定数と異なる
格子定数を有するIn1-xGaxP(x>0.7 )結晶を成長さ
せる場合に、従来採用されてきた基板構造である。すな
わち、従来の考え方に従えば GaP基板上にその格子定数
と近い組成のIn1-xGaxP(x≒0)から連続的に組成
(すなわち格子定数)を変化させる組成勾配層(又は格
子定数遷移層)を設けて格子ミスマッチによる結晶性の
劣化を防ぎ、その後目的とする組成の一定組成層(又は
格子定数層)を成長させる方法である。この方法はGaAs
基板上にGaAs1-ZPZ (z<0.4 )を成長させる場合に実
用化されている方法である(特開昭51−8883参照)。
FIG. 4 shows a substrate structure which has been conventionally employed when growing an In 1-x Ga x P (x> 0.7) crystal having a lattice constant different from that of a GaP substrate. That is, according to the conventional concept, a composition gradient layer (or a lattice) that continuously changes the composition (ie, lattice constant) from In 1-x Ga x P (x ≒ 0) having a composition close to the lattice constant on a GaP substrate. This is a method of providing a constant transition layer) to prevent crystallinity degradation due to lattice mismatch, and then growing a constant composition layer (or lattice constant layer) having a desired composition. This method is GaAs
A method has been put to practical use in the case of growing the GaAs 1-Z P Z (z <0.4) on a substrate (see JP 51-8883).

【0006】[0006]

【発明が解決しようとする課題】ところで、上記のよう
な基板構造を有するエピタキシャルウェーハでは、ある
程度の結晶性を有するエピタキシャルウェーハは得られ
るが、デバイスを作成する際に使用できる程結晶性が良
好で、かつ表面モホロジーの良好なものは得られない。
本発明はこの問題点を解消させて、結晶性の良好なIn
1-yGayP/ GaPエピタキシャルウェーハを提供するもの
である。
By the way, in the epitaxial wafer having the above substrate structure, an epitaxial wafer having a certain degree of crystallinity can be obtained, but the crystallinity is so good that it can be used for manufacturing a device. In addition, those having good surface morphology cannot be obtained.
The present invention solves this problem and improves the crystallinity of In.
A 1-y Ga y P / GaP epitaxial wafer is provided.

【0007】[0007]

【課題を解決するための手段】本発明は、表面モホロジ
ー及び結晶性の劣化がGaP基板と InGaP結晶の界面での
現象に起因することに注目し、界面での GaPから InGaP
への物質系の変化の影響を緩和するために図1に示す基
板構造のように GaPのバッファ層を挿入する構造とし
た。また、その製造方法においてはバッファ層の成長温
度を最適化することにより表面モホロジーと結晶性の向
上を図るものである。
The present invention focuses on the fact that surface morphology and crystallinity degradation are caused by a phenomenon at the interface between a GaP substrate and an InGaP crystal.
In order to alleviate the influence of the change in the material system on the substrate, a structure in which a GaP buffer layer is inserted as in the substrate structure shown in FIG. In the manufacturing method, the surface morphology and crystallinity are improved by optimizing the growth temperature of the buffer layer.

【0008】図1に本発明のエピタキシャルウェーハの
構造を示す。図中1はGaP基板で、通常液体封止チョク
ラルスキー法(LEC法)により得られるものを使用す
る。2は GaPバッファ層で、気相成長法によりエピタキ
シャル成長させたものが好ましい。 GaPバッファ層は G
aP基板の結晶欠陥を捕捉し、以後の結晶成長を理想に近
い状態で行うためのものである。 GaPバッファ層の厚さ
は 0.5〜1μm 程度必要である。これより薄い場合は基
板の格子定数の影響が排除できず、以後のエピタキシャ
ル成長において良好な結晶が得られない。また、あまり
厚くなっても効果は変わらない。3は混晶比xが変化し
ているIn1-xGaxPの組成勾配層である。混晶比はx=0
から、表面エピタキシャル成長層に近いx=0.3まで連
続的に変化し濃度勾配を与えるものである。
FIG. 1 shows the structure of an epitaxial wafer of the present invention. In the figure, reference numeral 1 denotes a GaP substrate which is usually obtained by a liquid-sealed Czochralski method (LEC method). 2 is a GaP buffer layer, which is preferably grown epitaxially by a vapor phase growth method. GaP buffer layer is G
This is for capturing crystal defects of the aP substrate and performing subsequent crystal growth in an almost ideal state. The thickness of the GaP buffer layer needs to be about 0.5 to 1 μm. If the thickness is smaller than this, the influence of the lattice constant of the substrate cannot be eliminated, and good crystals cannot be obtained in subsequent epitaxial growth. The effect does not change even if the thickness is too large. Reference numeral 3 denotes a composition gradient layer of In 1-x Ga x P in which the mixed crystal ratio x changes. The mixed crystal ratio is x = 0
, And continuously changes to x = 0.3 close to the surface epitaxial growth layer to give a concentration gradient.

【0009】すなわち組成勾配層2の混晶比xの変化は
x=0からx=0.3として、この範囲でゆるやかに格子
定数を連続的に変化させるのが効果がある。組成勾配層
2の厚さは1〜3μm 必要である。このように前記の G
aPバッファ層4と組成勾配層2を組合わせることによ
り、基板1と表面エピタキシャル成長層3との格子定数
の差を補償すれば、表面エピタキシャル成長層3の結晶
性は著しく改善され、本発明の効果が発揮される。図中
3は表面の一定組成を有するIn1-yGayPエピタキシャル
成長層である。yは0.25〜0.35の範囲で必要とする発光
波長により選択した一定値を有する。この一定組成層3
の厚さは2〜5μm 必要である。
That is, it is effective to change the mixed crystal ratio x of the composition gradient layer 2 from x = 0 to x = 0.3 and gradually change the lattice constant in this range. The thickness of the composition gradient layer 2 needs to be 1 to 3 μm. Thus, the G
If the difference in lattice constant between the substrate 1 and the surface epitaxial growth layer 3 is compensated by combining the aP buffer layer 4 and the composition gradient layer 2, the crystallinity of the surface epitaxial growth layer 3 is significantly improved, and the effect of the present invention is improved. Be demonstrated. In the figure, reference numeral 3 denotes an In 1-y Ga y P epitaxial growth layer having a constant composition on the surface. y has a constant value selected in the range of 0.25 to 0.35 according to the required emission wavelength. This constant composition layer 3
Must have a thickness of 2 to 5 .mu.m.

【0010】次に本発明の半導体ウェーハの製造方法に
ついて説明する。格子定数は結晶の組成によって決定さ
れるものであるから、格子定数を変化させるにはエピタ
キシャル成長させる結晶の組成を時々刻々変化させられ
る気相成長法が有利である。とりわけMOCVD法によ
り反応ガス混合割合を変化させることにより、容易にか
つ良好な結晶性を有するエピタキシャル成長結晶を得る
ことができる。たとえばMOCVD法によりIn1-xGax
結晶をエピタキシャル成長させるには、たとえばIn源と
してトリメチルインジウム(TMIn:In(CH3)3)、Ga源とし
てトリメチルガリウム(TMGa:Ga(CH3)3)、P源としてフ
ォスフィン(PH3)を使用する。 GaPバッファ層4を成長
させるにはTMGaと PH3を使用する。In1-xGaxP組成変化
層2を成長させるには、最初TMGaと PH3を使用し、徐々
にTMGaを減少させ、TMInを増加させて組成制御を行な
う。In1-yGayP組成一定層3を成長させるには、目標組
成となるようにTMInとTMGaを混合し、一定流量保ったま
ま成長させれば良い。
Next, a method for manufacturing a semiconductor wafer according to the present invention will be described. Since the lattice constant is determined by the composition of the crystal, a vapor phase growth method in which the composition of the crystal to be epitaxially grown is constantly changed is advantageous for changing the lattice constant. In particular, an epitaxially grown crystal having good crystallinity can be easily obtained by changing the reaction gas mixture ratio by MOCVD. For example, In 1-x Ga x P
The crystals to be epitaxially grown, for example, trimethyl indium as an In source (TMIn: In (CH 3) 3), trimethyl gallium as a Ga source (TMGa: Ga (CH 3) 3), using a phosphine (PH 3) is used as a P source I do. To grow the GaP buffer layer 4 uses TMGa and PH 3. To grow the In 1-x Ga x P composition change layer 2, first, TMGa and PH 3 are used, and the composition is controlled by gradually decreasing TMGa and increasing TMIn. In order to grow the In 1-y Ga y P composition constant layer 3, TMIn and TMGa may be mixed so as to have a target composition and grown while maintaining a constant flow rate.

【0011】本発明で重要なのは GaPバッファ層の成長
温度である。GaPバッファ層の成長温度は通常 570〜900
℃で生起するが、この温度は後の最終In1-yGayPエピ
タキシャル層の表面をモホロジーに大きな影響をおよぼ
すことが判明した。実験の結果、成長温度が 650℃以上
で著しい効果を発揮することが分った。したがって本発
明では GaPバッファ層の気相成長温度を 650℃以上にし
た。最適温度は 650〜720 ℃である。
What is important in the present invention is the growth temperature of the GaP buffer layer. The growth temperature of the GaP buffer layer is usually 570 to 900
C., which has been found to have a significant effect on the morphology of the surface of the subsequent final In 1-y Ga y P epitaxial layer. As a result of the experiment, it was found that a remarkable effect was exhibited when the growth temperature was 650 ° C or higher. Therefore, in the present invention, the vapor growth temperature of the GaP buffer layer was set to 650 ° C. or higher. The optimum temperature is 650-720 ° C.

【0012】In1-xGaxPの成長温度は 600〜750 ℃で生
起する。 InGaPの成長温度は通常使用する温度範囲で特
に支障はないが、通常は GaPバッファ層よりも50℃程度
低い温度で成長させた方が表面モホロジーは向上する。
その他の成長条件は通常使用されている公知の手段が利
用できる。
The growth temperature of In 1-x Ga x P occurs at 600 to 750 ° C. The growth temperature of InGaP is not particularly hindered in the temperature range in which it is usually used, but the surface morphology is usually improved when grown at a temperature lower by about 50 ° C. than the GaP buffer layer.
As other growth conditions, known means generally used can be used.

【0013】[0013]

【作用】GaP基板上に GaPのバッファ層を高温で成長さ
せることにより、基板とエピタキシャル成長結晶との間
の格子定数の差異の影響を小さくし、基板とエピタキシ
ャル層界面での副反応を抑えるものである。さらにこの
GaPバッファ層の上にIn1-xGaxPの組成変化層を設け、
格子定数ミスマッチの悪影響を解消させるようにしたも
のである。その結果、それ以後の成長膜の結晶性が向上
し、表面モホロジーも格段に改善することを利用したも
のである。
[Function] By growing a GaP buffer layer on a GaP substrate at a high temperature, the effect of the difference in lattice constant between the substrate and the epitaxially grown crystal is reduced, and side reactions at the interface between the substrate and the epitaxial layer are suppressed. is there. Furthermore this
A composition change layer of In 1-x Ga x P is provided on the GaP buffer layer,
This is to eliminate the adverse effect of the lattice constant mismatch. As a result, the crystallinity of the subsequently grown film is improved, and the surface morphology is significantly improved.

【0014】[0014]

【実施例】基板としてSをドープした GaPを使用し、(10
0)面上にMO−CVD法により GaP及び InGaP層をエピ
タキシャル成長させた。第III 族有機金属としてはトリ
メチルガリウム(TMGa:Ga(CH3)3) 及びトリメチルイン
ジウム(TMIn:In(CH3)3) を使用し、第V族水素化物と
してフォスフィン(PH3)を用いた。またキャリアガスと
しては高純度水素を使用した。
EXAMPLE An S-doped GaP was used as a substrate, and (10
On the 0) plane, GaP and InGaP layers were epitaxially grown by MO-CVD. Trimethyl gallium (TMGa: Ga (CH 3 ) 3 ) and trimethyl indium (TMIn: In (CH 3 ) 3 ) were used as the group III organic metal, and phosphine (PH 3 ) was used as the group V hydride. . High-purity hydrogen was used as a carrier gas.

【0015】反応容器内のサセプター上に GaP基板をセ
ットし、圧力を 100Torrに保持し、水素ガスを流しなが
ら基板を加熱した。基板温度が 400℃に達した時点で P
H3を475cc/分の割合で導入しPの揮散を防止した。さ
らに基板温度が 690℃に達した時点でその温度に5分間
保持した後、TMGaを12.8cc/分の割合で20分間導入し、
厚さ 0.8μm の GaPバッファ層を形成させた。次いで基
板温度を 610℃に降下させ5分保持した後、TMInの導入
を開始し、30分かけて 137cc/分まで増量すると同時に
TMGaを 8.8cc/分まで減じ、混晶比xがx=1.0 からx
=0.70まで連続的に変化しているIn1-xGaxPエピタキシ
ャル層を厚さ 2.0μm に成長させた。さらにTMGaとTMIn
の導入量を一定に保ち、混晶比yが 0.3であるIn0.3Ga
0.7P エピタキシャル層を60分間かけて厚さ 3.6μm に
成長させた。得られたエピタキシャルウェーハの評価方
法として、表面モホロジーについては成長膜表面の突起
物(ヒロック)の密度、結晶性についてはX線2結晶法
によるロッキングカーブの半値幅を測定、算出した。こ
れらの結果を図2及び図3に示す。図2に示すようにGa
Pバッファ層の成長温度が高い程ヒロック密度は減少
し、 690℃の場合40cm-2にまで抑えることができた。
A GaP substrate was set on a susceptor in a reaction vessel, the pressure was maintained at 100 Torr, and the substrate was heated while flowing hydrogen gas. When the substrate temperature reaches 400 ° C, P
H 3 was introduced at a rate of 475 cc / min to prevent the volatilization of P. Further, when the substrate temperature reaches 690 ° C., the temperature is maintained for 5 minutes, and then TMGa is introduced at a rate of 12.8 cc / min for 20 minutes,
A 0.8 μm thick GaP buffer layer was formed. Next, the temperature of the substrate was lowered to 610 ° C. and maintained for 5 minutes. Then, introduction of TMIn was started, and the amount was increased to 137 cc / min over 30 minutes.
TMGa is reduced to 8.8 cc / min, and the mixed crystal ratio x is from x = 1.0 to x
An In 1-x Ga x P epitaxial layer continuously changing to 0.70 was grown to a thickness of 2.0 μm. TMGa and TMIn
In 0.3 Ga where the mixed crystal ratio y is 0.3
A 0.7 P epitaxial layer was grown to a thickness of 3.6 μm over 60 minutes. As a method for evaluating the obtained epitaxial wafer, the density of protrusions (hillocks) on the surface of the grown film was measured for the surface morphology, and the half width of the rocking curve by the X-ray two-crystal method was measured and calculated for the crystallinity. These results are shown in FIGS. As shown in FIG.
The hillock density decreased as the growth temperature of the P buffer layer increased, and could be suppressed to 40 cm -2 at 690 ° C.

【0016】また、結晶性についても図3から分るよう
に、成長膜の組成がIn0.3Ga0.7P とほぼ一定の場合、 G
aPバッファ層の成長温度が高くなるにつれてX線ロッキ
ングカーブの半値幅が減少し、結晶性が向上したことが
分る。 690℃の場合 220秒であり、 1.4%の格子ミスマ
ッチがあるにもかかわらずデバイス作成可能な結晶性が
得られたことになる。
Also, as can be seen from FIG. 3, when the composition of the grown film is substantially constant at In 0.3 Ga 0.7 P,
It can be seen that as the growth temperature of the aP buffer layer increases, the half-width of the X-ray rocking curve decreases and the crystallinity improves. At 690 ° C., the time was 220 seconds, which means that crystallinity enabling device fabrication was obtained despite a lattice mismatch of 1.4%.

【0017】[0017]

【発明の効果】本発明によれば、 GaP基板上にその格子
定数と異なる格子定数を有するIn1-yGayP(0.65≦y≦
0.75)エピタキシャル成長層を表面モホロジーが良好で
かつデバイス作成に際して十分良好な結晶を有する薄膜
として得ることができる。また、本方法は格子ミスマッ
チのある系での結晶成長において、他の物質系(例え
ば、 GaAsP/GaAs、 GaAsP/GaP 、InGaAs/GaAs)にも
応用できる気相成長方法である。
According to the present invention, In 1-y Ga y P having a lattice constant different from that of a GaP substrate (0.65 ≦ y ≦
0.75) The epitaxial growth layer can be obtained as a thin film having good surface morphology and having sufficiently good crystals for device fabrication. In addition, this method is a vapor phase growth method applicable to other material systems (for example, GaAsP / GaAs, GaAsP / GaP, InGaAs / GaAs) in crystal growth in a system having a lattice mismatch.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明における InGaP/GaP のウェーハ構造を
示す図。
FIG. 1 is a diagram showing an InGaP / GaP wafer structure according to the present invention.

【図2】ヒロック密度と GaPバッファ層成長温度との関
係を示す図。
FIG. 2 is a diagram showing a relationship between hillock density and GaP buffer layer growth temperature.

【図3】結晶性と GaPバッファ層成長温度との関係を示
す図。
FIG. 3 is a graph showing the relationship between crystallinity and GaP buffer layer growth temperature.

【図4】従来の InGaP/GaP のウェーハ構造を示す図。FIG. 4 is a diagram showing a conventional InGaP / GaP wafer structure.

【符号の説明】[Explanation of symbols]

1 GaP基板 2 In1-xGaxP組成勾配層 3 In1-yGayP組成一定層 4 GaPバッファ層Reference Signs List 1 GaP substrate 2 In 1-x Ga x P composition gradient layer 3 In 1-y Ga y P composition constant layer 4 GaP buffer layer

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭48−34082(JP,A) 特開 昭60−210598(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01L 21/20 H01L 21/205 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-48-34082 (JP, A) JP-A-60-210598 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01L 21/20 H01L 21/205

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 GaP基板上にその格子定数と異なる格
子定数を有するIn 1-y Ga y P層(ただし、0.65≦
y≦0.75)を気相成長させるにあたり、先ず650
〜720℃の温度でGaP基板上にGaP結晶をエピタ
キシャル成長させ、次いで該GaP結晶をエピタキシャ
ル成長させる温度より低い温度で、混晶比xが変化して
いるIn 1-x Ga x P層(ただし、0.70≦x≦1.0
0)および一定組成を有するIn 1-y Ga y P層を順次エ
ピタキシャル成長させることを特徴とする半導体ウェー
ハの製造方法。
1. A semiconductor device having a lattice constant different from its lattice constant on a GaP substrate.
In 1-y Ga y P layer having a child constants (where, 0.65 ≦
(y ≦ 0.75) for the vapor phase growth.
Epitaxy of GaP crystal on GaP substrate at temperature of ~ 720 ° C
And then growing the GaP crystal epitaxially.
At a temperature lower than the growth temperature, the mixed crystal ratio x changes
In 1-x Ga x P layer (provided that 0.70 ≦ x ≦ 1.0
0) and an In 1-y Ga y P layer having a constant composition.
Semiconductor way characterized by epitaxial growth
C Manufacturing method.
JP12846891A 1990-09-20 1991-04-30 Semiconductor wafer and method of manufacturing the same Expired - Fee Related JP3116415B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12846891A JP3116415B2 (en) 1990-09-20 1991-04-30 Semiconductor wafer and method of manufacturing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2-253182 1990-09-20
JP25318290 1990-09-20
JP12846891A JP3116415B2 (en) 1990-09-20 1991-04-30 Semiconductor wafer and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH04229614A JPH04229614A (en) 1992-08-19
JP3116415B2 true JP3116415B2 (en) 2000-12-11

Family

ID=26464125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12846891A Expired - Fee Related JP3116415B2 (en) 1990-09-20 1991-04-30 Semiconductor wafer and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3116415B2 (en)

Also Published As

Publication number Publication date
JPH04229614A (en) 1992-08-19

Similar Documents

Publication Publication Date Title
Stringfellow Materials issues in high-brightness light-emitting diodes
US9691712B2 (en) Method of controlling stress in group-III nitride films deposited on substrates
US5886367A (en) Epitaxial wafer device including an active layer having a two-phase structure and light-emitting device using the wafer
US6281522B1 (en) Method of manufacturing a semiconductor and a semiconductor light-emitting device
JPH0770755B2 (en) High brightness LED epitaxial substrate and method of manufacturing the same
JP3198912B2 (en) Method for producing group 3-5 compound semiconductor
US5739553A (en) Algainp light-emitting device
JP2001024221A (en) Gallium nitride compound semiconductor and its manufacture
JP3116415B2 (en) Semiconductor wafer and method of manufacturing the same
JPH0997921A (en) Manufacture of iii-v compd. semiconductor
US5751026A (en) Epitaxial wafer of gallium arsenide phosphide
JPH05243613A (en) Light-emitting device and its manufacture
JPH0964419A (en) Iii-v compound semiconductor and light emitting element
Akasaki Progress in crystal growth and future prospects of group III nitrides by metalorganic vapor-phase epitaxy
JP3752739B2 (en) Light emitting element
US5204283A (en) Method of growth II-VI semiconducting compounds
JPH09148626A (en) Manufacture of iii-v group compound semiconductor
JP4010318B2 (en) Light emitting element
JP3344189B2 (en) Semiconductor device having distributed Bragg reflection mirror multilayer film
JPH0463040B2 (en)
Wright et al. The growth of ZnSe and other wide-bandgap II-VI semiconductors by MOCVD
JP3491373B2 (en) Light emitting element, light emitting diode and laser diode
JP2007067397A (en) Method of manufacturing 3-5 group compound semiconductor
DenBaars Light emitting diodes: materials growth and properties
JPH04278522A (en) Semiconductor material having si-doped gainp cap layer

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091006

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101006

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees