JPH0923026A - Iii-v compound semiconductor light emitting element - Google Patents

Iii-v compound semiconductor light emitting element

Info

Publication number
JPH0923026A
JPH0923026A JP17077495A JP17077495A JPH0923026A JP H0923026 A JPH0923026 A JP H0923026A JP 17077495 A JP17077495 A JP 17077495A JP 17077495 A JP17077495 A JP 17077495A JP H0923026 A JPH0923026 A JP H0923026A
Authority
JP
Japan
Prior art keywords
compound semiconductor
light emitting
layer
group
emitting device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17077495A
Other languages
Japanese (ja)
Inventor
Yasushi Iechika
泰 家近
Yoshinobu Ono
善伸 小野
Tomoyuki Takada
朋幸 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP17077495A priority Critical patent/JPH0923026A/en
Publication of JPH0923026A publication Critical patent/JPH0923026A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)
  • Led Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a light emitting element which can highly efficiently emit light by utilizing band-end emission. SOLUTION: A light emitting element is constituted by laminating a compound semiconductor containing at least two layers having different band gaps and expressed by a general expression of Inx Gay Alz N (where, x+y+z=1, 0<=x<=1, 0<=y<=1, and 0<=z<=1) upon a sapphire substrate. The angle between the surface and C-plane of the sapphire substrate is adjusted to 5 deg. so that band end emission can be utilized.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は一般式Inx Gay
Alz N(ただし、x+y+z=1、0≦x≦1、0≦
y≦1、0≦z≦1)で表される3−5族化合物半導体
を用いた発光素子に関する。
The present invention relates to the general formula In x Ga y
Al z N (where x + y + z = 1, 0 ≦ x ≦ 1, 0 ≦
The present invention relates to a light emitting device using a 3-5 group compound semiconductor represented by y ≦ 1, 0 ≦ z ≦ 1).

【0002】[0002]

【従来の技術】紫外もしくは青色の発光ダイオード(以
下、LEDと記すことがある。)または紫外もしくは青
色のレーザダイオード等の発光素子の材料として、一般
式In x Gay Alz N(ただし、x+y+z=1、0
≦x≦1、0≦y≦1、0≦z≦1)で表される3−5
族化合物半導体が知られている。特にInNを混晶比で
10%以上含むものはIn濃度に応じて可視領域での発
光波長を調整できるため、表示用途に特に重要である。
該3−5族化合物半導体はサファイア、GaAs、Zn
O等の種々の基板の上に成膜することが試みられてい
る。特にサファイアは大面積かつ高品質の単結晶が比較
的容易に製造できるため重要である。サファイア基板の
面方位についてはA面、R面、C面等を用いる検討が行
われており、その中でもC面を用いることで比較的良好
な該化合物半導体が得られることが知られている。窒化
ガリウム系化合物半導体の不純物発光を用いた発光素子
に関して、該化合物半導体をサファイア基板のC面から
数度傾いた基板(オフ基板)の上に成長することにより
非鏡面とすることで取り出し効率を向上して外部量子効
率(発光効率)を向上できるという報告がある(特開平
6−291368号公報)。また、一般にGaAs等の
結晶成長においては(001)、(111)等の低指数
面の方位を持つGaAs基板が用いられるが、実際には
これらの面から若干の角度(以下、オフ角と記すことが
ある。)傾斜させた面を持つ基板を用いることで良質な
結晶が得られる場合がある。
2. Description of the Related Art Ultraviolet or blue light emitting diodes (hereinafter
Below, it may be described as LED. ) Or ultraviolet or blue
Generally used as a material for light-emitting devices such as laser diodes for color
Formula In xGayAlzN (however, x + y + z = 1,0
≦ x ≦ 1, 0 ≦ y ≦ 1, 0 ≦ z ≦ 1) 3-5
Group compound semiconductors are known. Especially InN in mixed crystal ratio
Those containing 10% or more emit in the visible region depending on the In concentration.
It is particularly important for display applications because it can adjust the light wavelength.
The group 3-5 compound semiconductor is sapphire, GaAs, Zn
Attempts have been made to form films on various substrates such as O.
You. Especially sapphire has a large area and high quality single crystal
It is important because it can be easily manufactured. Sapphire substrate
Regarding plane orientation, studies using A-plane, R-plane, C-plane, etc. have been conducted.
It is comparatively good by using the C surface among them.
It is known that such a compound semiconductor can be obtained. Nitriding
Light emitting device using impurity light emission of gallium compound semiconductor
The compound semiconductor from the C-plane of the sapphire substrate
By growing on a substrate (off-substrate) tilted by a few degrees
The non-specular surface improves the extraction efficiency and improves the external quantum effect.
There is a report that the efficiency (luminous efficiency) can be improved.
6-291368). Also, in general, such as GaAs
Low index such as (001) and (111) in crystal growth
A GaAs substrate with a plane orientation is used, but in reality
Some angle from these planes (hereinafter referred to as off angle)
is there. ) Good quality is obtained by using a substrate with an inclined surface.
Crystals may be obtained.

【0003】ここで、LEDの発光機構は2つに大別で
きる。一つは注入された電子と正孔がバンドギャップ中
に不純物によって形成された準位を介して再結合する機
構で、一般に不純物発光と呼ばれる。もう一方は注入さ
れた電子と正孔が不純物による準位を介さず再結合する
もので、この場合バンドギャップにほぼ対応した波長で
の発光が得られる。これはバンド端発光と呼ばれる。不
純物発光の場合、一般に発光スペクトルがブロードにな
る。一方バンド端発光はその発光スペクトルはシャープ
であり、高い色純度が必要な場合にはバンド端発光が好
ましい。また不純物発光では不純物準位を介した電子と
正孔の再結合を用いるため、注入される電子、もしくは
正孔を捕獲できるだけの充分な数の不純物準位が必要と
なるが、一般に不純物を高濃度にドープした場合その結
晶品質が低下する。つまり高品質な結晶中に形成できる
不純物準位の数には限りがある。この場合、電子と正孔
の注入量が増加すると不純物準位の数に不足が生じ、不
純物準位を介さない電子と正孔の再結合が起こる。つま
り高電流では発光効率は低下することとなる。一方、バ
ンド端発光の場合では不純物準位を介さない発光を利用
するため、このような発光効率の低下は生じない。従っ
て高電流の注入を必要とする場合にはバンド端発光が好
ましい。一方、該化合物半導体は直接遷移型バンドギャ
ップを有しており、その組成によりバンドギャップを可
視領域にできる。従ってこの層を発光層として用いるこ
とで不純物発光を用いなくても、バンド端発光による高
効率の発光素子が作製できる。バンド端発光では狭い波
長範囲に発光パワーを集中させることができ、発光スペ
クトルはシャープになり、高い色純度が達成できる。し
かしこのバンド端発光を用いる発光素子においてはこれ
までオフ角についての検討はされていなかった。
Here, the light emitting mechanism of the LED can be roughly classified into two. One is a mechanism in which the injected electrons and holes are recombined via the level formed by impurities in the band gap, which is generally called impurity emission. On the other hand, the injected electrons and holes are recombined without passing through the levels due to impurities, and in this case, light emission at a wavelength substantially corresponding to the band gap can be obtained. This is called band edge emission. In the case of impurity emission, the emission spectrum is generally broad. On the other hand, band-edge emission has a sharp emission spectrum, and band-edge emission is preferable when high color purity is required. In addition, since the recombination of electrons and holes through the impurity levels is used in impurity emission, a sufficient number of impurity levels are required to trap the injected electrons or holes, but in general, high impurity levels are required. If doped to a high concentration, the crystal quality will deteriorate. That is, the number of impurity levels that can be formed in a high quality crystal is limited. In this case, as the injection amount of electrons and holes increases, the number of impurity levels becomes insufficient, and the recombination of electrons and holes does not occur via the impurity levels. That is, the luminous efficiency is reduced at a high current. On the other hand, in the case of band edge light emission, light emission that does not go through the impurity level is used, and thus such reduction in light emission efficiency does not occur. Therefore, band edge emission is preferred when high current injection is required. On the other hand, the compound semiconductor has a direct transition type bandgap, and the bandgap can be set in the visible region by its composition. Therefore, by using this layer as a light emitting layer, a highly efficient light emitting element by band edge emission can be manufactured without using impurity light emission. With band edge emission, the emission power can be concentrated in a narrow wavelength range, the emission spectrum becomes sharp, and high color purity can be achieved. However, in the light emitting device using the band edge emission, the off angle has not been studied so far.

【0004】[0004]

【発明が解決しようとする課題】本発明の目的は、バン
ド端発光を利用した高い発光効率を有する発光素子を提
供することにある。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a light emitting device which utilizes band edge emission and has a high luminous efficiency.

【0005】[0005]

【課題を解決するための手段】本発明者らはこのような
状況をみて鋭意検討の結果、基板面の傾斜角度を特定の
範囲内にすることで、高品質の半導体結晶が得られるこ
とを見いだし、本発明に至った。即ち、本発明は、次に
記す発明である。
As a result of intensive studies in view of such a situation, the present inventors have found that a high quality semiconductor crystal can be obtained by setting the inclination angle of the substrate surface within a specific range. The inventors have found the present invention and have reached the present invention. That is, the present invention is the invention described below.

