JPH0463040B2 - - Google Patents

Info

Publication number
JPH0463040B2
JPH0463040B2 JP22495684A JP22495684A JPH0463040B2 JP H0463040 B2 JPH0463040 B2 JP H0463040B2 JP 22495684 A JP22495684 A JP 22495684A JP 22495684 A JP22495684 A JP 22495684A JP H0463040 B2 JPH0463040 B2 JP H0463040B2
Authority
JP
Japan
Prior art keywords
layer
gaas
epitaxial
substrate
mixed crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP22495684A
Other languages
Japanese (ja)
Other versions
JPS61106497A (en
Inventor
Masahisa Endo
Nobuhiko Noto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Handotai Co Ltd
Priority to JP22495684A priority Critical patent/JPS61106497A/en
Publication of JPS61106497A publication Critical patent/JPS61106497A/en
Publication of JPH0463040B2 publication Critical patent/JPH0463040B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は発光ダイオード用間接遷移型三元系化
合物半導体燐化砒化ガリウム(GaAs1-xPx)エピ
タキシヤル膜の気相成長方法に関するものであ
る。 従来の技術 従来、黄色発光ダイオード(中心発光波長5850
Å)、橙色発光ダイオード(中心発光波長6300Å)
等のためのエピタキシヤルウエーハは、GaP単結
晶基板上にGaP層、格子定数の相異による格子不
整歪を緩和するために混晶率xを徐々に変化させ
たGaAs1-xPx混晶率x変化層(以下x変化層とい
う)をエピタキシヤル成長させ、さらに所望の混
晶率x一定層を得た後、その混晶率xのままエピ
タキシヤル成長を継続し、同時に一定濃度の窒素
原子を添加する。そして混晶率x一定層が所望の
厚さに到達したらエピタキシヤル成長を停止して
つくるという方法がとられる。かかる方法による
ウエーハよりつくられた発光ダイオードからは満
足すべき発光強度が得られなかつた。 この従来法によるGaAs1-xPx膜のエピタキシヤ
ル成長方法について以下に図面で説明する。第2
図aは黄色発光ダイオード用GaAs1-xPxエピタキ
シヤルウエーハの断面を、第2図bはその窒素濃
度分布をそれぞれ一例をあげて示したものであ
る。11は厚さ約300μのGaP単結晶基板、12
は厚さ約5μのGaPエピタキシヤル層、13は結
晶不整歪緩和技術を用いて混晶率xを1から約
0.85まで変化させた厚さ約35μのx変化層、14
および15はxが約0.85を保つx一定層である。
ただし14は厚さ約10μ、15は窒素原子が添加
された厚さ約25μのx一定層である。 発明が解決しようとする問題点 しかしこの方法では、GaAs1-xPxの混晶率x一
定層に窒素原子を所望の濃度に添加させ、この結
果生ずる結晶品質劣化層から発光ダイオードを形
成するため、その発光強度は、必ずしも満足すべ
きものではなかつた。 問題点を解決するための手段 本発明はかかる欠点を解消すべく、下記の事実 (1) GaAs1-xPx結晶中に窒素原子を添加する場
合、結晶欠陥はその添加初期において急増する
が、成長反応が進むに従つてすなわちエピタキ
シヤル層が厚くなるに従つて減少する。 (2) GaAs1-xPxエピタキシヤル層が厚くなると、
GaP基板とSaAs1-xPx結晶との格子定数の相異
によりエピタキシヤルウエーハの反りが大きく
なり、同時にエピタキシヤル膜の結晶品質が悪
化するので、エピタキシヤル層の厚さに限界が
ある。 を種々検討した結果到達したものである。それは
単結晶基板面上に、燐化砒化ガリウム(GaAs1-x
Px)よりなるエピタキシヤル膜を気相成長させ
る方法において、該エピタキシヤル膜を基板と同
一成分からなる層、混晶率x変化層、混晶率x一
定層(ただし、0.4≦x<1)の順に成長させる
と共に、アイソエレクトロニツク・トラツプとな
る窒素原子の添加を基板と同一成分からなる層お
よび混晶率x変化層の任意の点から開始し、混晶
率x変化層と混晶率x一定層の変換点の近傍で所
望の値となるようにすることを特徴とする燐化砒
化ガリウムエピタキシヤル膜の成長方法である。 以下にこれを図面によつて詳しく説明する。第
1図aは本発明による黄色発光ダイオード用
GaAs1-xPxエピタキシヤルウエーハの断面を、第
1図bはその窒素濃度分布をそれぞれ一例をあげ
