JPH0964419A - Iii-v compound semiconductor and light emitting element - Google Patents

Iii-v compound semiconductor and light emitting element

Info

Publication number
JPH0964419A
JPH0964419A JP21886195A JP21886195A JPH0964419A JP H0964419 A JPH0964419 A JP H0964419A JP 21886195 A JP21886195 A JP 21886195A JP 21886195 A JP21886195 A JP 21886195A JP H0964419 A JPH0964419 A JP H0964419A
Authority
JP
Japan
Prior art keywords
light emitting
layer
compound semiconductor
group
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21886195A
Other languages
Japanese (ja)
Inventor
Yasushi Iechika
泰 家近
Yoshinobu Ono
善伸 小野
Tomoyuki Takada
朋幸 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP21886195A priority Critical patent/JPH0964419A/en
Publication of JPH0964419A publication Critical patent/JPH0964419A/en
Pending legal-status Critical Current

Links

Landscapes

  • Led Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a III-V compound semiconductor having high luminance and light emitting performance and a light emitting element of a visible or ultraviolet region using the same. SOLUTION: A semiconductor element of a laminated structure that a light emitting layer 5 is sandwiched between two layers 4 and 6 having larger band gaps than that of the layer 5 and further the outside is sandwiched between an n-type layer 3 and a P-type layer 7 of III-V compound semiconductor represented by the general formula Inx Gay Alz N (where x+y+z=1, 0<=x<=1, 0<=y<=1, 0.002<=z<=0.10). This is laminated on a substrate 1 via a buffer layer 2 to form a light emitting element.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は3−5族化合物半導
体及びこれを用いた可視又は紫外線領域における発光素
子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a Group 3-5 compound semiconductor and a light emitting device using the same in the visible or ultraviolet region.

【0002】[0002]

【従来の技術】従来、青色の発光ダイオード(以下、L
EDと記すことがある。)として一般式Inx Gay
z N(ただし、x+y+z=1、0≦x≦1、0≦y
≦1、0≦z≦1)で表される3−5族化合物半導体を
用いたものが利用されている。該化合物半導体は直接遷
移型であることから発光効率が高いこと、InN混晶比
(xの値)により黄色から紫、紫外線領域までの波長で
発光可能であることから特に短波長発光素子用材料とし
て有用である。
2. Description of the Related Art Conventionally, a blue light emitting diode (hereinafter referred to as L
Sometimes referred to as ED. ) As a general formula In x Ga y A
l z N (where x + y + z = 1, 0 ≦ x ≦ 1, 0 ≦ y
What uses the 3-5 group compound semiconductor represented by <1 and 0 <z <1) is utilized. Since the compound semiconductor is a direct transition type, it has a high luminous efficiency, and can emit light in a wavelength range from yellow to violet and ultraviolet depending on the InN mixed crystal ratio (value of x). Is useful as

【0003】発光素子の発光効率を高める方法として、
発光層がp型とn型の半導体層の間に配置され、かつ発
光層の両側に発光層よりも大きなエネルギーギャップを
有する2つの層が接してなる構造、いわゆるダブルヘテ
ロ構造を利用することが広く知られている。ダブルヘテ
ロ構造の素子の性能はp型及びn型層の電気的特性及び
結晶品質から大きな影響を受ける。特にp型の化合物半
導体はp型ドーパントの活性化率が低いので、発光素子
に実用上必要とされる1018cm-3以上の高いp型キャ
リア濃度を得るためには、1019cm-3程度又はそれ以
上の高濃度にp型ドーパントをドープしなければならな
い。しかしながら、このような高濃度ドープを行なうこ
とによって結晶品質の低下を招く場合があった。また、
該化合物半導体に一般的に用いられるp型ドーパントで
あるMgやZn等の2族元素は結晶中で拡散する傾向が
強く、またこれらのドーパントの原料は成長装置との反
応性が高いため、接合界面での急峻なドーピングプロフ
ァイルを形成することが難しかった。これらの原因によ
り、該化合物半導体を用いて発光効率の高い発光素子を
作製することが困難であるという問題があった。
As a method of increasing the luminous efficiency of a light emitting element,
A so-called double hetero structure in which a light emitting layer is disposed between a p-type semiconductor layer and an n-type semiconductor layer and two layers having an energy gap larger than that of the light emitting layer are in contact with each other on both sides of the light emitting layer can be used. Widely known. The performance of the double heterostructure device is greatly affected by the electrical characteristics and crystal quality of the p-type and n-type layers. In particular, since the p-type compound semiconductor has a low activation rate of the p-type dopant, in order to obtain a high p-type carrier concentration of 10 18 cm −3 or more which is practically required for a light emitting device, 10 19 cm −3 is required. The p-type dopant must be doped to a high concentration, to a degree or higher. However, such high-concentration doping may cause deterioration of crystal quality. Also,
Group 2 elements such as Mg and Zn, which are p-type dopants generally used for the compound semiconductor, have a strong tendency to diffuse in the crystal, and the raw materials of these dopants have high reactivity with the growth device, so that they are bonded. It was difficult to form a steep doping profile at the interface. Due to these causes, there is a problem that it is difficult to manufacture a light emitting device having high luminous efficiency using the compound semiconductor.

【0004】[0004]

【発明が解決しようとする課題】本発明の目的は、発光
素子の輝度、発光効率を高めることが可能な3−5族化
合物半導体及びこれを用いた可視又は紫外線領域におけ
る発光素子を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a Group 3-5 compound semiconductor capable of enhancing the brightness and luminous efficiency of a light emitting device and a light emitting device using the same in the visible or ultraviolet region. It is in.

【0005】[0005]

【課題を解決するための手段】本発明者らは、これらの
問題をみて3−5族化合物半導体を用いた発光素子につ
いて種々検討の結果、特定のAlN混晶比のp型3−5
族化合物半導体層を用いると、輝度及び発光効率が向上
することを見いだし本発明に至った。
In view of these problems, the present inventors have made various investigations on a light emitting device using a Group 3-5 compound semiconductor, and as a result, p-type 3-5 having a specific AlN mixed crystal ratio.
It has been found that the use of the group compound semiconductor layer improves the brightness and the luminous efficiency, and has reached the present invention.

【0006】すなわち、本発明は[1]p型の層及びn
型の層を有し、発光層が両層の間に配置され、発光層の
両側に発光層よりも大きなバンドギャップを有する2つ
の層が接してなる積層構造を含む発光素子用3−5族化
合物半導体において、該p型の層が、一般式Inx Ga
y Alz N(ただし、x+y+z=1、0≦x≦1、0
≦y≦1、0.0001≦z≦0.10)で表される3
−5族化合物半導体であり、かつp型ドーパントがドー
プされてなることを特徴とする発光素子用3−5族化合
物半導体に係るものである。また、本発明は[2]p型
の層が複数の層からなり、該複数の層のうちn型の層に
最も近い層が、一般式Inx Gay Alz N(ただし、
x+y+z=1、0≦x≦1、0≦y≦1、0.000
1≦z≦0.10)で表される3−5族化合物半導体で
あることを特徴とする[1]記載の発光素子用3−5族
化合物半導体に係るものである。更に、本発明は[3]
前記[1]又は[2] 記載の発光素子用3−5族化合物
半導体を用いたことを特徴とする発光素子に係るもので
ある。以下、本発明を詳細に説明する。
That is, the present invention relates to [1] a p-type layer and n.
3-5 group for a light-emitting device including a layered structure having a layer of a type, a light-emitting layer being disposed between both layers, and two layers having a bandgap larger than that of the light-emitting layer being in contact with both sides of the light-emitting layer In a compound semiconductor, the p-type layer has the general formula In x Ga
y Al z N (where x + y + z = 1, 0 ≦ x ≦ 1, 0
≦ y ≦ 1, 0.0001 ≦ z ≦ 0.10) 3
The present invention relates to a 3-5 group compound semiconductor for a light emitting device, which is a -5 group compound semiconductor and is doped with a p-type dopant. Further, in the present invention, the [2] p-type layer is composed of a plurality of layers, and the layer closest to the n-type layer among the plurality of layers is represented by the general formula In x Ga y Al z N (however,
x + y + z = 1, 0 ≦ x ≦ 1, 0 ≦ y ≦ 1, 0.000
The present invention relates to the 3-5 group compound semiconductor for a light emitting device according to [1], which is a 3-5 group compound semiconductor represented by 1 ≦ z ≦ 0.10). Furthermore, the present invention provides [3]
The present invention relates to a light emitting device using the 3-5 group compound semiconductor for a light emitting device according to the above [1] or [2]. Hereinafter, the present invention will be described in detail.

【0007】[0007]

【発明の実施の形態】3−5族化合物半導体の製造方法
としては、分子線エピタキシー(以下、MBEと記すこ
とがある。)法、有機金属気相成長(以下、MOVPE
と記すことがある。)法、ハイドライド気相成長(以
下、HVPEと記すことがある。)法などが用いられて
いる。このうちMOVPE法とは、常圧又は減圧中に置
かれた基板を加熱して、3族元素を含む有機金属化合物
と5族元素を含む原料を気相状態で供給して、基板上で
熱分解反応をさせ、化合物半導体膜を成長させる方法で
ある。該MOVPE法は大面積であって均一で高品質な
該3−5族化合物半導体を成長できる点で有用である。
BEST MODE FOR CARRYING OUT THE INVENTION As a method for producing a Group 3-5 compound semiconductor, a molecular beam epitaxy (hereinafter sometimes referred to as MBE) method, a metal organic chemical vapor deposition (hereinafter MOVPE) method.
It may be written. ) Method, hydride vapor phase epitaxy (hereinafter sometimes referred to as HVPE) method, and the like. Among them, the MOVPE method is a method of heating a substrate placed under normal pressure or reduced pressure, supplying an organometallic compound containing a Group 3 element and a raw material containing a Group 5 element in a vapor phase state, and heating the substrate. This is a method of causing a decomposition reaction to grow a compound semiconductor film. The MOVPE method is useful in that it can grow the uniform and high-quality Group 3-5 compound semiconductor over a large area.

【0008】MOVPE法による本発明の発光素子用3
−5族化合物半導体の製造には、以下のような原料を用
いることができる。3族原料としては、トリメチルガリ
ウム[(CH3 3 Ga、以下TMGと記すことがあ
る。]、トリエチルガリウム[(C2 5 3 Ga、以
下TEGと記すことがある。]等の一般式R1 2 3
Ga(ここでR1 、R2 、R3 は低級アルキル基を示
す。)で表されるトリアルキルガリウム;トリメチルア
ルミニウム[(CH3 3 Al]、トリエチルアルミニ
ウム[(C2 5 3 Al、以下TEAと記すことがあ
る。]、トリイソブチルアルミニウム[(i−C
4 9 3 Al]等の一般式R1 2 3 Al(ここで
1 、R2 、R3 は前記の定義と同じである。)で表さ
れるトリアルキルアルミニウム;トリメチルアミンアラ
ン[(CH3 3 N:AlH3 ];トリメチルインジウ
ム[(CH3 3 In、以下TMIと記すことがあ
る。]、トリエチルインジウム[(C2 5 3 In]
等の一般式R1 2 3 In(ここでR1 、R2 、R3
は前記の定義と同じである。)で表されるトリアルキル
インジウム等が挙げられる。これらは単独又は混合して
用いられる。
3 for light emitting device of the present invention by MOVPE method
-The following raw materials are used to manufacture Group 5 compound semiconductors:
Can be. As a Group 3 raw material
Umm [(CHThree)ThreeGa, sometimes referred to as TMG
You. ], Triethylgallium [(C2HFive)ThreeGa, less
Sometimes referred to as a lower TEG. General formula R such as1R2RThree
Ga (where R1, R2, RThreeIs a lower alkyl group
You. ) Trialkylgallium represented by
Luminium [(CHThree)ThreeAl], triethylaluminium
Umm [(C2HFive)ThreeAl, sometimes referred to as TEA below
You. ], Triisobutylaluminum [(i-C
FourH9) ThreeAl] etc.1R2RThreeAl (here
R1, R2, RThreeIs the same as defined above. )
Trialkyl aluminum; trimethylamine ara
[[CHThree)ThreeN: AlHThree]; Trimethylindiu
Mu [(CHThree)ThreeIn, sometimes referred to as TMI below
You. ], Triethylindium [(C2HFive)ThreeIn]
General formula R such as1R2RThreeIn (where R1, R2, RThree
Is the same as defined above. ) Trialkyl represented by
Examples include indium and the like. These can be used alone or as a mixture
Used.

【0009】次に、5族原料としては、アンモニア、ヒ
ドラジン、メチルヒドラジン、1、1−ジメチルヒドラ
ジン、1、2−ジメチルヒドラジン、t−ブチルアミ
ン、エチレンジアミンなどが挙げられる。これらは単独
又は混合して用いられる。これらの原料のうち、アンモ
ニアとヒドラジンは分子中に炭素原子を含まないため、
半導体中への炭素の汚染が少なく好適である。
Next, examples of the Group 5 raw materials include ammonia, hydrazine, methylhydrazine, 1,1-dimethylhydrazine, 1,2-dimethylhydrazine, t-butylamine, ethylenediamine and the like. These are used alone or in combination. Of these raw materials, ammonia and hydrazine do not contain carbon atoms in the molecule,
It is suitable because it has less carbon contamination in the semiconductor.

【0010】該3−5族化合物半導体に用いるp型ドー
パントとして、Mg、Cd、Zn、Hg、Be等が挙げ
られるが、このなかでは低抵抗のp型の化合物半導体を
つくりやすいMgが好ましい。Mgドーパントの原料と
しては、ビスシクロペンタジエニルマグネシウム、ビス
メチルシクロペンタジエニルマグネシウム、ビスエチル
シクロペンタジエニルマグネシウム、ビスn−プロピル
シクロペンタジエニルマグネシウム、ビスi−プロピル
シクロペンタジエニルマグネシウム等の一般式(RC5
4 2 Mg(ここでRは水素又は炭素数1以上4以下
の低級アルキル基を示す。)で表される有機金属化合物
が適当な蒸気圧を有するために好適に用いられる。
Examples of the p-type dopant used for the 3-5 group compound semiconductor include Mg, Cd, Zn, Hg, and Be. Among them, Mg is preferable because it is easy to form a low-resistance p-type compound semiconductor. As a raw material of the Mg dopant, biscyclopentadienyl magnesium, bismethylcyclopentadienyl magnesium, bisethylcyclopentadienyl magnesium, bis n-propylcyclopentadienyl magnesium, bis i-propylcyclopentadienyl magnesium, etc. Of the general formula (RC 5
H 4) 2 Mg (wherein R is suitably used for an organic metal compound is suitable vapor pressure represented by hydrogen or a number of 1 to 4 carbon atoms or less of a lower alkyl group.).

【0011】該3−5族化合物半導体に用いるn型ドー
パントとして、Si、Ge、Oが用いられる。この中
で、低抵抗のn型の化合物半導体がつくりやすく、原料
純度の高いものが得られるSiが好ましい。Siドーパ
ントの原料としては、シラン(SiH4 )、ジシラン
(Si2 6 )などが用いられる。結晶成長用基板とし
ては、サファイア、ZnO、GaAs、Si、SiC、
スピネル(MgAl2 4 )、NGO(NdGaO3
等が好ましいが、特にサファイア基板が透明かつ大面積
で良好な結晶が得られるため好ましい。
Si, Ge and O are used as the n-type dopant used in the Group 3-5 compound semiconductor. Among these, Si is preferable because it is easy to form a low-resistance n-type compound semiconductor and a high-purity starting material is obtained. As a raw material for the Si dopant, silane (SiH 4 ) or disilane (Si 2 H 6 ) is used. Substrates for crystal growth include sapphire, ZnO, GaAs, Si, SiC,
Spinel (MgAl 2 O 4), NGO (NdGaO 3)
Etc. are preferable, but particularly preferable because the sapphire substrate is transparent and a good crystal can be obtained in a large area.

【0012】本発明の発光素子用3−5族化合物半導体
の層構造の例を図1に示す。以下、図1を用いて説明す
る。本発明の発光素子用3−5族化合物半導体の積層構
造は、n型の層3及びp型の層7を有し、発光層5が両
層の間に配置され、発光層の両側に発光層よりも大きな
バンドギャップを有する2つの層が接してなる構造、い
わゆるダブルヘテロ構造である。ダブルヘテロ構造は注
入電荷を発光層に閉じ込める効果があるため、発光効率
を高くできるので有用である。
FIG. 1 shows an example of a layered structure of a 3-5 group compound semiconductor for a light emitting device of the present invention. This will be described below with reference to FIG. The laminated structure of the group 3-5 compound semiconductor for a light emitting device of the present invention has an n-type layer 3 and a p-type layer 7, the light emitting layer 5 is disposed between both layers, and light is emitted on both sides of the light emitting layer. This is a so-called double hetero structure in which two layers having a band gap larger than that of the layers are in contact with each other. The double hetero structure is useful because it has the effect of confining the injected charges in the light emitting layer and can increase the light emission efficiency.

【0013】本発明において、p型の層7が、一般式I
x Gay Alz N(ただし、x+y+z=1、0≦x
≦1、0≦y≦1、0.0001≦z≦0.10)で表
される3−5族化合物半導体であり、かつp型ドーパン
トがドープされてなることを特徴とする。これにより、
発光素子の輝度及び発光効率を向上させることができ
る。これはAlNを混晶成分に入れ、かつ特定の低濃度
とすることにより接合界面での急峻なドーピングプロフ
ァイルが得られるためであると考えられる。なお、一般
式Inx Gay Alz N(ただし、x+y+z=1、0
≦x≦1、0≦y≦1、0.0001≦z≦0.10)
で表される3−5族化合物半導体において、0.000
1≦z≦0.10であることを、AlN混晶比が0.0
1%以上10%以下と記すことがある。x、yの値につ
いても、同様にしてそれぞれInN混晶比、GaN混晶
比の表現で記すことがある。
In the present invention, the p-type layer 7 has the general formula I
n x Ga y Al z N (provided that, x + y + z = 1,0 ≦ x
≤1, 0 ≤ y ≤ 1, 0.0001 ≤ z ≤ 0.10), and is characterized by being doped with a p-type dopant. This allows
The brightness and light emission efficiency of the light emitting element can be improved. It is considered that this is because a steep doping profile at the junction interface can be obtained by adding AlN to the mixed crystal component and setting it to a specific low concentration. In general formula In x Ga y Al z N (provided that, x + y + z = 1,0
≦ x ≦ 1, 0 ≦ y ≦ 1, 0.0001 ≦ z ≦ 0.10)
In the Group 3-5 compound semiconductor represented by
1 ≦ z ≦ 0.10 means that the AlN mixed crystal ratio is 0.0
It may be described as 1% or more and 10% or less. Similarly, the values of x and y may be expressed by the InN mixed crystal ratio and the GaN mixed crystal ratio, respectively.

【0014】AlN混晶比は好ましくは0.05%以上
5%以下、更に好ましくは0.1%以上3%以下であ
る。AlN混晶比が0.01%未満では、本発明の効果
を充分に得ることができない。また、AlN混晶比が1
0%を超えると、バンドギャップが大きくなって高いキ
ャリア濃度のp型結晶を得ることが困難になるので好ま
しくない。本発明の発光素子用3−5族化合物半導体に
おいては、基板1との格子不整合を緩和させるためにバ
ッファー層2をまず成長し、次に成長の容易さから通常
n型の層3を成長し、その上方に発光層5、さらに発光
層の上方にp型層7を成長することが好ましい。LED
の基本的構造としては、n型層3、発光層5及びp型層
の7で充分であるが、発光層とn型層及び/又はp型層
の間にノンドープ層又は低濃度ドープ層をおくことによ
り発光効率を向上できる場合がある。図1の場合、層
4、6がこれに対応する。
The AlN mixed crystal ratio is preferably 0.05% or more and 5% or less, more preferably 0.1% or more and 3% or less. If the AlN mixed crystal ratio is less than 0.01%, the effect of the present invention cannot be sufficiently obtained. Also, the AlN mixed crystal ratio is 1
If it exceeds 0%, the band gap becomes large and it becomes difficult to obtain a p-type crystal having a high carrier concentration, which is not preferable. In the 3-5 group compound semiconductor for a light emitting device of the present invention, the buffer layer 2 is first grown in order to alleviate the lattice mismatch with the substrate 1, and then the n-type layer 3 is usually grown for ease of growth. However, it is preferable to grow the light emitting layer 5 above it and the p-type layer 7 above the light emitting layer. LED
As the basic structure of, the n-type layer 3, the light-emitting layer 5 and the p-type layer 7 are sufficient, but a non-doped layer or a low-concentration doped layer is provided between the light-emitting layer and the n-type layer and / or the p-type layer. In some cases, the luminous efficiency can be improved by setting it. In the case of FIG. 1, layers 4 and 6 correspond to this.

【0015】本発明の発光素子用3−5族化合物半導体
において、効率良く発光層に電荷を閉じ込めるために
は、発光層に接する2つの層のバンドギャップは発光層
のバンドギャップより大きいことを特徴とし、具体的に
は0.1eV以上大きいことが好ましい。さらに好まし
くは0.3eV以上である。
In the 3-5 group compound semiconductor for a light emitting device of the present invention, in order to efficiently confine charges in the light emitting layer, the band gaps of the two layers in contact with the light emitting layer are larger than the band gap of the light emitting layer. Specifically, it is preferable that it is larger by 0.1 eV or more. More preferably, it is 0.3 eV or more.

【0016】図1では、p型の層は1層であるが、ドー
パントの濃度、3族元素の組成比等が異なる複数の層か
らなる積層構造であってもよい。ただし、本発明におけ
るAlNを混晶成分に含むp型ドーパントをドープした
p型の層は、接合界面での急峻なドーピングプロファイ
ルが得られると考えられるため、該積層構造のなかで最
もn型の層に近い場合に本発明の効果が顕著である。本
発明におけるp型ドーパントをドープしたp型の層の層
厚は、30Å以上5μm以下が好ましい。該層の層厚が
30Åよりも小さいと、本発明の効果が顕著でなく、5
μmより大きいと成長に時間がかかり実用的でない。更
に好ましい層厚の範囲は、100Å以上3μm以下、特
に好ましくは200Å以上1μm以下である。
In FIG. 1, the p-type layer is one layer, but it may be a laminated structure composed of a plurality of layers having different dopant concentrations, Group III element composition ratios and the like. However, since the p-type layer doped with the p-type dopant containing AlN in the mixed crystal component in the present invention is considered to have a steep doping profile at the junction interface, it is the most n-type in the laminated structure. The effect of the present invention is remarkable when the layer is close to the layer. The layer thickness of the p-type layer doped with the p-type dopant in the present invention is preferably 30 Å or more and 5 μm or less. If the layer thickness is less than 30Å, the effect of the present invention is not remarkable and 5
If it is larger than μm, it takes a long time to grow and it is not practical. A more preferable range of layer thickness is 100 Å or more and 3 μm or less, and particularly preferably 200 Å or more and 1 μm or less.

【0017】本発明の発光素子用3−5族化合物半導体
に用いられる発光層としては、In x Gay Alz
(ただし、x+y+z=1、0≦x≦1、0≦y≦1、
0≦z≦1)で表される3−5族化合物半導体が有用で
ある。Alを含むものは酸素等の不純物を取り込みやす
く、発光層として用いた場合、発光効率が下がる場合が
ある。このような場合には、発光層としてはAlを含ま
ない一般式Inx Gay N(ただし、x+y=1、0≦
x≦1、0≦y≦1)で表されるものを利用することが
好ましい。上記Alを含まない一般式Inx Gay Nで
表される3−5族化合物半導体からなる発光層の中で
も、InN混晶比が10%以上のものは、バンドギャッ
プを可視部にできるために表示用途に特に有用である。
また、InN混晶比が10%未満のものはバンドギャッ
プを紫外線領域にできるため紫外線発光素子用途に特に
有用である。
Group 3-5 compound semiconductor for light emitting device of the present invention
The light emitting layer used for xGayAlzN
(However, x + y + z = 1, 0 ≦ x ≦ 1, 0 ≦ y ≦ 1,
The group 3-5 compound semiconductor represented by 0 ≦ z ≦ 1) is useful.
is there. Those containing Al easily take in impurities such as oxygen
When used as a light-emitting layer, the luminous efficiency may decrease.
is there. In such a case, the light emitting layer contains Al.
Not general formula InxGayN (however, x + y = 1, 0 ≦
x ≦ 1, 0 ≦ y ≦ 1) can be used.
preferable. The above general formula In not containing AlxGayAt N
In the light-emitting layer composed of the 3-5 group compound semiconductor represented
However, if the InN mixed crystal ratio is 10% or more, the band gap
It is particularly useful for display applications because it can be made visible.
If the InN mixed crystal ratio is less than 10%, the band gap
Since it can be used in the ultraviolet region, it is especially suitable for ultraviolet light emitting device applications.
Useful.

【0018】該化合物半導体の格子定数は、組成により
大きく変化する。特にInNの格子定数はGaN又はA
lNに対して約12%又はそれ以上大きい。このため、
該化合物半導体の各層の組成によっては、層と層との間
の格子定数に大きな差が生じることがある。大きな格子
不整合がある場合、結晶に欠陥が生じる場合があり、結
晶品質を低下させる原因となる。格子不整合による欠陥
の発生を抑えるためには、格子不整合による歪みの大き
さに応じて層の厚さを小さくしなければならない。好ま
しい厚さの範囲は歪みの大きさに依存する。
The lattice constant of the compound semiconductor greatly changes depending on the composition. In particular, the lattice constant of InN is GaN or A
About 12% or more higher than 1N. For this reason,
Depending on the composition of each layer of the compound semiconductor, a large difference may occur in the lattice constant between layers. If there is a large lattice mismatch, defects may occur in the crystal, which causes deterioration of crystal quality. In order to suppress the occurrence of defects due to lattice mismatch, the layer thickness must be reduced according to the magnitude of strain due to lattice mismatch. The preferred thickness range depends on the amount of strain.

【0019】Gay Alz N(ただし、y+z=1、0
≦y≦1、0≦z≦1)で表される3−5族化合物半導
体上にInx Gay Alz N(ただし、x+y+z=
1、0.1≦x≦1、0≦y<1、0≦z<1)で表さ
れる3−5族化合物半導体を積層する場合、Inを含む
層の好ましい厚さは5Å以上500Å以下であり、更に
好ましくは5Å以上90Å以下である。。Inを含む層
の厚さが5Åより小さい場合、発光効率が充分でなくな
る。また500Åより大きい場合、欠陥が発生し、やは
り発光効率が充分でなくなる。更に好ましい厚みの範囲
は5Å以上90Å以下である。
Ga y Al z N (where y + z = 1, 0
≦ y ≦ 1,0 ≦ z 3-5 group compound semiconductor represented by ≦ 1) In x Ga y Al z N ( provided that, x + y + z =
1, 0.1 ≤ x ≤ 1, 0 ≤ y <1, 0 ≤ z <1), when stacking the group 3-5 compound semiconductor, the preferable thickness of the layer containing In is 5 Å or more and 500 Å or less. And more preferably not less than 5Å and not more than 90Å. . When the thickness of the layer containing In is smaller than 5Å, the luminous efficiency becomes insufficient. On the other hand, if it is larger than 500 Å, defects will occur and the luminous efficiency will not be sufficient. A more preferable thickness range is 5Å or more and 90Å or less.

【0020】また、発光層の層厚を小さくすることで、
電荷を高密度に発光層に閉じ込めることができるため、
発光効率を向上させることができる。このため、格子定
数の差が上記の例よりも小さい場合でも、発光層の好ま
しい厚さは5Å以上500Å以下であり、更に好ましく
は5Å以上90Å以下である。発光層の厚さが5Åより
小さい場合、発光効率が充分でなくなる。また500Å
より大きい場合、やはり発光効率が充分でなくなる。発
光層は、発光層として機能する複数の層からなる層であ
ってもよい。具体的に複数の層からなる層が発光層とし
て機能する例としては、2つ以上の発光層がこれよりバ
ンドギャップの大きい層と積層されている構造が挙げら
れる。
Further, by reducing the thickness of the light emitting layer,
Since the charges can be confined in the light emitting layer with high density,
The luminous efficiency can be improved. Therefore, even when the difference in lattice constant is smaller than that in the above example, the preferable thickness of the light emitting layer is 5Å or more and 500Å or less, and more preferably 5Å or more and 90Å or less. When the thickness of the light emitting layer is less than 5Å, the luminous efficiency becomes insufficient. Also 500Å
When it is larger, the luminous efficiency is not sufficient. The light emitting layer may be a layer composed of a plurality of layers functioning as a light emitting layer. A specific example in which a layer composed of a plurality of layers functions as a light emitting layer is a structure in which two or more light emitting layers are stacked with a layer having a larger band gap.

【0021】発光層に不純物をドープすることで、発光
層のバンドギャップとは異なる波長で発光させることが
できる。これは不純物からの発光であるため、不純物発
光とよばれる。不純物発光の場合、発光波長は発光層の
3族元素の組成と不純物元素により決まる。この場合、
発光層のInN混晶比は5%以上が好ましい。InN混
晶比が5%より小さい場合、発光する光はほとんど紫外
線であり、充分な明るさを感じることができない。In
N混晶比を増やすにつれて発光波長が長くなり、発光波
長を紫から青、緑へと調整できる。不純物発光に適した
不純物としては、2族元素が好ましい。2族元素のなか
では、Mg、Zn、Cdをドープした場合、発光効率が
高いので好適である。特にZnが好ましい。これらの元
素の濃度は、1018〜1022cm-3が好ましい。発光層
はこれらの2族元素とともにSi又はGeを同時にドー
プしてもよい。Si、Geの好ましい濃度範囲は1018
〜1022cm-3である。
By doping the light emitting layer with impurities, it is possible to emit light at a wavelength different from the band gap of the light emitting layer. Since this is light emission from impurities, it is called impurity light emission. In the case of impurity emission, the emission wavelength is determined by the composition of the Group 3 element of the light emitting layer and the impurity element. in this case,
The InN mixed crystal ratio of the light emitting layer is preferably 5% or more. When the InN mixed crystal ratio is less than 5%, most of the emitted light is ultraviolet light, and sufficient brightness cannot be felt. In
The emission wavelength becomes longer as the N mixed crystal ratio is increased, and the emission wavelength can be adjusted from purple to blue and green. Impurities suitable for light emission are preferably Group 2 elements. Among the Group 2 elements, doping with Mg, Zn, and Cd is preferable because the luminous efficiency is high. Particularly, Zn is preferable. The concentration of these elements is preferably 10 18 to 10 22 cm −3 . The light emitting layer may be simultaneously doped with Si or Ge together with these Group 2 elements. The preferred concentration range of Si and Ge is 10 18
It is -10 22 cm -3 .

【0022】不純物発光の場合、一般に発光スペクトル
がブロードになり、注入電荷量が増すにつれて発光スペ
クトルがシフトしたり、バンド端発光のピークが現われ
てくるなど好ましくない発光特性を有しており、また発
光効率を高くすることが難しい。このため、高い色純度
が要求される場合や狭い波長範囲に発光パワーを集中さ
せることが必要な場合、又は高い発光効率の素子が必要
な場合にはバンド間発光を利用する方が有利である。バ
ンド間発光による発光素子を実現するためには、発光層
に含まれる不純物の量を低く抑えなければならない。具
体的には、Si、Ge、Mg、Cd及びZnの各元素に
ついて、いずれもその濃度が1019cm -3以下が好まし
く、更に好ましくは1018cm-3以下である。
In the case of impurity emission, the emission spectrum is generally
Becomes broader and the emission space increases as the injected charge increases.
The spectrum shifts or the peak of the band edge emission appears.
It has unfavorable emission characteristics such as
It is difficult to increase the light efficiency. Therefore, high color purity
Is required or the emission power is concentrated in a narrow wavelength range.
If necessary, or a device with high luminous efficiency is required
In such a case, it is advantageous to use interband emission. Ba
In order to realize a light-emitting element by emitting light between
The amount of impurities contained in must be kept low. Ingredient
Physically, each element of Si, Ge, Mg, Cd and Zn
For each, the concentration is 1019cm -3The following is preferred
More preferably 1018cm-3It is the following.

【0023】バンド間発光の場合、発光色は発光層の3
族元素の組成で決まる。可視部で発光させる場合、In
N混晶比は10%以上が好ましい。InN混晶比が10
%より小さい場合、発光する光はほとんど紫外線であ
り、充分な明るさを感じることができない。InN混晶
比が増えるにつれて発光波長が長くなり、発光波長を紫
から青、緑へと調整できる。
In the case of band-to-band emission, the emission color is 3 of the emission layer.
Determined by the composition of group elements. When emitting light in the visible region, In
The N mixed crystal ratio is preferably 10% or more. InN mixed crystal ratio is 10
If it is less than%, the emitted light is mostly ultraviolet rays and sufficient brightness cannot be sensed. The emission wavelength becomes longer as the InN mixed crystal ratio increases, and the emission wavelength can be adjusted from purple to blue and green.

【0024】発光層がInを含む場合、熱的な安定性が
充分でなく、結晶成長中、又は半導体プロセスで劣化を
起こす場合がある。このような発光層の劣化を防止する
目的のために発光層の上に、これに接してInx Gay
Alz N(ただし、x+y+z=1、0≦x≦1、0≦
y≦1、0≦z≦1)で表される3−5族化合物半導体
からなる保護層を形成することが有効である。充分な保
護機能をもたせるためには、保護層のInN混晶比は1
0%以下が好ましく、AlN混晶比は5%以上が好まし
い。更に好ましくはInN混晶比が5%以下、AlN混
晶比が10%以上である。
When the light emitting layer contains In, the thermal stability is not sufficient, and deterioration may occur during crystal growth or in the semiconductor process. In order to prevent the deterioration of the light emitting layer, the In x Ga y layer is formed on and in contact with the light emitting layer.
Al z N (where x + y + z = 1, 0 ≦ x ≦ 1, 0 ≦
It is effective to form a protective layer made of a 3-5 group compound semiconductor represented by y ≦ 1, 0 ≦ z ≦ 1). In order to have a sufficient protective function, the InN mixed crystal ratio of the protective layer is 1
It is preferably 0% or less, and the AlN mixed crystal ratio is preferably 5% or more. More preferably, the InN mixed crystal ratio is 5% or less, and the AlN mixed crystal ratio is 10% or more.

【0025】保護層の成長温度は、発光層の成長温度と
同じか、発光層の成長温度よりも低いことが好ましい
が、成長操作の煩雑さを避けるために、発光層と同じ温
度で成長するのが更に好ましい。発光層の成長温度より
も高い温度では保護機能が充分でなくなるので好ましく
ない。保護層の導電性は、p型であることが電気的特性
の面からは好ましい。しかし、不純物を高濃度にドープ
することにより保護層の結晶性が低下し、発光効率の低
下を招く場合がある。このような場合、保護層に含まれ
る不純物の濃度は低く抑える必要がある。保護層中の好
ましい不純物濃度は、1019cm-3以下、更に好ましく
は1018cm-3以下、特に好ましくは1017cm-3以下
である。保護層の膜厚は10Å以上1μm以下が好まし
い。保護層の膜厚が10Åより小さいと充分な保護効果
が得られない。また1μmより大きい場合には発光効率
が減少するので好ましくなく、更に好ましくは、50Å
以上5000Å以下である。
The growth temperature of the protective layer is preferably the same as the growth temperature of the light emitting layer or lower than the growth temperature of the light emitting layer. However, in order to avoid the complexity of the growth operation, the growth temperature is the same as that of the light emitting layer. Is more preferable. A temperature higher than the growth temperature of the light emitting layer is not preferable because the protective function becomes insufficient. The conductivity of the protective layer is preferably p-type from the viewpoint of electrical characteristics. However, high-concentration doping of impurities may lower the crystallinity of the protective layer, which may lead to lower luminous efficiency. In such a case, it is necessary to keep the concentration of impurities contained in the protective layer low. The impurity concentration in the protective layer is preferably 10 19 cm -3 or less, more preferably 10 18 cm -3 or less, and particularly preferably 10 17 cm -3 or less. The thickness of the protective layer is preferably 10 Å or more and 1 μm or less. If the thickness of the protective layer is less than 10Å, a sufficient protective effect cannot be obtained. On the other hand, if it is larger than 1 μm, the luminous efficiency is decreased, which is not preferable, and more preferably 50 Å
It is above 5000 Å.

【0026】[0026]

【実施例】以下、本発明を実施例に基づいてさらに詳細
に説明するが、本発明はこれらに限定されるものではな
い。 実施例1 MOVPE法により図1に示す構造の3−5族化合物半
導体を作製し、これから発光素子を作製した。基板はサ
ファイアC面を鏡面研磨したものを有機洗浄して用い
た。成長は低温成長バッファー層を用いる2段階成長法
によった。基板温度550℃で、水素をキャリアガスと
し、TMGとアンモニアを供給して膜厚500ÅのGa
Nのバッファー層2を形成した。次に基板温度を110
0℃まで上げ、該バッファー層2の上に、TMG、アン
モニア、及びシランガスとを供給して、Siをドープし
たn型キャリア濃度1×1019/cm3 、膜厚約3μm
のGaN層3を成長し、更に同じ温度にてTMG、アン
モニアを供給して、ノンドープのGaN層4を1500
Å成長した。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited thereto. Example 1 A 3-5 group compound semiconductor having the structure shown in FIG. 1 was prepared by the MOVPE method, and a light emitting device was prepared therefrom. As the substrate, a sapphire C surface mirror-polished was used after organic cleaning. The growth was performed by a two-step growth method using a low temperature growth buffer layer. At a substrate temperature of 550 ° C., hydrogen is used as a carrier gas, and TMG and ammonia are supplied to form a Ga film having a film thickness of 500 Å.
The N buffer layer 2 was formed. Next, the substrate temperature is set to 110
The temperature was raised to 0 ° C., and TMG, ammonia, and silane gas were supplied onto the buffer layer 2 so that the Si-doped n-type carrier concentration was 1 × 10 19 / cm 3 , and the film thickness was about 3 μm.
GaN layer 3 is grown, and TMG and ammonia are further supplied at the same temperature to form a non-doped GaN layer 4 1500
ÅI grew up.

【0027】次に、基板温度を785℃まで下げ、キャ
リアガスを窒素に換え、TEG、TMI及びアンモニア
をそれぞれ0.04sccm、0.08sccm、4s
lm供給して、発光層であるIn0.3 Ga0.7 N層5を
70秒間成長した。更に、同じ温度にてTEG、TEA
及びアンモニアをそれぞれ0.032sccm、0.0
08sccm、4slm供給して、保護層であるGa
0.8 Al0.2 N層6を10分間成長した。
Next, the substrate temperature is lowered to 785 ° C., the carrier gas is changed to nitrogen, and TEG, TMI, and ammonia are added at 0.04 sccm, 0.08 sccm, and 4 s, respectively.
Then, the In 0.3 Ga 0.7 N layer 5 as a light emitting layer was grown for 70 seconds. Furthermore, TEG, TEA at the same temperature
And ammonia are 0.032 sccm and 0.0, respectively.
Supplying 08sccm, 4slm, Ga as a protective layer
The 0.8 Al 0.2 N layer 6 was grown for 10 minutes.

【0028】ただし、sccm及びslmは気体の流量
の単位で、1sccmは1分当たり標準状態で1ccの
体積を占める重量の気体が流れていることを示し、1s
lmは1000sccmである。なおこの2層の層厚に
関しては、同一の条件で更に長い時間成長させたIn0.
3 Ga0.7 N層、Ga0.8 Al0.2 N層の厚さから求め
た成長速度が43Å/分、30Å/分であるので、上記
成長時間から求められる層厚はそれぞれ50Å、300
Åと計算できる。
However, sccm and slm are units of gas flow rate, and 1 sccm indicates that a weight of gas occupies a volume of 1 cc in a standard state per minute is flowing for 1 s.
lm is 1000 sccm. Regarding the thickness of these two layers, In 0.
Since the growth rates obtained from the thicknesses of the 3 Ga 0.7 N layer and the Ga 0.8 Al 0.2 N layer are 43 Å / min and 30 Å / min, the layer thicknesses obtained from the above growth time are 50 Å and 300 respectively.
Can be calculated as Å.

【0029】この後、温度を1100℃まで上げ、TM
G、TEA、Cp2 Mg、及びアンモニアを供給してM
gをドープしたGa1-x Alx Nを5000Å成長し
た。TEAとTMGの供給比から求めたAlNの混晶比
(x)は、0.4%である。以上により作製した3−5
族化合物半導体試料を反応炉から取り出したのち、窒素
中で800℃、20分アニール処理を施した。こうして
得た試料に常法により電極を形成し、LEDとした。p
電極としてNi−Au合金、n電極としてAlを用い
た。このLEDに順方向に電流を流したところ、明瞭な
青色発光を示した。20mAでの効率は2.2%であっ
た。
After this, the temperature is raised to 1100 ° C. and TM
G, TEA, Cp 2 Mg, and ammonia are supplied to supply M
Ga 1-x Al x N doped with g was grown at 5000Å. The mixed crystal ratio (x) of AlN calculated from the supply ratio of TEA and TMG is 0.4%. 3-5 produced by the above
After the group compound semiconductor sample was taken out from the reaction furnace, it was annealed in nitrogen at 800 ° C. for 20 minutes. An electrode was formed on the thus obtained sample by a conventional method to obtain an LED. p
A Ni-Au alloy was used as an electrode, and Al was used as an n electrode. When a current was applied to this LED in the forward direction, clear blue light emission was exhibited. The efficiency at 20 mA was 2.2%.

【0030】実施例2 AlNの混晶比が0.4%のかわりに、0.6%とした
MgをドープしたGa 1-x Alx Nを成長したことを除
いては実施例1と同様にしてLEDを作製した。これに
電流を流したところ、明瞭な青色の発光が認められ、2
0mAでの発光効率は2.6%であった。
Example 2 The mixed crystal ratio of AlN was set to 0.6% instead of 0.4%.
Ga doped with Mg 1-xAlxExcept for growing N
Then, an LED was produced in the same manner as in Example 1. to this
A clear blue light emission was observed when a current was applied. 2
The luminous efficiency at 0 mA was 2.6%.

【0031】比較例1 AlNの混晶比が0.4%のかわりに、AlNを含まな
いMgをドープしたGaN層を成長したことを除いては
実施例1と同様にして、比較用のLEDを作製した。こ
れに電流を流したところ、青色の発光が認められたが、
20mAでの発光効率は1.5%であった。図2に、実
施例2と比較例1の発光素子の発光効率の順方向電流依
存性を示す。実施例2によって作製した試料は、低電流
域で発光効率が飛躍的に向上していることがわかるが、
これは、本発明のAlN混晶をふくむp層を用いること
により成長初期界面のp型キャリア濃度の立ち上がりが
急峻になった結果と解釈できる。
Comparative Example 1 A comparative LED was prepared in the same manner as in Example 1 except that a Mg-doped GaN layer containing no AlN was grown instead of the AlN mixed crystal ratio of 0.4%. Was produced. When a current was applied to this, blue light emission was observed,
The luminous efficiency at 20 mA was 1.5%. FIG. 2 shows the forward current dependence of the luminous efficiency of the light emitting devices of Example 2 and Comparative Example 1. It can be seen that the light emission efficiency of the sample manufactured in Example 2 is dramatically improved in the low current region.
This can be interpreted as the result of the steep rise of the p-type carrier concentration at the initial growth interface by using the p-layer including the AlN mixed crystal of the present invention.

【0032】[0032]

【発明の効果】本発明の、特定の範囲のAlN混晶比を
もつp型化合物半導体層を用いると、輝度及び発光効率
の向上した、発光素子が作製できるため、きわめて有用
であり工業的価値が大きい。
By using the p-type compound semiconductor layer having the AlN mixed crystal ratio within the specific range of the present invention, a light emitting device having improved brightness and luminous efficiency can be produced, which is extremely useful and has an industrial value. Is big.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1に関わる発光素子用3−5族
化合物半導体の構造を示す図。
FIG. 1 is a diagram showing a structure of a Group 3-5 compound semiconductor for a light emitting device according to Example 1 of the present invention.

【図2】実施例2と比較例1の発光素子の、電流と発光
効率の関係を示す図。
FIG. 2 is a graph showing a relationship between current and light emission efficiency of the light emitting elements of Example 2 and Comparative Example 1.

【符号の説明】[Explanation of symbols]

1……基板 2……バッファー層 3……n型の層 4……ノンドープ層 5……発光層 6……ノンドープ層(保護層) 7……p型の層 1 ... Substrate 2 ... Buffer layer 3 ... N-type layer 4 ... Non-doped layer 5 ... Light-emitting layer 6 ... Non-doped layer (protective layer) 7 ... P-type layer

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】p型の層及びn型の層を有し、発光層が両
層の間に配置され、発光層の両側に発光層よりも大きな
バンドギャップを有する2つの層が接してなる積層構造
を含む発光素子用3−5族化合物半導体において、該p
型の層が、一般式Inx Gay Alz N(ただし、x+
y+z=1、0≦x≦1、0≦y≦1、0.0001≦
z≦0.10)で表される3−5族化合物半導体であ
り、かつp型ドーパントがドープされてなることを特徴
とする発光素子用3−5族化合物半導体。
1. A p-type layer and an n-type layer, a light emitting layer is disposed between both layers, and two layers having a band gap larger than that of the light emitting layer are in contact with each other on both sides of the light emitting layer. In a 3-5 group compound semiconductor for a light emitting device including a laminated structure, the p
Layer of the general formula In x Ga y Al z N (where x +
y + z = 1, 0 ≦ x ≦ 1, 0 ≦ y ≦ 1, 0.0001 ≦
A compound semiconductor group 3-5 represented by z ≦ 0.10), and a compound semiconductor group 3-5 for a light emitting device, which is doped with a p-type dopant.
【請求項2】p型の層が複数の層からなり、該複数の層
のうちn型の層に最も近い層が、一般式Inx Gay
z N(ただし、x+y+z=1、0≦x≦1、0≦y
≦1、0.0001≦z≦0.10)で表される3−5
族化合物半導体であることを特徴とする請求項1記載の
発光素子用3−5族化合物半導体。
2. A p-type layer is composed of a plurality of layers, and a layer closest to the n-type layer among the plurality of layers is a general formula In x Ga y A
l z N (where x + y + z = 1, 0 ≦ x ≦ 1, 0 ≦ y
≦ 1, 0.0001 ≦ z ≦ 0.10) 3-5
It is a group compound semiconductor, The group 3-5 compound semiconductor for light emitting elements of Claim 1 characterized by the above-mentioned.
【請求項3】発光層の層厚が5Å以上500Å以下であ
ることを特徴とする請求項1又は2記載の発光素子用3
−5族化合物半導体。
3. The light emitting device according to claim 1, wherein the thickness of the light emitting layer is 5 Å or more and 500 Å or less.
-Group 5 compound semiconductor.
【請求項4】発光層に含まれるSi、Ge、Mg、Zn
及びCdの各元素の濃度がいずれも1×1019cm-3
下であることを特徴とする請求項1、2又は3記載の発
光素子用3−5族化合物半導体。
4. Si, Ge, Mg, Zn contained in the light emitting layer
The concentration of each element of Cd and Cd is 1 × 10 19 cm −3 or less, and the group 3-5 compound semiconductor for a light emitting device according to claim 1, 2 or 3.
【請求項5】請求項1、2、3又は4記載の発光素子用
3−5族化合物半導体を用いたことを特徴とする発光素
子。
5. A light emitting device comprising the group 3-5 compound semiconductor for a light emitting device according to claim 1, 2, 3 or 4.
JP21886195A 1995-08-28 1995-08-28 Iii-v compound semiconductor and light emitting element Pending JPH0964419A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21886195A JPH0964419A (en) 1995-08-28 1995-08-28 Iii-v compound semiconductor and light emitting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21886195A JPH0964419A (en) 1995-08-28 1995-08-28 Iii-v compound semiconductor and light emitting element

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2004058720A Division JP2004200715A (en) 2004-03-03 2004-03-03 Method for improving emission efficiency in iii-v group compound semiconductor light-emitting element

Publications (1)

Publication Number Publication Date
JPH0964419A true JPH0964419A (en) 1997-03-07

Family

ID=16726474

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21886195A Pending JPH0964419A (en) 1995-08-28 1995-08-28 Iii-v compound semiconductor and light emitting element

Country Status (1)

Country Link
JP (1) JPH0964419A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002503394A (en) * 1997-06-06 2002-01-29 ツェントルム バダニ ヴィソコチシニエニオヴィフ ポルスキエイ アカデミイ ナウク Method for producing p-type and n-type electrically conductive semiconductor nitrogen compounds A (bottom 3) B (bottom 5)
SG90268A1 (en) * 2000-11-17 2002-07-23 Sumitomo Chemical Co 3-5 group compound semiconductor and light emitting device
US7166869B2 (en) 1995-11-06 2007-01-23 Nichia Corporation Nitride semiconductor with active layer of quantum well structure with indium-containing nitride semiconductor
WO2008041587A1 (en) * 2006-09-27 2008-04-10 Masaaki Kano Electric device power supply circuit, light emitting diode illumination device, and battery having charge power supply circuit
USRE42074E1 (en) 1996-04-26 2011-01-25 Sanyo Electric Co., Ltd. Manufacturing method of light emitting device
US7897993B2 (en) 2004-08-31 2011-03-01 Sumitomo Chemical Company, Limited GaN based luminescent device on a metal substrate
WO2014030670A1 (en) 2012-08-21 2014-02-27 王子ホールディングス株式会社 Substrate for semiconductor light emitting elements, semiconductor light emitting element, method for producing substrate for semiconductor light emitting elements, and method for manufacturing semiconductor light emitting element

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7166869B2 (en) 1995-11-06 2007-01-23 Nichia Corporation Nitride semiconductor with active layer of quantum well structure with indium-containing nitride semiconductor
US8304790B2 (en) 1995-11-06 2012-11-06 Nichia Corporation Nitride semiconductor with active layer of quantum well structure with indium-containing nitride semiconductor
USRE42074E1 (en) 1996-04-26 2011-01-25 Sanyo Electric Co., Ltd. Manufacturing method of light emitting device
JP2002503394A (en) * 1997-06-06 2002-01-29 ツェントルム バダニ ヴィソコチシニエニオヴィフ ポルスキエイ アカデミイ ナウク Method for producing p-type and n-type electrically conductive semiconductor nitrogen compounds A (bottom 3) B (bottom 5)
SG90268A1 (en) * 2000-11-17 2002-07-23 Sumitomo Chemical Co 3-5 group compound semiconductor and light emitting device
US6806502B2 (en) 2000-11-17 2004-10-19 Sumitomo Chemical Company, Limted 3-5 Group compound semiconductor and light emitting device
US7897993B2 (en) 2004-08-31 2011-03-01 Sumitomo Chemical Company, Limited GaN based luminescent device on a metal substrate
WO2008041587A1 (en) * 2006-09-27 2008-04-10 Masaaki Kano Electric device power supply circuit, light emitting diode illumination device, and battery having charge power supply circuit
WO2014030670A1 (en) 2012-08-21 2014-02-27 王子ホールディングス株式会社 Substrate for semiconductor light emitting elements, semiconductor light emitting element, method for producing substrate for semiconductor light emitting elements, and method for manufacturing semiconductor light emitting element
EP2922103A1 (en) 2012-08-21 2015-09-23 Oji Holdings Corporation Substrate for semiconductor light emitting elements, semiconductor light emitting element, method for producing substrate for semiconductor light emitting elements, and method for manufacturing semiconductor emitting element
US9515223B2 (en) 2012-08-21 2016-12-06 Oji Holdings Corporation Semiconductor light emitting device substrate including an uneven structure having convex portions, and a flat surface therebetween
US9748441B2 (en) 2012-08-21 2017-08-29 Oji Holdings Corporation Dry etching method of manufacturing semiconductor light emitting device substrate

Similar Documents

Publication Publication Date Title
KR970007135B1 (en) Light-emitting gallium nitride-based compound semiconductor device
US6023077A (en) Group III-V compound semiconductor and light-emitting device
US6346720B1 (en) Layered group III-V compound semiconductor, method of manufacturing the same, and light emitting element
JP3598591B2 (en) Method for manufacturing group 3-5 compound semiconductor
WO1999038218A1 (en) Semiconductor light emitting element and method for manufacturing the same
KR101008856B1 (en) Production method of group ? nitride semiconductor element
JP3064891B2 (en) Group 3-5 compound semiconductor, method of manufacturing the same, and light emitting device
JPH0964419A (en) Iii-v compound semiconductor and light emitting element
JPH0936429A (en) Fabrication of iii-v compound semiconductor
JPH0997921A (en) Manufacture of iii-v compd. semiconductor
JPH0923026A (en) Iii-v compound semiconductor light emitting element
JP3752739B2 (en) Light emitting element
JPH09148626A (en) Manufacture of iii-v group compound semiconductor
JPH09107124A (en) Method for manufacturing iii-v compound semiconductor
JPH10163523A (en) Manufacturing iii-v compd. semiconductor and light-emitting element
JP4010318B2 (en) Light emitting element
JP2005243955A (en) Light emitting element, and its manufacturing method
JP3713751B2 (en) Group 3-5 compound semiconductor and light emitting device
JP2007067397A (en) Method of manufacturing 3-5 group compound semiconductor
JP2004200723A (en) Method for improving crystallinity of iii-v group compound semiconductor
JPH09129920A (en) Iii-v compound semiconductor for light emitting device and light emitting device
JP3788344B2 (en) Method for improving productivity of group 3-5 compound semiconductor
JP2002158375A (en) Iii-v group compound semiconductor and light emitting element
JPH09321339A (en) Iii-v compd. semiconductor and light emitting device
JP2004200715A (en) Method for improving emission efficiency in iii-v group compound semiconductor light-emitting element

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20031219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040303

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040305

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20041207