【0006】〔1〕サファイア基板上に、一般式Inx
Gay Alz N(ただし、x+y+z=1、0≦x≦
1、0≦y≦1、0≦z≦1)で表されるバンドギャッ
プの異なる少なくとも2つの層を含む化合物半導体が積
層されてなる発光素子であって、該サファイアの基板面
とC面とのなす角が5度未満であり、バンド端発光によ
ることを特徴とする3−5族化合物半導体発光素子。 〔2〕サファイア基板上に、一般式Gaa Alb N(た
だし、a+b=1、0≦a≦1、0≦b≦1)で表され
る第1の3−5族化合物半導体と、一般式IncGad
N(ただし、c+d=1、0<c≦1、0≦d<1)で
表される第2の3−5族化合物半導体とが、この順に接
してなる構造を含むことを特徴とする〔1〕記載の3−
5族化合物半導体発光素子。 〔3〕第2の3−5族化合物半導体の層中に含まれるS
iとGeと2族元素のいずれの元素の濃度も1×1017
cm-3以下であることを特徴とする〔2〕記載の3−5
族化合物半導体発光素子。 〔4〕第2の3−5族化合物半導体の厚みが、10Å以
上90Å以下であることを特徴とする〔2〕または
〔3〕記載の3−5族化合物半導体発光素子。
[1] On the sapphire substrate, the general formula In x
Ga y Al z N (provided that, x + y + z = 1,0 ≦ x ≦
1, 0 ≤ y ≤ 1, 0 ≤ z ≤ 1), which is a light emitting device in which a compound semiconductor including at least two layers having different band gaps is laminated, and the sapphire has a substrate surface and a C surface. The angle formed by is less than 5 degrees, and band-edge light emission is performed. [2] A first group 3-5 compound semiconductor represented by the general formula Ga a Al b N (where a + b = 1, 0 ≦ a ≦ 1, 0 ≦ b ≦ 1) on a sapphire substrate, and Formula In c Ga d
A second 3-5 group compound semiconductor represented by N (where c + d = 1, 0 <c ≦ 1, 0 ≦ d <1) includes a structure formed in contact with each other in this order [ 1] described in 3-
Group 5 compound semiconductor light emitting device. [3] S contained in the layer of the second Group 3-5 compound semiconductor
The concentration of any of i, Ge and Group 2 elements is 1 × 10 17
3-5 according to [2], which is less than or equal to cm -3
Group compound semiconductor light emitting device. [4] The 3-5 group compound semiconductor light-emitting device according to [2] or [3], wherein the thickness of the second 3-5 group compound semiconductor is 10 Å or more and 90 Å or less.

【0007】次に本発明を詳細に説明する。本発明にお
ける3−5族化合物半導体とは、一般式Inx Gay
z N(ただし、x+y+z=1、0≦x≦1、0≦y
≦1、0≦z≦1)で表される少なくとも2つの層が積
層された構造を含む化合物半導体である。該化合物半導
体は組成によりバンドギャップを可視領域にできるた
め、表示用途に特に重要である。また組成により可視領
域にバンドギャップを有する層より大きなバンドギャッ
プを形成することもできる。したがって、これらの層の
積層構造とすることでバンドギャップの大きい層はバン
ドギャップの小さい層に対して電荷注入層として作用さ
せることができる。この場合、バンドギャップの小さい
層が発光層となる。このような積層構造を持つ半導体素
子においては電子、正孔がバンドギャップの小さい発光
層に閉じこめられ、そこでの再結合確率が極めて高くな
る。従って高い発光効率が達成できる。
Next, the present invention will be described in detail. The group III-V compound semiconductor in the present invention, the general formula In x Ga y A
l z N (where x + y + z = 1, 0 ≦ x ≦ 1, 0 ≦ y
A compound semiconductor having a structure in which at least two layers represented by ≦ 1, 0 ≦ z ≦ 1) are laminated. Since the compound semiconductor can have a band gap in the visible region depending on its composition, it is particularly important for display applications. Further, depending on the composition, a bandgap larger than that of a layer having a bandgap in the visible region can be formed. Therefore, with a layered structure of these layers, a layer with a large band gap can act as a charge injection layer with respect to a layer with a small band gap. In this case, the layer having a small band gap becomes the light emitting layer. In a semiconductor device having such a laminated structure, electrons and holes are confined in a light emitting layer having a small band gap, and the recombination probability there becomes extremely high. Therefore, high luminous efficiency can be achieved.

【0008】本発明の発光素子における3−5族化合物
半導体の構造の例を図1と図2に示す。第1の層は電荷
注入層であり、第2の層に比べてバンドギャップが大き
い。第2の層は可視領域にバンドギャップを有する発光
層である。図1は、第2の層の上に、第2の層よりも大
きなバンドギャップを持つ第3の層を成長し、さらに第
1の層とは異なる伝導性の第4の層を成長したものであ
る。電極は第1の層と第4の形成されており、2つの電
極に電圧を加えることで電流が流れ、第2の層で発光す
る。図2は第3の層に第1の層とは異なる伝導性を持た
せたものである。図1の例と同様に、電圧を加えること
で発光する。結晶成長の容易さから、第1の層はn型、
第4の層はp型とするのが一般的である。第4の層がな
い図2の例では、第3の層がp型である。
An example of the structure of a 3-5 group compound semiconductor in the light emitting device of the present invention is shown in FIGS. The first layer is a charge injection layer and has a larger band gap than the second layer. The second layer is a light emitting layer having a band gap in the visible region. In FIG. 1, a third layer having a bandgap larger than that of the second layer is grown on the second layer, and a fourth layer having a conductivity different from that of the first layer is further grown. Is. The electrodes are formed of the first layer and the fourth layer, and when a voltage is applied to the two electrodes, a current flows, and the second layer emits light. In FIG. 2, the third layer has conductivity different from that of the first layer. As in the example of FIG. 1, light is emitted by applying a voltage. The first layer is n-type because of the ease of crystal growth,
The fourth layer is generally p-type. In the example of FIG. 2 without the fourth layer, the third layer is p-type.

【0009】発光層となる第2の層としてはInc Ga
d N(ただし、c+d=1、0<c≦1、0≦d<1)
が好ましい。Alを含む混晶ではAlNの混晶比に対応
してバンドギャップが大きくなるため、バンド端発光に
よる青色発光を実現できるバンドギャップにするために
は、Alを含まない場合に比べてInNの混晶比を増加
させなければならない。そのためにはInNの分解温度
が低いため、成長温度の低温化が必要となるが、一般に
成長温度を下げると結晶品質は低下するので、Alを含
まないInx Gay Nが好ましい。このInc Gad
の下地として用いる層としてはGaa Alb N(ただ
し、a+b=1、0≦a≦1、0≦b≦1)が好まし
い。Inを含む混晶はその分解温度が低いため通常85
0℃以下の温度で成長が行われる。それに対し、Gaa
Alb Nは分解温度が高く、1100℃程度の高温で成
長できるため、得られる結晶の品質がよいので、下地層
としてはGaa Alb Nが好ましい。
As the second layer which becomes the light emitting layer, In c Ga
d N (however, c + d = 1, 0 <c ≦ 1, 0 ≦ d <1)
Is preferred. The mixed crystal containing Al has a large band gap corresponding to the mixed crystal ratio of AlN. Therefore, in order to obtain a band gap capable of realizing blue light emission due to band edge emission, a mixed crystal of InN is required as compared with the case where Al is not contained. The crystal ratio must be increased. For that purpose, the decomposition temperature of InN is low, so that it is necessary to lower the growth temperature. However, since generally the crystal quality deteriorates when the growth temperature is lowered, In x Ga y N containing no Al is preferable. This In c Ga d N
Ga a Al b N (provided that a + b = 1, 0 ≦ a ≦ 1, 0 ≦ b ≦ 1) is preferable as the layer used as the underlayer. Since the mixed crystal containing In has a low decomposition temperature, it is usually 85.
The growth is performed at a temperature of 0 ° C. or lower. On the other hand, Ga a
Since Al b N has a high decomposition temperature and can be grown at a high temperature of about 1100 ° C., and the quality of the obtained crystal is good, Ga a Al b N is preferable as the underlayer.

【0010】基板として用いるサファイアはチョクラル
スキー法、EFG法等の結晶引き上げ法により作製で
き、その表面を鏡面研磨したものを用いることができ
る。本発明において、サファイア基板の基板面とサファ
イア基板のC面とのなす角は5度未満である。更に好ま
しくは4度以下である。基板面のC面となす角が5度以
上では、該化合物半導体を用いてバンド端発光を用いる
発光素子とした場合、発光効率が充分でないので好まし
くない。また基板の厚みは0.1mm以上1.0mm以
下が好ましい。更に好ましくは0.3mm以上である。
基板の厚みが0.1mmより薄いと該化合物半導体結晶
の成長後、冷却時に該化合物半導体とサファイアとの熱
膨張係数の差から反りが生じ、LEDチップを作製する
プロセス上問題となる。また、基板の厚みが1.0mm
より厚いとLEDチップ作製における基板の分割が困難
になるので好ましくない。
The sapphire used as the substrate can be produced by a crystal pulling method such as the Czochralski method or the EFG method, and its surface can be mirror-polished. In the present invention, the angle formed between the substrate surface of the sapphire substrate and the C surface of the sapphire substrate is less than 5 degrees. More preferably, it is 4 degrees or less. If the angle formed with the C plane of the substrate surface is 5 degrees or more, a light emitting element using band edge emission using the compound semiconductor is not preferable because the luminous efficiency is not sufficient. The thickness of the substrate is preferably 0.1 mm or more and 1.0 mm or less. More preferably, it is 0.3 mm or more.
If the thickness of the substrate is less than 0.1 mm, after the compound semiconductor crystal is grown, the compound semiconductor crystal warps due to the difference in thermal expansion coefficient between the compound semiconductor and sapphire during cooling, which becomes a problem in the process of manufacturing an LED chip. Also, the thickness of the substrate is 1.0 mm
If the thickness is thicker, it becomes difficult to divide the substrate in manufacturing the LED chip, which is not preferable.

【0011】バンド端発光による発光素子を実現するた
めには、第2の層に含まれる不純物の量を低く抑えなけ
ればならない。具体的には、Si、Geと2族元素の各
元素について、いずれもその濃度が1017cm-3以下が
好ましい。バンド端発光の場合、発光色は第2の層の3
族元素の組成で決まる。可視部で発光させる場合、In
濃度は10%以上が好ましい。In濃度が10%より小
さい場合、発光する光はほとんど紫外線であり、充分な
明るさを感じることができない。In濃度を増やすにつ
れて発光波長が長くなり、発光波長を紫から青、緑へと
調整できる。第2の層の膜厚は10Å以上90Å以下が
好ましい。膜厚が10Åより小さいかまたは90Åより
大きいと該化合物半導体を用いて発光素子とした場合、
発光効率が充分でないので好ましくない。
In order to realize a light emitting device using band edge emission, the amount of impurities contained in the second layer must be kept low. Specifically, the concentration of each element of Si, Ge and Group 2 elements is preferably 10 17 cm −3 or less. In case of band edge emission, the emission color is 3 of the second layer.
Determined by the composition of group elements. When emitting light in the visible region, In
The concentration is preferably 10% or more. When the In concentration is less than 10%, most of the emitted light is ultraviolet light, and sufficient brightness cannot be felt. The emission wavelength becomes longer as the In concentration increases, and the emission wavelength can be adjusted from purple to blue and green. The film thickness of the second layer is preferably 10 Å or more and 90 Å or less. When the film thickness is smaller than 10Å or larger than 90Å, the compound semiconductor is used as a light emitting device,
It is not preferable because the luminous efficiency is not sufficient.

【0012】本発明における3−5族化合物半導体の製
造方法としては、有機金属気相成長(以下、MOVPE
と記すことがある。)法、分子線エピタキシー(以下、
MBEと記すことがある。)法、ハイドライド気相成長
(以下、HVPEと記すことがある。)法などが挙げら
れる。なお、MBE法を用いる場合、窒素原料として
は、窒素ガス、アンモニア、およびその他の窒素化合物
を気体状態で供給する方法である気体ソース分子線エピ
タキシー(以下、GSMBEと記すことがある。)法が
一般的に用いられている。この場合、窒素原料が化学的
に不活性で、窒素原子が結晶中に取り込まれにくいこと
がある。その場合には、マイクロ波などにより窒素原料
を励起して、活性状態にして供給することで、窒素の取
り込み効率を上げることができる。
As a method for producing a 3-5 group compound semiconductor in the present invention, metal organic vapor phase epitaxy (hereinafter referred to as MOVPE
It may be written. ) Method, molecular beam epitaxy (hereinafter,
Sometimes referred to as MBE. ) Method, hydride vapor phase epitaxy (hereinafter sometimes referred to as HVPE) method, and the like. When the MBE method is used, a gas source molecular beam epitaxy (hereinafter sometimes referred to as GSMBE) method that is a method of supplying nitrogen gas, ammonia, and other nitrogen compounds in a gaseous state as a nitrogen source. It is commonly used. In this case, the nitrogen raw material is chemically inactive, and the nitrogen atom may be difficult to be taken into the crystal. In that case, by exciting the nitrogen raw material by a microwave or the like to supply it in an activated state, it is possible to improve the nitrogen uptake efficiency.

【0013】MOVPE法の場合、以下のような原料を
用いることができる。即ち、3族原料としては、トリメ
チルガリウム〔(CH3 3 Ga、以下「TMG」と記
すことがある。〕、トリエチルガリウム〔(C2 5
3 Ga、以下「TEG」と記すことがある。〕等の一般
式R1 2 3 Ga(ここでR1 、R 2 、R3 は低級ア
ルキル基を示す。)で表されるトリアルキルガリウム;
トリメチルアルミニウム〔(CH3 3 Al〕、トリエ
チルアルミニウム〔(C2 53 Al、以下「TE
A」と記すことがある。〕、トリイソブチルアルミニウ
ム〔(i−C4 9 3 Al〕等の一般式R1 2 3
Al(ここでR1 、R2 、R3 は低級アルキル基を示
す。)で表されるトリアルキルアルミニウム;トリメチ
ルアミンアラン〔(CH3 3 N:AlH3 〕;トリメ
チルインジウム〔(CH3 3 In、以下「TMI」と
記すことがある。〕、トリエチルインジウム〔(C2
5 3 In〕等の一般式R1 2 3 In(ここで
1 、R2 、R3 は低級アルキル基を示す。)で表され
るトリアルキルインジウム等が挙げられる。これらは単
独または混合して用いられる。
In the case of MOVPE method, the following raw materials are used.
Can be used. That is, as the Group 3 raw material,
Chill gallium [(CHThree)ThreeGa, hereinafter referred to as "TMG"
Sometimes. ], Triethylgallium [(CTwoHFive)
ThreeGa, hereinafter sometimes referred to as "TEG". ] General
Formula R1RTwoRThreeGa (where R1, R Two, RThreeIs a lower class
Represents a alkyl group. ) Trialkylgallium represented by
Trimethyl aluminum [(CHThree)ThreeAl], Trier
Chill aluminum [(CTwoHFive)ThreeAl, hereinafter "TE
It may be written as "A". ], Triisobutylaluminium
Mu [(i-CFourH9)ThreeGeneral formula R such as Al]1RTwoRThree
Al (where R1, RTwo, RThreeIs a lower alkyl group
You. ) Trialkylaluminum represented by;
Luamine Alan [(CHThree)ThreeN: AlHThree]; Trime
Chill indium [(CHThree)ThreeIn, hereinafter referred to as "TMI"
There is a note. ], Triethylindium [(CTwoH
Five)ThreeGeneral formula R such as In]1RTwoRThreeIn (here
R1, RTwo, RThreeRepresents a lower alkyl group. )
Trialkylindium and the like. These are just
Used alone or as a mixture.

【0014】次に、5族原料としては、アンモニア、ヒ
ドラジン、メチルヒドラジン、1、1−ジメチルヒドラ
ジン、1、2−ジメチルヒドラジン、t−ブチルアミ
ン、エチレンジアミンなどが挙げられる。これらは単独
または混合して用いられる。これらの原料のうち、アン
モニアとヒドラジンは分子中に炭素原子を含まないた
め、半導体中への炭素の汚染が少なく好適である。
Next, examples of the Group 5 raw materials include ammonia, hydrazine, methylhydrazine, 1,1-dimethylhydrazine, 1,2-dimethylhydrazine, t-butylamine, ethylenediamine and the like. These may be used alone or as a mixture. Among these raw materials, ammonia and hydrazine do not contain a carbon atom in the molecule, so that the contamination of the semiconductor with carbon is small and suitable.

【0015】[0015]

【実施例】以下実施例により本発明を詳しく説明するが
本発明はこれらに限定されるものではない。 実施例1 窒化ガリウム系半導体は、MOVPE法により作製し
た。基板としては、その基板面がC面となす角が0.0
2度であるサファイアを鏡面研磨したものを有機洗浄し
て用いた。成長はまず、バッファ層として600℃でT
MGとアンモニアによりGaNを500Å成膜した後、
TMG、アンモニアおよびドーパントとしてシラン(S
iH4 )を用いて1100℃でSiをドープしたGaN
を3μmの厚みで成膜した。785℃まで降温した後、
キャリアガスを水素から窒素に変え、TEG、TMI、
TEAを用いて、In0.3 Ga0.7 Nを90秒間、Ga
0.8 Al0.2 Nを10分間成長した。厚膜における成長
時間と得られた膜厚の関係から求めたIn0. 3 Ga0.7
Nの成長速度は約33Å/分、Ga0.8 Al0.2 Nの成
長速度は約25Å/分であった。従って、これらの層の
膜厚は各々約50Åおよび約250Åである。次に、温
度を1100℃に昇温し、TMG、アンモニアおよびド
ーパントとしてCp2 Mgを用いてMgをドープしたG
aNを5000Å成長した。成長終了後、基板を取り出
し、窒素中800℃で20分間の熱処理を行なった。
The present invention will be described in more detail with reference to the following examples, but the present invention is not limited thereto. Example 1 A gallium nitride based semiconductor was produced by the MOVPE method. The angle between the substrate surface and the C plane is 0.0
Mirror-polished sapphire that was twice used was organically cleaned and used. First of all, as a buffer layer, T was grown at 600 ° C.
After forming 500 Å GaN film with MG and ammonia,
TMG, ammonia and silane (S
GaN doped with Si using iH 4 ) at 1100 ° C.
Was deposited to a thickness of 3 μm. After cooling to 785 ° C,
Change the carrier gas from hydrogen to nitrogen, TEG, TMI,
In 0.3 Ga 0.7 N for 90 seconds using TEA
0.8 Al 0.2 N was grown for 10 minutes. In 0. 3 Ga 0.7 obtained from the relationship of the film thickness obtained and the growth time in the thick-
The growth rate of N was about 33Å / min, and the growth rate of Ga 0.8 Al 0.2 N was about 25Å / min. Therefore, the film thickness of these layers is about 50Å and about 250Å, respectively. Next, the temperature was raised to 1100 ° C., and TMG, ammonia, and Gp doped with Mg using Cp 2 Mg as a dopant were used.
The aN has grown to 5000 Å. After the growth was completed, the substrate was taken out and heat-treated in nitrogen at 800 ° C. for 20 minutes.

【0016】このようにして得られた試料を常法に従
い、電極を形成し、LEDとした。p電極としてNi−
Au合金、n電極としてAlを用いた。このLEDに順
方向に20mAの電流を流したところ、ピーク波長45
0nmの明瞭な青色発光を示し、輝度は265mcdで
あった。
The sample thus obtained was formed into an electrode by a conventional method to obtain an LED. Ni- as p-electrode
Au alloy was used, and Al was used as the n electrode. When a current of 20 mA was applied to this LED in the forward direction, a peak wavelength of 45
A clear blue light emission of 0 nm was exhibited, and the luminance was 265 mcd.

【0017】比較例1 用いたサファイアの基板面がC面となす角が5度である
ことを除いては実施例1と同様にしてLEDを作製し、
実施例1と同様の評価を行なった。その結果、やはり青
色発光を示したものの、輝度は55mcdであった。
Comparative Example 1 An LED was prepared in the same manner as in Example 1 except that the angle between the substrate surface of the sapphire used and the C plane was 5 degrees.
The same evaluation as in Example 1 was performed. As a result, although it also emitted blue light, the luminance was 55 mcd.

【0018】比較例2 用いたサファイアの基板面がC面となす角が10度であ
ることを除いては実施例1と同様にしてLEDを作製
し、実施例1と同様の評価を行なった。その結果、やは
り青色発光を示したものの、輝度は1mcd以下であっ
た。
Comparative Example 2 An LED was prepared in the same manner as in Example 1 except that the substrate surface of the sapphire used and the C-plane formed an angle of 10 degrees, and the same evaluation as in Example 1 was performed. . As a result, although it also emitted blue light, the luminance was 1 mcd or less.

【0019】[0019]

【発明の効果】本発明のバンド端発光による発光素子
は、高い発光効率を有するので、工業的価値が大きい。
Industrial Applicability The light emitting device using band edge emission according to the present invention has high luminous efficiency and thus has great industrial value.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の発光素子に用いる3−5族化合物半導
体の構造の1例を示す断面図。
FIG. 1 is a cross-sectional view showing an example of the structure of a 3-5 group compound semiconductor used in a light emitting device of the present invention.

【図2】本発明の発光素子に用いる3−5族化合物半導
体の構造の1例を示す断面図。
FIG. 2 is a cross-sectional view showing an example of the structure of a 3-5 group compound semiconductor used in the light emitting device of the present invention.

【符号の説明】[Explanation of symbols]

1...GaAlN(第1の層) 2...InGaN(第2の層) 3...InGaAlN(第3の層) 4...GaAlN(第4の層) 5...n電極 6...p電極 1. . . GaAlN (first layer) 1. . . InGaN (second layer) 3. . . InGaAlN (third layer) 4. . . GaAlN (fourth layer) 5. . . n electrode 6. . . p electrode

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】サファイア基板上に、一般式Inx Gay
Alz N(ただし、x+y+z=1、0≦x≦1、0≦
y≦1、0≦z≦1)で表されるバンドギャップの異な
る少なくとも2つの層を含む化合物半導体が積層されて
なる発光素子であって、該サファイアの基板面とC面と
のなす角が5度未満であり、バンド端発光によることを
特徴とする3−5族化合物半導体発光素子。
1. A general formula of In x Ga y on a sapphire substrate.
Al z N (where x + y + z = 1, 0 ≦ x ≦ 1, 0 ≦
y ≦ 1, 0 ≦ z ≦ 1), which is a light emitting device in which a compound semiconductor including at least two layers having different band gaps is laminated, and an angle formed between the substrate surface of the sapphire and the C surface is A 3-5 group compound semiconductor light-emitting device, which is less than 5 degrees and emits at a band edge.
【請求項2】サファイア基板上に、一般式Gaa Alb
N(ただし、a+b=1、0≦a≦1、0≦b≦1)で
表される第1の3−5族化合物半導体と、一般式Inc
Gad N(ただし、c+d=1、0<c≦1、0≦d<
1)で表される第2の3−5族化合物半導体とが、この
順に接してなる構造を含むことを特徴とする請求項1記
載の3−5族化合物半導体発光素子。
2. A sapphire substrate having the general formula Ga a Al b.
A first 3-5 group compound semiconductor represented by N (where a + b = 1, 0 ≦ a ≦ 1, 0 ≦ b ≦ 1) and the general formula In c
Ga d N (where c + d = 1, 0 <c ≦ 1, 0 ≦ d <
2. The 3-5 group compound semiconductor light-emitting device according to claim 1, wherein the second 3-5 group compound semiconductor represented by 1) includes a structure in which the second 3-5 group compound semiconductor is in contact in this order.
【請求項3】第2の3−5族化合物半導体の層中に含ま
れるSiとGeと2族元素のいずれの元素の濃度も1×
1017cm-3以下であることを特徴とする請求項2記載
の3−5族化合物半導体発光素子。
3. The concentration of any of Si, Ge and Group 2 elements contained in the layer of the second Group 3-5 compound semiconductor is 1 ×.
The 3-5 group compound semiconductor light emitting device according to claim 2, wherein the light emitting device has a size of 10 17 cm -3 or less.
【請求項4】第2の3−5族化合物半導体の厚みが、1
0Å以上90Å以下であることを特徴とする請求項2ま
たは3記載の3−5族化合物半導体発光素子。
4. The thickness of the second group 3-5 compound semiconductor is 1
The 3-5 group compound semiconductor light emitting device according to claim 2 or 3, characterized in that it is 0 Å or more and 90 Å or less.
JP17077495A 1995-07-06 1995-07-06 Iii-v compound semiconductor light emitting element Pending JPH0923026A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17077495A JPH0923026A (en) 1995-07-06 1995-07-06 Iii-v compound semiconductor light emitting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17077495A JPH0923026A (en) 1995-07-06 1995-07-06 Iii-v compound semiconductor light emitting element

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2003396964A Division JP2004153287A (en) 2003-11-27 2003-11-27 Iii-v group compound semiconductor
JP2004084232A Division JP2004172649A (en) 2004-03-23 2004-03-23 Method for improving brightness of 3-5 group compound semiconductor light emitting device

Publications (1)

Publication Number Publication Date
JPH0923026A true JPH0923026A (en) 1997-01-21

Family

ID=15911135

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17077495A Pending JPH0923026A (en) 1995-07-06 1995-07-06 Iii-v compound semiconductor light emitting element

Country Status (1)

Country Link
JP (1) JPH0923026A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998044539A1 (en) * 1997-03-28 1998-10-08 Sharp Kabushiki Kaisha Method for manufacturing compound semiconductors
US6252255B1 (en) 1998-06-26 2001-06-26 Sharp Kabushiki Kaisha Crystal growth method for nitride semiconductor, nitride light emitting device, and method for producing the same
JP2001196632A (en) * 2000-01-14 2001-07-19 Sharp Corp Gallium nitride compound semiconductor light emission and its manufacturing method
US6359292B1 (en) 1998-03-11 2002-03-19 Kabushiki Kaisha Toshiba Semiconductor light emitting element
JP2006229253A (en) * 2006-05-19 2006-08-31 Sharp Corp Nitride-based compound semiconductor light-emitting device and its manufacturing method
WO2013021464A1 (en) * 2011-08-09 2013-02-14 創光科学株式会社 Nitride semiconductor ultraviolet light emitting element
GB2526078A (en) * 2014-05-07 2015-11-18 Infiniled Ltd Methods and apparatus for improving micro-LED devices
CN105742442A (en) * 2011-08-09 2016-07-06 创光科学株式会社 Manufacturing method of nitride semiconductor ultraviolet light emitting component

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998044539A1 (en) * 1997-03-28 1998-10-08 Sharp Kabushiki Kaisha Method for manufacturing compound semiconductors
US6358822B1 (en) 1997-03-28 2002-03-19 Sharp Kabushiki Kaisha Method of epitaxially growing III-V compound semiconductor containing nitrogen and at least another group V element utilizing MBE
US6359292B1 (en) 1998-03-11 2002-03-19 Kabushiki Kaisha Toshiba Semiconductor light emitting element
US6252255B1 (en) 1998-06-26 2001-06-26 Sharp Kabushiki Kaisha Crystal growth method for nitride semiconductor, nitride light emitting device, and method for producing the same
US6685773B2 (en) 1998-06-26 2004-02-03 Sharp Kabushiki Kaisha Crystal growth method for nitride semiconductor, nitride semiconductor light emitting device, and method for producing the same
JP2001196632A (en) * 2000-01-14 2001-07-19 Sharp Corp Gallium nitride compound semiconductor light emission and its manufacturing method
US7064357B2 (en) 2000-01-14 2006-06-20 Sharp Kabushiki Kaisha Nitride compound semiconductor light emitting device and method for producing the same
US7352012B2 (en) 2000-01-14 2008-04-01 Sharp Kabushiki Kaisha Nitride compound semiconductor light emitting device and method for producing the same
US7663158B2 (en) 2000-01-14 2010-02-16 Sharp Kabushiki Kaisha Nitride compound semiconductor light emitting device and method for producing the same
JP2006229253A (en) * 2006-05-19 2006-08-31 Sharp Corp Nitride-based compound semiconductor light-emitting device and its manufacturing method
WO2013021464A1 (en) * 2011-08-09 2013-02-14 創光科学株式会社 Nitride semiconductor ultraviolet light emitting element
CN103733449A (en) * 2011-08-09 2014-04-16 创光科学株式会社 Nitride semiconductor ultraviolet light emitting element
JPWO2013021464A1 (en) * 2011-08-09 2015-03-05 創光科学株式会社 Nitride semiconductor ultraviolet light emitting device
US9356192B2 (en) 2011-08-09 2016-05-31 Soko Kagaku Co., Ltd. Nitride semiconductor ultraviolet light-emitting element
CN105742442A (en) * 2011-08-09 2016-07-06 创光科学株式会社 Manufacturing method of nitride semiconductor ultraviolet light emitting component
US9502606B2 (en) 2011-08-09 2016-11-22 Soko Kagaku Co., Ltd. Nitride semiconductor ultraviolet light-emitting element
CN105742442B (en) * 2011-08-09 2018-10-09 创光科学株式会社 The manufacturing method of nitride-based semiconductor ultraviolet ray emitting element
GB2526078A (en) * 2014-05-07 2015-11-18 Infiniled Ltd Methods and apparatus for improving micro-LED devices
US9502595B2 (en) 2014-05-07 2016-11-22 Oculus Vr, Llc Methods and apparatus for improving micro-LED devices
US9812494B2 (en) 2014-05-07 2017-11-07 Oculus Vr, Llc Methods and apparatus for improving micro-LED devices
US10403678B2 (en) 2014-05-07 2019-09-03 Facebook Technologies, Llc Methods and apparatus for improving micro-LED devices

Similar Documents

Publication Publication Date Title
US6677617B2 (en) Semiconductor LED composed of group III nitrided emission and fluorescent layers
JP4631884B2 (en) Sphalerite-type nitride semiconductor free-standing substrate, method for manufacturing zinc-blende nitride semiconductor free-standing substrate, and light-emitting device using zinc-blende nitride semiconductor free-standing substrate
US6023077A (en) Group III-V compound semiconductor and light-emitting device
US6472298B2 (en) Layered group III-V compound semiconductor, method of manufacturing the same and light emitting element
JP3509260B2 (en) Group 3-5 compound semiconductor and light emitting device
JP3602856B2 (en) Semiconductor light emitting device and method of manufacturing the same
JPH11112030A (en) Production of iii-v compound semiconductor
JPH0936426A (en) Fabrication of iii-v compound semiconductor
JP3064891B2 (en) Group 3-5 compound semiconductor, method of manufacturing the same, and light emitting device
JPH0923026A (en) Iii-v compound semiconductor light emitting element
JP2002299686A (en) Semiconductor light emitting element and manufacturing method thereof
JPH0936429A (en) Fabrication of iii-v compound semiconductor
JPH0997921A (en) Manufacture of iii-v compd. semiconductor
JPH10163523A (en) Manufacturing iii-v compd. semiconductor and light-emitting element
JPH0964419A (en) Iii-v compound semiconductor and light emitting element
JP3752739B2 (en) Light emitting element
JPH09148626A (en) Manufacture of iii-v group compound semiconductor
JP4010318B2 (en) Light emitting element
JPH09129920A (en) Iii-v compound semiconductor for light emitting device and light emitting device
JP2004200723A (en) Method for improving crystallinity of iii-v group compound semiconductor
JP3713751B2 (en) Group 3-5 compound semiconductor and light emitting device
JP2007067397A (en) Method of manufacturing 3-5 group compound semiconductor
JP2004153287A (en) Iii-v group compound semiconductor
JP2004172649A (en) Method for improving brightness of 3-5 group compound semiconductor light emitting device
JPH09321339A (en) Iii-v compd. semiconductor and light emitting device

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20031127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20031201

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040217

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040323

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040405

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040408

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040406

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20040730