て示したものである。1は厚さ約300μのGaP単
結晶基板、2は厚さ約5μのGaPエピタキシヤル
層、3は結晶率xを1から約0.9まで変化させた
厚さ約18μのx変化層、4は混晶率xを約0.9から
約0.85まで変化させ、同時に窒素原子を零から所
望の濃度まで徐々に増加させた厚さ約17μのx変
化層、5はxが約0.85と一定かつ窒素原子が所望
の濃度に添加された厚さ約30μのx一定層であ
る。前記x変化層4への窒素原子の添加は、同層
の始めから行うかまたは途中から行つてもよい。 これによりx一定層を厚くすることなく結晶品
質が改善され、発光ダイオード特性の顕著な向上
をはかることができる。 本発明において、混晶率x一定層のxの値は
0.4以上1未満の間で選ぶことができるが、xが
0.4未満では直接遷移型発光メカニズムによる赤
色発光であり、アイソエレクトロニツク・トラツ
プによるエキシトン発光は行われないので窒素原
子の添加は不要となる。 混晶率xが0.4以上1未満の範囲では、窒素原
子の添加が必要で、これがないとこれからつくら
れる発光ダイオードの発光強度は実用的に充分な
ものではない。このように混晶率xを0.4以上1
未満の範囲で選ぶことによつて発光スペクトルを
赤色から緑色まで任意に選ぶことができる。 次に実施例および比較例をあげて本発明を説明
するが、ここにあげた実施例によつて本発明が限
定されるものではない。 実施例 下記の方法により、第1図aおよび第1図bに
示す構造の黄色発光ダイオード用GaAs1-xPxエピ
タキシヤルウエーハを製造した。テルル(Te)
を2.5x1017原子/cm3添加した結晶方位<100>の
GaP単結晶棒を、(100)より<110>の方向に5゜
偏位させて厚さ約350μにスライスし、通常の化
学エツチングと機械化学研摩を施して、厚さ約
300μのGaP鏡面ウエーハを得、これを基板とし
て用いた。 また、反応ガスとしては、水素(H2)、H2
釈した濃度50ppmの硫化水素(H2S n型不純
物)、H2希釈の1%砒化水素(AsH3)、H2希釈
の10%の燐化水素(PH3)、高純度塩化水素
(HCl)および高純度アンモニアガス(NH3)を
使用した(以後上記ガスを各々H2、H2S/H2、A
sH/H、PH3/H2、HClおよびNH3と略記す
る)。まず縦型石英製反応機内の所定の場所に洗
浄した前記GaP単結晶基板と高純度Gaを収容し
た石英容器とをセツトした。 反応機内に高純度窒素ガス(N2)、つづいてキ
ヤリアガスとしての高純度水素ガス(H2)を導
入して機内を充分に置換した後、昇温を始めた、
上記GaP基板領域の温度が880℃に達したならば、
その温度をさらに10分間保持した後、黄色発光ダ
イオード用GaAs1-xPxエピタキシヤル膜の気相成
長を以下の手順により開始した。 まず始めに、H2S/H2を毎分10c.c.の流量で導入
し、他方HClを毎分58c.c.の流量で導入して石英容
器内のGaと反応させGaClを形成し、同時に導入
した流量が毎分250c.c.のPH3/H2とによりGaP単
結晶基板1上に厚さ約5μのGaPエピタキシヤル
層2を成長させた。 次に上記層2上に、x変化層を次の方法により
エピタキシヤル成長させた。 最初に前記H2S/H2、HClおよびPH3/H2の毎
分の流量を各々10c.c.、58c.c.および250c.c.に保ちな
がら、、AsH3/H2の流量を毎分0c.c.から170c.c.ま
で徐々に変化させて、混晶率xが1から約0.9ま
で変化する厚さ約18μのx変化層3を形成した。
AsH/Hの流量が毎分0c.c.から170c.c.に変化
する
間、基板領域の温度を880℃から820℃に徐々に低
下させた。以後この基板領域の温度は全エピタキ
シヤル膜成長終了まで820℃に固定した。つぎに
S/H、HClおよびPH3/H2の流量を各々毎分
10c.c.、58c.c.および250c.c.に保ちながら、AsH3/H2
の流量を毎分170c.c.から260c.c.まで徐々に増加させ
(この間xが約0.9から約0.85まで変化)、同時に
NH3の流量も毎分0c.c.から400c.c.まで徐々に増加
させ、窒素添加量を増しながら厚さ約17μの変化
層4を形成した。 最後にH2S/H2、HCl、PH3/H2、AsH3/H2
よびNH3の流量を各々毎分10c.c.、58c.c.、250c.c.、
260c.c.および400c.c.に固定して所望の濃度N1を保
つよう窒素原子を添加した厚さ約30μのx一定層
5を形成し、黄色発光ダイオード用間接遷移型
GaAs1-xPxエピタキシヤル膜、すなわちGaAs0.15
P0.85エピタキシヤル膜の成長を終了した。 比較例 下記の方法により、第2図aおよび第2図bに
示す構造の従来技術による黄色発光ダイオード用
GaAs1-xPxエピタキシヤルウエーハを製造した。 実施例と同じ方法で、GaP単結晶基板11上
に、GaPエピタキシヤル層12、x変化層13
(実施例の3、4に相当する。ただし、窒素原子
は添加しない。)を成長させた後、H2S/H2
HCl、PH3/H2、およびAsH3/H2の流量を各々毎
分10c.c.、58c.c.、250c.c.および260c.c.に固定し、厚

約10μのx一定層14を成長させた。最後にH2S/
、HCl、PH3/H2、およびAsH3/H2の流量を
各々毎分10c.c.、58c.c.、250c.c.および260c.c.に保ち

がらNH3の流量を毎分0c.c.から400c.c.に増加し、
ついでH2S/H2、HCl、PH3/H2、AsH3/H2およ
びNH3の流量を各々毎分10c.c.、58c.c.、250c.c.、
260c.c.および400c.c.に固定して、所望の濃度N2
窒素原子を添加し厚さ約25μの窒素添加x一定層
15を形成し、黄色発光ダイオード用間接遷移型
GaAs0.15P0.85エピタキシヤルウエーハを製造し
た。 つぎに、前記実施例および比較例に示す方法に
よつて得た黄色発光ダイオード用エピタキシヤル
ウエーハにZn拡散を行つてP−N接合を形成し、
黄色発光ダイオードを製作した。こうして得た実
施例、比較例による黄色発光ダイオード(樹脂コ
ートなし)の発光輝度(ミリカンデラmcd)は次
表の如くであつた。
INDUSTRIAL APPLICATION FIELD The present invention relates to a method for vapor phase growth of an indirect transition type ternary compound semiconductor gallium arsenide phosphide (GaAs 1-x P x ) epitaxial film for light emitting diodes. Conventional technology Conventionally, yellow light emitting diodes (center emission wavelength 5850
), orange light emitting diode (center emission wavelength 6300Å)
Epitaxial wafers for such applications include a GaP layer on a GaP single crystal substrate, and a GaAs 1-x P After epitaxially growing a layer with variable ratio x (hereinafter referred to as x variable layer) and obtaining a layer with a desired mixed crystal ratio x constant, epitaxial growth is continued with the mixed crystal ratio x, and at the same time a constant concentration of nitrogen is Add atoms. Then, a method is used in which epitaxial growth is stopped when the layer having a constant mixed crystal ratio x reaches a desired thickness. Light emitting diodes made from wafers using such a method did not provide satisfactory luminous intensity. A method for epitaxially growing a GaAs 1-x P x film using this conventional method will be explained below with reference to the drawings. Second
Figure a shows a cross section of a GaAs 1-x P x epitaxial wafer for yellow light emitting diodes, and Figure 2 b shows an example of its nitrogen concentration distribution. 11 is a GaP single crystal substrate with a thickness of about 300μ, 12
13 is a GaP epitaxial layer with a thickness of approximately 5 μm, and 13 is a crystal amorphous strain relaxation technique in which the mixed crystal ratio x is changed from 1 to approximately
x-varied layer with a thickness of about 35 μ varied to 0.85, 14
and 15 is a constant x layer where x keeps about 0.85.
However, 14 is a constant layer having a thickness of approximately 10 μm, and 15 is a constant layer having a thickness of approximately 25 μm to which nitrogen atoms are added. Problems to be Solved by the Invention However, in this method, nitrogen atoms are added to a desired concentration of GaAs 1-x P Therefore, the emission intensity was not necessarily satisfactory. Means for Solving the Problems The present invention aims to solve these drawbacks by solving the following facts (1): When nitrogen atoms are added to a GaAs 1-x P x crystal, crystal defects rapidly increase in the initial stage of addition; , decreases as the growth reaction progresses, that is, as the epitaxial layer becomes thicker. (2) As the GaAs 1-x P x epitaxial layer becomes thicker,
The difference in lattice constant between the GaP substrate and the SaAs 1-x P x crystal increases the warpage of the epitaxial wafer and at the same time deteriorates the crystal quality of the epitaxial film, so there is a limit to the thickness of the epitaxial layer. This is what we arrived at as a result of various studies. It consists of gallium arsenide phosphide (GaAs 1-x
In a method for vapor phase growth of an epitaxial film consisting of P ), and the addition of nitrogen atoms, which will become an isoelectronic trap, is started from any point in the layer consisting of the same component as the substrate and the mixed crystal ratio x variable layer. This is a method for growing a gallium phosphide arsenide epitaxial film, characterized in that the ratio x is set to a desired value near a conversion point of a constant layer. This will be explained in detail below with reference to the drawings. Figure 1a is for a yellow light emitting diode according to the present invention.
FIG. 1b shows an example of the nitrogen concentration distribution in a cross section of a GaAs 1-x P x epitaxial wafer. 1 is a GaP single crystal substrate with a thickness of about 300 μm, 2 is a GaP epitaxial layer with a thickness of about 5 μm, 3 is an x-varied layer with a thickness of about 18 μm in which the crystallinity x is varied from 1 to about 0.9, and 4 is a mixed layer. An x-variable layer with a thickness of about 17μ in which the crystallinity x is changed from about 0.9 to about 0.85 and at the same time the nitrogen atoms are gradually increased from zero to the desired concentration. x constant layer of thickness approximately 30 μm doped to a concentration of . Nitrogen atoms may be added to the x-change layer 4 from the beginning or in the middle of the layer. As a result, the crystal quality is improved without increasing the thickness of the constant x layer, and the characteristics of the light emitting diode can be significantly improved. In the present invention, the value of x of the mixed crystal ratio x constant layer is
You can choose between 0.4 or more and less than 1, but if x
If it is less than 0.4, red light is emitted by a direct transition type light emitting mechanism, and no exciton light is emitted by isoelectronic traps, so there is no need to add nitrogen atoms. When the mixed crystal ratio x is in the range of 0.4 or more and less than 1, it is necessary to add nitrogen atoms, and without this, the light emitting intensity of the light emitting diode produced from now on will not be practically sufficient. In this way, the mixed crystal ratio x is set to 0.4 or more and 1
By selecting within the range below, the emission spectrum can be arbitrarily selected from red to green. Next, the present invention will be explained with reference to Examples and Comparative Examples, but the present invention is not limited to the Examples given here. EXAMPLE A GaAs 1-x P x epitaxial wafer for a yellow light emitting diode having the structure shown in FIGS. 1a and 1b was manufactured by the following method. Tellurium (Te)
of crystal orientation <100> with addition of 2.5x10 17 atoms/ cm3
A GaP single crystal rod was sliced to a thickness of approximately 350μ with a 5° deviation in the <110> direction from (100), and was then subjected to conventional chemical etching and mechanochemical polishing to a thickness of approximately 350μ.
A 300μ GaP mirror wafer was obtained and used as a substrate. In addition, the reaction gases include hydrogen (H 2 ), hydrogen sulfide diluted with H 2 at a concentration of 50 ppm (H 2 S n-type impurity), 1% hydrogen arsenide (AsH 3 ) diluted with H 2 , and 10% diluted with H 2 Hydrogen phosphide (PH 3 ), high purity hydrogen chloride (HCl) and high purity ammonia gas (NH 3 ) were used (hereinafter, the above gases were converted into H 2 , H 2 S/H 2 , A
abbreviated as sH 3 /H 2 , PH 3 /H 2 , HCl and NH 3 ). First, the cleaned GaP single crystal substrate and a quartz container containing high-purity Ga were set at a predetermined location in a vertical quartz reactor. After introducing high-purity nitrogen gas (N 2 ) into the reactor, followed by high-purity hydrogen gas (H 2 ) as a carrier gas to sufficiently replace the inside of the reactor, the temperature began to rise.
If the temperature of the above GaP substrate region reaches 880℃,
After holding the temperature for an additional 10 minutes, vapor phase growth of a GaAs 1-x P x epitaxial film for a yellow light emitting diode was started using the following procedure. First, H 2 S/H 2 was introduced at a flow rate of 10 c.c. per minute, while HCl was introduced at a flow rate of 58 c.c. per minute to react with Ga in the quartz container to form GaCl. A GaP epitaxial layer 2 having a thickness of approximately 5 μm was grown on the GaP single crystal substrate 1 by simultaneously introducing PH 3 /H 2 at a flow rate of 250 c.c./min. Next, an x variable layer was epitaxially grown on the layer 2 by the following method. While initially maintaining the per minute flow rates of H 2 S/H 2 , HCl and PH 3 /H 2 at 10 c.c., 58 c.c. and 250 c.c., respectively, the flow rate of AsH 3 /H 2 was gradually changed from 0 c.c. to 170 c.c. per minute to form an x-variable layer 3 with a thickness of about 18 μm in which the mixed crystal ratio x varied from 1 to about 0.9.
The temperature of the substrate region was gradually decreased from 880<0>C to 820<0>C while the AsH3 / H2 flow rate was varied from 0 c.c. to 170 c.c. per minute. Thereafter, the temperature of this substrate region was fixed at 820° C. until the entire epitaxial film growth was completed. Next, the flow rates of H 2 S/H 2 , HCl and PH 3 /H 2 were adjusted per minute.
AsH 3 /H 2 while keeping at 10c.c., 58c.c. and 250c.c.
Gradually increase the flow rate from 170 c.c. to 260 c.c. per minute (during this time x changes from about 0.9 to about 0.85), and at the same time
The flow rate of NH 3 was also gradually increased from 0 c.c. to 400 c.c. per minute, and a variable layer 4 having a thickness of about 17 μm was formed while increasing the amount of nitrogen added. Finally, the flow rates of H 2 S/H 2 , HCl, PH 3 /H 2 , AsH 3 /H 2 and NH 3 were set to 10 c.c., 58 c.c., and 250 c.c. per minute, respectively.
A fixed layer 5 of approximately 30 μm in thickness is formed by adding nitrogen atoms to maintain the desired concentration N 1 at 260 c.c. and 400 c.c.
GaAs 1-x P x epitaxial film, i.e. GaAs 0.15
P 0.85 epitaxial film growth was completed. Comparative Example A yellow light emitting diode according to the prior art having the structure shown in FIGS. 2a and 2b was prepared by the following method.
GaAs 1-x Px epitaxial wafers were fabricated. A GaP epitaxial layer 12 and an x-change layer 13 are formed on a GaP single crystal substrate 11 using the same method as in the example.
(corresponds to Examples 3 and 4. However, nitrogen atoms are not added.) After growing H 2 S/H 2 ,
The flow rates of HCl, PH 3 /H 2 and AsH 3 /H 2 were fixed at 10 c.c., 58 c.c., 250 c.c. and 260 c.c. per minute, respectively, and the thickness of approximately 10μ was constant. Layer 14 was grown. Finally H 2 S/
The flow rate of NH 3 was maintained at 10 c.c. , 58 c.c. , 250 c.c. and 260 c.c. per minute, respectively . Increased from 0 c.c. to 400 c.c. per minute,
Then, the flow rates of H 2 S/H 2 , HCl, PH 3 /H 2 , AsH 3 /H 2 and NH 3 were set to 10 c.c., 58 c.c., and 250 c.c. per minute, respectively.
and fixed at 260 c.c. and 400 c.c., add nitrogen atoms to a desired concentration of N 2 to form a nitrogen-doped x constant layer 15 with a thickness of about 25 μm, and form an indirect transition type for yellow light emitting diode.
GaAs 0.15 P 0.85 epitaxial wafers were manufactured. Next, Zn was diffused into the epitaxial wafer for a yellow light emitting diode obtained by the method shown in the above Examples and Comparative Examples to form a P-N junction.
I made a yellow light emitting diode. The luminance (millicandela mcd) of the yellow light emitting diodes (without resin coating) obtained in Examples and Comparative Examples thus obtained were as shown in the following table.

【表】 平均値である。
以上は基板として燐化ガリウム(GaP)を使つ
た場合について述べたが、砒化ガリウム
(GaAs)を使つてもよい。 発明の効果 表に示す如く、本発明の方法により得られる
GaAs1-xPxエピタキシヤル膜を用いた発光ダイオ
ードは、従来の方法よるものに比べ約30%の輝度
向上が達成された。したがつて本発明により製造
したGaAs1-xPxエピタキシヤル膜を有するウエー
ハは、発光ダイオード用材料として産業上有為な
ものである。
[Table] Average values.
The case where gallium phosphide (GaP) is used as the substrate has been described above, but gallium arsenide (GaAs) may also be used. Effects of the invention As shown in the table, the results obtained by the method of the present invention
Light-emitting diodes using GaAs 1-x P x epitaxial films achieved about 30% brightness improvement compared to conventional methods. Therefore, the wafer having the GaAs 1-x P x epitaxial film manufactured according to the present invention is industrially useful as a material for light emitting diodes.

【図面の簡単な説明】[Brief explanation of drawings]

第1図aは本発明による黄色発光ダイオード用
GaAs1-xPxエピタキシヤルウエーハを例示した断
面図、第1図bはそのウエーハの窒素濃度分布を
示す説明図を示し、第2図aは従来法による黄色
発光ダイオード用GaAs1-xPxエピタキシヤルウエ
ーハの断面図、第2図bはそのウエーハの窒素濃
度分布を示す説明図である。 1,11…GaP単結晶基板、2,12…GaPエ
ピタキシヤル層、3,13…x変化層、4…窒素
添加x変化層、14…x一定層、5,15…窒素
添加x一定層、N1,N2…所望の窒素濃度値。
Figure 1a is for a yellow light emitting diode according to the present invention.
A cross-sectional view illustrating a GaAs 1-x P x epitaxial wafer, FIG. 1b shows an explanatory diagram showing the nitrogen concentration distribution of the wafer, and FIG. FIG. 2b, which is a cross-sectional view of an x- epitaxial wafer, is an explanatory diagram showing the nitrogen concentration distribution of the wafer. 1, 11... GaP single crystal substrate, 2, 12... GaP epitaxial layer, 3, 13... x variable layer, 4... nitrogen-doped x variable layer, 14... x constant layer, 5, 15... nitrogen-doped x constant layer, N 1 , N 2 ... Desired nitrogen concentration value.

Claims (1)

【特許請求の範囲】 1 単結晶基板表面上に、燐化砒化ガリウム
(GaAs1-xPx)よりなるエピタキシヤル膜を気相
成長させる方法において、該エピタキシヤル膜を
基板と同一成分からなる層、混晶率x変化層、混
晶率x一定層(ただし、0.4≦x<1)の順に成
長させると共に、アイソエレクトロニツク・トラ
ツプとなる窒素原子の添加を基板と同一成分から
なる層および混晶率x変化層の任意の点から開始
し、混晶率x変化層と混晶率x一定層の変換点の
近傍で所望の値となるようにすることを特徴とす
る燐化砒化ガリウムエピタキシヤル膜の成長方
法。 2 窒素原子の添加を所望の濃度まで徐々に増加
して行うことを特徴とする特許請求の範囲第1項
記載の方法。 3 単結晶基板は燐化ガリウム(GaP)または砒
化ガリウム(GaAs)より選ばれることを特徴と
する特許請求の範囲第1項または第2項記載の方
法。
[Claims] 1. A method for growing an epitaxial film made of gallium phosphide arsenide (GaAs 1-x P At the same time, the layer consisting of the same component as the substrate and the layer with the same composition as the substrate are grown in the following order: a layer with variable crystal content x, a layer with constant mixed crystal content x (however, 0.4≦x<1). Gallium arsenide phosphide characterized by starting from an arbitrary point in the mixed crystal ratio x variable layer and adjusting to a desired value near the conversion point between the mixed crystal ratio x variable layer and the mixed crystal ratio x constant layer. Method of growing epitaxial films. 2. The method according to claim 1, characterized in that nitrogen atoms are added gradually to a desired concentration. 3. The method according to claim 1 or 2, characterized in that the single crystal substrate is selected from gallium phosphide (GaP) or gallium arsenide (GaAs).
JP22495684A 1984-10-25 1984-10-25 Method for growing epitaxial film of gallium phosphide and arsenide Granted JPS61106497A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22495684A JPS61106497A (en) 1984-10-25 1984-10-25 Method for growing epitaxial film of gallium phosphide and arsenide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22495684A JPS61106497A (en) 1984-10-25 1984-10-25 Method for growing epitaxial film of gallium phosphide and arsenide

Publications (2)

Publication Number Publication Date
JPS61106497A JPS61106497A (en) 1986-05-24
JPH0463040B2 true JPH0463040B2 (en) 1992-10-08

Family

ID=16821823

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22495684A Granted JPS61106497A (en) 1984-10-25 1984-10-25 Method for growing epitaxial film of gallium phosphide and arsenide

Country Status (1)

Country Link
JP (1) JPS61106497A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3792817B2 (en) * 1997-01-06 2006-07-05 信越半導体株式会社 GaAsP epitaxial wafer and manufacturing method thereof
US9524869B2 (en) 2004-03-11 2016-12-20 Epistar Corporation Nitride-based semiconductor light-emitting device
US7928424B2 (en) 2004-03-11 2011-04-19 Epistar Corporation Nitride-based light-emitting device
US8562738B2 (en) 2004-03-11 2013-10-22 Epistar Corporation Nitride-based light-emitting device
KR102654957B1 (en) * 2016-03-30 2024-04-05 소니그룹주식회사 Photoelectric conversion elements and photoelectric conversion devices

Also Published As

Publication number Publication date
JPS61106497A (en) 1986-05-24

Similar Documents

Publication Publication Date Title
US4378259A (en) Method for producing mixed crystal wafer using special temperature control for preliminary gradient and constant layer deposition suitable for fabricating light-emitting diode
Stringfellow Materials issues in high-brightness light-emitting diodes
JPS6057214B2 (en) Method of manufacturing electroluminescent materials
US4216484A (en) Method of manufacturing electroluminescent compound semiconductor wafer
US4252576A (en) Epitaxial wafer for use in production of light emitting diode
JP2773597B2 (en) Semiconductor light emitting device and method of manufacturing the same
US4987472A (en) Compound semiconductor epitaxial wafer
US5445897A (en) Epitaxial wafer and process for producing the same
JPH0463040B2 (en)
JP3146874B2 (en) Light emitting diode
US4983249A (en) Method for producing semiconductive single crystal
US5751026A (en) Epitaxial wafer of gallium arsenide phosphide
US6057592A (en) Compound semiconductor epitaxial wafer
JPH0760903B2 (en) Epitaxial wafer and manufacturing method thereof
JPS60214524A (en) Growing method of gallium phosphide arsenide epitaxial film
JPH04328823A (en) Manufacture of epitaxial wafer for light emitting diode
Wright et al. The growth of ZnSe and other wide-bandgap II-VI semiconductors by MOCVD
JP2005252294A (en) Light emitting device
JP3097587B2 (en) Epitaxial wafer for light emitting semiconductor device
JPS6158971B2 (en)
USRE29648E (en) Process for the preparation of electroluminescent III-V materials containing isoelectronic impurities
JPH04328878A (en) Manufacture of light emitting diode epitaxial wafer
JP3116415B2 (en) Semiconductor wafer and method of manufacturing the same
JPH079883B2 (en) Method of manufacturing epitaxial wafer
JP2804093B2 (en) Optical semiconductor device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees