JPH03197316A - 水酸化マグネシウム結晶の成長方法 - Google Patents

水酸化マグネシウム結晶の成長方法

Info

Publication number
JPH03197316A
JPH03197316A JP33691389A JP33691389A JPH03197316A JP H03197316 A JPH03197316 A JP H03197316A JP 33691389 A JP33691389 A JP 33691389A JP 33691389 A JP33691389 A JP 33691389A JP H03197316 A JPH03197316 A JP H03197316A
Authority
JP
Japan
Prior art keywords
magnesium hydroxide
slurry
magnesium
crystal
surface area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33691389A
Other languages
English (en)
Inventor
Masahiro Hieda
檜枝 正博
Miki Nanbu
南部 美樹
Seiji Kobayashi
精司 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP33691389A priority Critical patent/JPH03197316A/ja
Publication of JPH03197316A publication Critical patent/JPH03197316A/ja
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F5/00Compounds of magnesium
    • C01F5/14Magnesium hydroxide
    • C01F5/16Magnesium hydroxide by treating magnesia, e.g. calcined dolomite, with water or solutions of salts not containing magnesium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は水酸化マグネシウム結晶の成長方法に係り、詳
しくは粒子径が大かく比表面積が小さく、しかも二次凝
集が少なく、分散性に優れた六角板状結晶の水酸化マグ
ネシウムを低コストに、かつ工業的に有利に製造するこ
とができる水酸化マグネシウム結晶の成長方法に関する
ものである。
[従来の技術] 水酸化マグネシウムは各種分野において幅広い用途を有
している。その中の一つとして、熱可塑性樹脂の非ハロ
ゲン難燃剤としての利用が注目を集めている。このよう
な難燃剤フィラーとして水酸化マグネシウムを使用する
場合、水酸化マグネシウムとしては結晶粒径が大きく、
しかも二次凝集のないものが要望されている。即ち、結
晶粒径が小さいものでは二次凝集体を形成し易く、樹脂
との混練の際、樹脂に対する分散性が極めて悪く、加工
性、難燃性、機械強度、耐水絶縁性等の話物性に悪影響
を及ぼす。
従来、結晶粒径の大きい高分散性の水酸化マグネシウム
を製造する方法としては、次の■〜■などの方法が提案
されている。
■ 比表面積が30〜60m’/Hの水酸化マグネシウ
ムを10〜40重量%の塩化カルシウム水溶液中に加え
、高温高圧下のオートクレーブ養生によって、比表面積
が10d/g以下の水酸化マグネシウムを製造する方法
(特開昭57−100918号)。
■ 塩基性塩化マグネシウム又は塩基性硝酸マグネシウ
ムを10〜20℃のアルカリ性溶液中で加温した後、高
温高圧下のオートクレープ養生によって1〜20rr?
/gの比表面積を有する水酸化マグネシウムを製造する
方法(特開昭52−115799号)。
■ 1400℃以上で焼成した酸化マグネシウムを原料
酸化マグネシウムの当量数の0. 5%以上の当量数に
相当する酸基及び原料の酸化カルシウムの当量数に相当
する酸基の合計量を酸又はマグネシウム塩として含む水
懸濁スラリー状態で水和する方法(特開昭56=109
820号)。
■ 水酸化マグネシウムを1150〜1350℃で仮焼
、粉砕して得られた<200>方向の結晶子径がaOO
〜1500Aの範囲でBET比表面積が0.7〜2m”
7gの範囲かつ平均粒子径が2〜5μmの範囲にある酸
化マグネシウム微粉末をマグネシウム塩共存下で水和さ
せる方法(特開平l−131022号)。
[発明が解決しようとする課題] しかしながら、上記従来の方法のうち、オートクレープ
養生のみを主とした方法では高温高圧下で長時間のオー
トクレープ処理を必要とすることや、高濃度の塩化カル
シウム水溶液を使用することから、オートクレープの腐
食の恐れがあることや、多量に製造するには大規模且つ
高価な装置を必要とするといった欠点がある。また、水
和による方法では原料に1400℃以上で高温焼成され
た酸化マグネシウムを必要とし、あるいは1150〜1
350℃で仮焼し、粉砕して得られた<200>方向の
結晶子径が800〜1500Aの範囲でBET比表面積
が0.7〜2rrI′l/gの範囲かつ平均粒子径が2
〜5μmの範囲にある酸化マグネシウムといった限定さ
れたものを必要とするといった欠点がある。
本発明は上記従来のオートクレープ法や水和法の問題点
を解決し、粒子径が大きく比表面積が小さく、かつ二次
凝集が少なく分散性が良いといった優れた性質を兼備し
た六角板状の水酸化マグネシウム結晶を効率的に製造す
ることができる水酸化マグネシウム結晶の成長方法を提
供することを目的とする。
[課題を解決するための手段] 本発明の水酸化マグネシウム結晶の成長方法は、マグネ
シウムイオン含有液とアルカリとの混合液をオートクレ
ープ養生により生成させた微細結晶の水酸化マグネシウ
ムの所定量を50℃以上に保持した攪拌機付温水槽に投
入し攪拌分散させて水酸化マグネシウム結晶種子スラリ
ーを得る第1工程と、該第1工程で得られたスラリーに
該スラリー中の結晶種子投入量のyJ〜3倍量の粉砕軽
焼マグネシアを投入して水和反応させる第2以上の高次
工程とを有することを特徴とする。
以下に本発明の詳細な説明する。
本発明においては、まず、第1工程において、苦汁、海
水又は塩化マグネシウム水溶液等のマグネシウムイオン
含有液とアルカリとの混合溶液をオートクレープ養成す
るなどして反応させて微細結晶の水酸化マグネシウムを
得、これを濾過、洗浄して結晶種子ケーキとし、これを
50℃以上に保持された攪拌機付温水槽に一定量投入し
て攪拌、分散させる。ここでアルカリとしては、水酸化
ナトリウム、水酸化カリウム、水酸化カルシウム、石灰
乳、アンモニア等の1種以上を用いることができる。ま
た、オートクレープ養生の処理条件は、110〜140
℃、2〜4 k g / c m’で1〜3時間とする
のが好ましい、このようなオートクレープ養生により得
られる水酸化マグネシウム結晶種子は、攪拌機付温水槽
中の温水に1〜20重量%濃度となるように投入するの
が好ましい。
次いで第2工程において、該温水槽に粉砕軽焼マグネシ
アを第1工程における水酸化マグネシウム結晶種子の5
〜3倍相当量、好ましくはη〜2倍相当量加え水和反応
させる。この時、使用する粉砕軽焼マグネシア及び後述
の第3工程以降の高次工程において使用する粉砕軽焼マ
グネシアは、その比表面積が2〜2om”/g、好まし
くは2〜12rr?/gのものであることが望ましい。
粉砕軽焼マグネシアの比表面積が2d/g未満ではマグ
ネシアの水和速度が著しく遅いために水和反応の完結に
長時間を要し工業的に不利である。一方、マグネシアの
比表面積が20d1gを超えると本発明の目的である二
次凝集の少ない分散性の良い水酸化マグネシウムを得る
ことができない。その主な理由としては、マグネシアの
水和速度が速すぎるために結晶形状が不均一となり凝集
体を形成するためと考えられる。
なお、マグネシアの水和反応温度は第2工程のみならず
第3工程以降の高次工程においても50℃以上、スラリ
ーの沸騰温度以内、好ましくは60〜80℃である。反
応温度が50℃未満ではマグネシアの反応速度は遅く、
水和反応に長時間を要し工業的に不利である。
こうして、スラリーを攪拌混合して水和反応を完結させ
ることにより水酸化マグネシウムを得る。水和反応完結
に要する時間は反応温度等により異なるが、比表面積2
〜12r11″/gの粉砕軽焼マグネシアを用い、水和
反応温度60〜80℃の好適な範囲で行った場合、通常
2〜6時間程度である。
この様にして第2工程を終了して得られたスラリー中の
水酸化マグネシウムは十分粒子径が大きいものであるが
、結晶発達の必要に応じて更に第3工程以降の高次工程
を繰り返す、即ち、第3工程において該第2工程で投入
した粉砕軽焼マグネシアの1/3〜3倍相当量、好まし
くは%〜2倍相当量の粉砕軽焼マグネシアを加え第2工
程の水和反応と同様50℃以上の反応温度で攪拌混合し
て水和反応を完結させる。こうして第3工程を終了した
後は、更に必要に応じて第4工程、第5工程以降の高次
工程の操作を行なう。
即ち、第4工程においては第3工程の粉砕軽焼マグネシ
ア投入量の1/3〜3倍、第5工程においては第4工程
の粉砕軽焼マグネシア投入量の%〜3倍というように、
前工程の粉砕軽焼マグネシア投入量のy1〜3倍の粉砕
軽焼マグネシアを投入して水和反応を完結させる。
特に、本発明においては、各工程におけるスラリー中へ
の粉砕軽焼マグネシアの合計投入量が前工程における粉
砕軽焼マグネシア(第1工程では水酸化マグネシウム)
の合計投入量の2倍となるように投入するのが好ましい
。即ち、第1工程における水酸化マグネシウム結晶種子
の投入量をXとした場合、各粉砕軽焼マグネシア投入量
は下記の如くとするのが最適である。
本発明においては、このような反応工程は2工程以上、
好ましくは2〜5工程行なうことにより、目的とする粒
子径が大きく比表面積の小さい、二次凝集の少ない分散
性の良好な水酸化マグネシウムを得ることができる。
なお、本発明において、最終工程で得られる水酸化マグ
ネシウムスラリー濃度は3〜70重量%、特に20〜5
0重量%であることが好ましい。水酸化マグネシウムス
ラリー濃度が70重量%を超える高濃度になるとスラリ
ーの流動性が城少し、攪拌機やポンプ輸送等の装置の運
転に支障をきたし、また、3重量%未満の低濃度では製
造効率が低い。
一連の反応により得られた水酸化マグネシウム結晶は、
例えば濾過、乾燥、及び粉砕等の処理を経て製品とされ
る。
[作用] 本発明の方法により、粒子径が大きく比表面積が小さい
六角板状の水酸化マグネシウム結晶を成長させることか
で籾る理由の詳細は必らずしも明らかではないが、次の
ように推察される。即ち、マグネシウムイオン含有液と
アルカリとの反応でも水和でも良いが、好ましくは苦汁
もしくは塩化マグネシウム水溶液等とアルカリとの混合
溶液をオートクレープ処理するなどの方法により生成し
た、粒子径は小さいが分散性の良好な水酸化マグネシウ
ムの微結晶が種子となる。そして、次工程において没入
した粉砕軽焼マグネシアが水和して水酸化マグネシウム
が析出する過程において、分散性が良く、二次凝集粒子
を実質的に附随しない六角板状の水酸化マグネシウム結
晶が成長する。
[実施例] 以下に実施例及び比較例を挙げて本発明を更に具体的に
説明するが、本発明はその要旨を超えない限り、以下の
実施例に限定されるものではない。
なお、以下において、比表面積の測定は柳本製作所(株
)製、粉体表面積測定装置r modelGS^−10
」で、形状の観察は(株)日立製作新製rscanni
ng Electron Microanalyzer
 X−650Jにて行った。
実施例1 第1工程において苦汁500mJ2と14重量%のアン
モニア水800mJ!どの混合溶液をオートクレープに
より、120℃、2 k g / c rn’の条件下
で1時間処理し、微細な水酸化マグネシウム結晶種子を
生成させ、これを1.5kgの水を入れた攪拌機付温水
槽に58g投入し、80℃に保ちながら攪拌、分散させ
た。第2工程において、この温水槽に水酸化マグネシウ
ムを焼成して得た比表面積3d/gの粉砕軽焼マグネシ
ア40gを投入し、80℃で6時間攪拌しっつ水和反応
を完結させた。
得られた水酸化マグネシウムスラリーを濾過、洗浄、乾
燥した後、粉砕して得られた水酸化マグネシウムの比表
面積を測定し、また、形状を電子顕微鏡にて観察した。
結果を第1表及び第1図(3000倍)、第2図(10
000倍)に示す。
実施例2 第1工程において苦汁600mftと11.5重量%の
石灰乳800mj2との混合溶液をオートクレープで1
20℃、2 k g / c rr?の条件下で1時間
処理し微細な水酸化マグネシウム結晶種子を生成させ、
これを1.5kgの水を入れた攪拌機付温水槽に58g
投入し、80℃に保ちながら攪拌、分散させた。第2工
程においてこの温水槽に水酸化マグネシウムを焼成して
得た比表面積3rn”7gの粉砕軽焼マグネシア40g
を投入し、80℃で6時間攪拌しつつ水和反応を完結さ
せた。第3工程において、第2工程で使用したと同様の
粉砕軽焼マグネシア80gを温水槽に投入し、80℃で
更に6時間攪拌しつつ水和反応を完結させた。
得られた水酸化マグネシラウスラリ−を濾過、洗浄、乾
燥した後、粉砕して得られた水酸化マグネシウムの比表
面積を測定し、形状を電子顕微鏡にて観察した。結果を
第1表及び第3図(3000倍)、第4図(10000
倍)に示す。
比較例1 第1工程として、水酸化マグネシウムを焼成した比表面
積3d/gの粉砕軽焼マグネシア40gを、80℃の水
1.5kgを入れた攪拌機付温水槽に投入し、80℃に
保ちながら6時間攪拌しっつ水和反応を完結させた。第
2工程として第1工程で使用したと同様の粉砕軽焼マグ
ネシア40gを先の温水槽に投入し、80℃で更に6時
間攪拌しつつ水和反応を完結させた。
得られた水酸化マグネシウムスラリーを濾過、洗浄、乾
燥した後粉砕し、得られた水酸化マグネシウムの比表面
積を測定し、形状を電子顕微鏡にて観察した。結果を第
2表及び第5図(3000倍)、第6図(toooo倍
)に示す。
比較例2 比較例1において、′s2工程終了後、第3工程として
、更に第1.2工程で使用したと同様の粉砕軽焼マグネ
シア80gを温水槽に投入し、80℃で更に6時間攪拌
しながら水和反応を完結させた。
得られた水酸化マグネシウムスラリーを濾過、洗浄、乾
燥した後、粉砕し、得られた水酸化マグネシウムの比表
面積を測定し、その形状を電子顕微鏡により観察した。
結果を第2表及び第7図(3000倍)、第8図(10
000倍)に示す。
第1表、第2表及び第1図〜第8図より明らかなように
、本発明の方法によれば、比表面積が小さく、また二次
凝集のない分散性に優れた水酸化マグネシウム結晶が得
られる。
[発明の効果コ 以上詳述した通り、本発明の水酸化マグネシウム結晶の
成長方法によれば、マグネシウム含有液とアルカリとの
混合液をオートクレープ処理して生成した微結晶を種子
としているため、通常の苛酷なオートクレープを主とし
た長時間の高温高圧下の処理を行なっておらず、また、
原料として高温焼成された酸化マグネシウムや酸あるい
はマグネシウム塩等を必要とすることなく、温和な条件
下で粒子径が大きく比表面積が小さい、二次凝集が少な
く分散性が良いといった特徴を有する六角板状の水酸化
マグネシウム結晶が得られる。
更に、工程数を増減することにより、生成する水酸化マ
グネシウムの粒子径を任意に調整することができるので
各種の用途に通した水酸化マグネシウムを製造すること
が可能である0例えば水酸化マグネシウムは各種分野に
おいて、幅広い用途を有しており、その中の一つとして
熱可塑性樹脂の非ハロゲン難燃剤としての利用が注目を
集めている。このような難燃剤フィラーとして水酸化マ
グネシウムを使用する場合、水酸化マグネシウムとして
比表面積tom”/g以下で結晶粒径が大きく、しかも
二次凝集のないものが要望されている。即ち、比表面積
が1orr?/gを超えるものでは、結晶粒径が小さい
ために二次凝集体を形成し易く、樹脂との混線の際、樹
脂に対する分散性が極めて悪く加工性、難燃性、機械強
度、耐水絶縁性等の諸物性に悪影響を及ぼす、本発明に
よれば粒子径が大きく比表面積の小さい二次凝集が少な
い分散性の良い水酸化マグネシウムを低コストに製造す
るこができるので工業的に有利である。
【図面の簡単な説明】
第1図及び第2図は実施例!で得られた水酸化マグネシ
ウムの粒子構造を示す顕微鏡写真、第3図及び第4図は
実施例2で得られた水酸化マグネシウムの粒子構造を示
す顕微鏡写真、第5図及び第6図は比較例1で得られた
水酸化マグネシウムの粒子構造を示す顕微鏡写真、第7
図及び第8図は比較例2で得られた水酸化マグネシウム
の粒子構造を示す顕微鏡写真である。

Claims (1)

    【特許請求の範囲】
  1. (1)マグネシウムイオン含有液とアルカリとの混合液
    をオートクレープ養生により生成させた微細結晶の水酸
    化マグネシウムの所定量を50℃以上に保持した攪拌機
    付温水槽に投入し攪拌分散させて水酸化マグネシウム結
    晶種子スラリーを得る第1工程と、該第1工程で得られ
    たスラリーに該スラリー中の結晶種子投入量の1/3〜
    3倍量の粉砕軽焼マグネシアを投入して水和反応させる
    第2以上の高次工程とを有することを特徴とする水酸化
    マグネシウム結晶の成長方法。
JP33691389A 1989-12-26 1989-12-26 水酸化マグネシウム結晶の成長方法 Pending JPH03197316A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33691389A JPH03197316A (ja) 1989-12-26 1989-12-26 水酸化マグネシウム結晶の成長方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33691389A JPH03197316A (ja) 1989-12-26 1989-12-26 水酸化マグネシウム結晶の成長方法

Publications (1)

Publication Number Publication Date
JPH03197316A true JPH03197316A (ja) 1991-08-28

Family

ID=18303794

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33691389A Pending JPH03197316A (ja) 1989-12-26 1989-12-26 水酸化マグネシウム結晶の成長方法

Country Status (1)

Country Link
JP (1) JPH03197316A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7686986B2 (en) 2006-01-05 2010-03-30 Headwaters Technology Innovation, Llc Magnesium hydroxide nanoparticles, methods of making same and compositions incorporating same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7686986B2 (en) 2006-01-05 2010-03-30 Headwaters Technology Innovation, Llc Magnesium hydroxide nanoparticles, methods of making same and compositions incorporating same

Similar Documents

Publication Publication Date Title
JP2684112B2 (ja) 針状形状をしたアラゴナイト結晶形炭酸カルシウムの製造方法
US20140134097A1 (en) Magnesium oxide powder having excellent dispersibility and method for producing the same
CN1962452A (zh) 一种纳米碳酸钙的碳化工艺方法
JP4663690B2 (ja) 難燃剤用水酸化マグネシウム粒子及びその製造方法並びに表面処理方法
CN1887709A (zh) 一种硅钢级氧化镁的制备方法
JP3910503B2 (ja) 塩基性炭酸マグネシウムの製造方法
CN112707428A (zh) 一种纳米碳酸钙与拟薄水铝石或白炭黑的联合制备方法
JP5125258B2 (ja) 球状酸化マグネシウム粒子とその製造方法
CN101219801A (zh) 纳米阻燃级氢氧化镁制备方法
CN114134574B (zh) 一种高长径比碱式硫酸镁晶须及其制备方法
CN113666380B (zh) 一种球形二氧化硅的制备方法
CN112714751A (zh) 活性高纯度氧化镁及其生产方法
JPH03170325A (ja) 水酸化マグネシウムの製造方法
JP2704421B2 (ja) 鎖状横造粘土鉱物の製造方法
JPH04362012A (ja) 高分散性水酸化マグネシウムの製造方法
JPS6163526A (ja) 球状塩基性炭酸マグネシウムの製造方法
JPH03197316A (ja) 水酸化マグネシウム結晶の成長方法
JPH0248414A (ja) 水酸化マグネシウムの製造方法
CN107381591B (zh) 一种室温下花瓣状方钠石的制备方法
JP4157202B2 (ja) 紡錘状炭酸カルシウムの製造方法
JP2008137845A (ja) 酸化マグネシウムの製造方法
CN110104666B (zh) 基于水热碳化反应制备无水碳酸镁的方法
JP2003286026A (ja) 炭酸カルシウムウィスカーの製造方法
JPH01320220A (ja) 水酸化マグネシウム及びその製造法
JP2675465B2 (ja) 含水炭酸カルシウムおよびその製造方法