JPH0319697B2 - - Google Patents

Info

Publication number
JPH0319697B2
JPH0319697B2 JP16878887A JP16878887A JPH0319697B2 JP H0319697 B2 JPH0319697 B2 JP H0319697B2 JP 16878887 A JP16878887 A JP 16878887A JP 16878887 A JP16878887 A JP 16878887A JP H0319697 B2 JPH0319697 B2 JP H0319697B2
Authority
JP
Japan
Prior art keywords
photoresist
positive photoresist
positive
thin film
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16878887A
Other languages
Japanese (ja)
Other versions
JPS6413731A (en
Inventor
Ichiro Ishida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP16878887A priority Critical patent/JPS6413731A/en
Publication of JPS6413731A publication Critical patent/JPS6413731A/en
Publication of JPH0319697B2 publication Critical patent/JPH0319697B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Weting (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は電子回路装置等の製造方法に関し更に
詳しくはリフトオフ平担化方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for manufacturing electronic circuit devices, and more particularly to a lift-off leveling method.

(従来の技術) 従来のひさし構造の抜き型を用いたリフトオフ
平坦化法は例えば、ソリツドステートテクノロジ
(Solid State Tech.)1981年8月号74頁〜80頁に
述べられている。この第1の従来技術では、溶解
性の高いフオトレジストの上に溶解性の低いフオ
トレジストを重ね、上下層のレジストの溶解性の
差を利用して下層を上層よりも過現像し、上層で
オーバーハング構造を形成して、堆積膜のリフト
オフを行つていた。又第2の従来例では例えば最
上層に難溶解層を形成したフオトレジストエツチ
ングを用いて下地層をエツチングした後、最上層
の難溶解層を除いてフオトレジストエツチングマ
スクの一部を溶解しオーバーハング構造を形成し
て堆積膜のリフトオフを行つていた。
(Prior Art) A lift-off planarization method using a conventional canopy structure cutting die is described, for example, in Solid State Tech., August 1981, pages 74-80. In this first conventional technique, a photoresist with a low solubility is layered on a photoresist with a high solubility, and the lower layer is overdeveloped than the upper layer by utilizing the difference in solubility between the upper and lower resist layers. Lift-off of the deposited film was performed by forming an overhang structure. In the second conventional example, for example, after etching the base layer using a photoresist etching method in which a hardly soluble layer is formed as the uppermost layer, a part of the photoresist etching mask is dissolved and over-etched, except for the uppermost layer. Lift-off of the deposited film was performed by forming a hang structure.

(発明が解決しようとする問題点) しかし、第1の従来技術では、下地層エツチン
グ時に上層レジストの膜厚が減少し、オーバーハ
ングの強度が低下するので、上層レジストの膜厚
を充分厚くする必要があつた。又、第2の従来技
術では、下地層エツチング時に難溶解層の膜厚が
減少しオーバーハングの強度が低下するので、難
溶解層の厚さを充分厚くする必要があつた。すな
わち第1の従来例における上層レジスト及び第2
の従来例における、難溶解層のに必要な厚さは、
下地のエツチングマスクに必要な厚さに加えてオ
ーバーハングとしての強度を失わない厚さが必要
であつた。その為、従来技術を用いて微細パター
ンの転写を高精度で行う事は不可能であつた。
(Problems to be Solved by the Invention) However, in the first conventional technique, the film thickness of the upper resist layer decreases during underlayer etching, and the strength of the overhang decreases, so the film thickness of the upper resist layer must be made sufficiently thick. The need arose. Further, in the second prior art, the thickness of the hardly soluble layer decreases during the underlayer etching, and the strength of the overhang decreases, so it is necessary to make the thickness of the hardly soluble layer sufficiently thick. That is, the upper layer resist in the first conventional example and the second
In the conventional example, the required thickness of the hardly soluble layer is
In addition to the thickness necessary for the underlying etching mask, it was necessary to have a thickness that would not lose its strength as an overhang. Therefore, it has been impossible to transfer fine patterns with high precision using conventional techniques.

本発明の目的は従来よりも薄いポジ型フトレオ
ジストを用いる事ができ、高精度微細パターンの
転写に適したリフトオフ平坦化法を提供する事に
ある。
An object of the present invention is to provide a lift-off planarization method that allows the use of a thinner positive photoresist than conventional methods and is suitable for transferring fine patterns with high precision.

(問題を解決するための手段) 本発明のリフトオフ平坦化法は、薄膜基板上に
フエノール樹脂を基体とする第1のポジ型フオト
レジストを塗布した後、該第1のポジ型フオトレ
ジストを芳香族系の溶剤にさらす第1の工程と、
第1の工程後、該第1のポジ型フオトレジスト上
に第2のポジ型フオトレジストを塗布する第2の
工程と、第2の工程後露光、現像処理を施し、該
第2のポジ型フオトレジストをパターニングした
後、該第2のポジ型フオトレジストをエツチング
マスクに用いて、該第1のポジ型フオトレジスト
及び薄膜基板を選択的にエツチングし、次に該第
1のポジ型フオトレジストを現像液にさらす第3
の工程と、第3の工程後薄膜を堆積し、次に、該
第1のポジ型フオトレジスト及び該第2のポジ型
フオトレジストを溶解する工程とを含む事を特徴
とする。
(Means for Solving the Problem) In the lift-off planarization method of the present invention, after applying a first positive photoresist based on a phenol resin on a thin film substrate, the first positive photoresist is aromatized. a first step of exposing to a group-based solvent;
After the first step, a second step of coating a second positive photoresist on the first positive photoresist, and a second step of exposing and developing the second positive photoresist. After patterning the photoresist, the first positive photoresist and the thin film substrate are selectively etched using the second positive photoresist as an etching mask, and then the first positive photoresist is etched. The third step is to expose the
and depositing a thin film after the third step, and then dissolving the first positive photoresist and the second positive photoresist.

(作用) 薄膜基板上に設けられたフエノール樹脂を基体
とする第1のポジ型フオトレジストを芳香族系の
溶剤にさらすと、該溶剤が浸透した部分で低分子
化合物の溶解が生じ、その部分は現像液に対して
溶解速度が遅くなる。該溶剤の浸透はレジスト表
面からの拡散によるので、第1の工程後ではレジ
スト表面に近くに溶解速度が遅い領域が形成され
ている。次にこの難溶解領域の上に重ねて、第2
のポジ型フオトレジストを塗布して、露光、現像
処理を施すと、第2のポジ型フオトレジストのパ
ターニングが終了する。第2のポジ型フオトレジ
ストの現像は下地の第1のポジ型フオトレジスト
難溶解領域が露出した時点で終了させる事ができ
る。該第2のポジ型フオトレジストパターンをエ
ツチングマスクに用いて該難溶層、及び下地薄膜
を連続的にエツチングする事ができる。すなわち
第2のポジ型フオトレジストの厚さは上記エツチ
ングにおけるエツチングマスクとして必要な最小
限の厚さが要求され、従来よりも薄くする事がで
きる。
(Function) When the first positive type photoresist, which is formed on a thin film substrate and has a phenolic resin as a base, is exposed to an aromatic solvent, the low-molecular compound is dissolved in the areas where the solvent has permeated, and the parts are dissolved. has a slow dissolution rate in the developer. Since the solvent permeates through diffusion from the resist surface, a region where the dissolution rate is slow is formed near the resist surface after the first step. Next, layer the second layer on top of this difficult-to-dissolve area.
When a positive type photoresist is applied, exposed and developed, patterning of the second positive type photoresist is completed. The development of the second positive type photoresist can be terminated when the underlying first positive type photoresist hardly soluble region is exposed. Using the second positive photoresist pattern as an etching mask, the hardly soluble layer and the underlying thin film can be continuously etched. That is, the thickness of the second positive type photoresist is required to be the minimum thickness required as an etching mask in the above-mentioned etching, and can be made thinner than conventional ones.

次に本試料を現像液にさらすと、エッチングに
より露出した第1のポジ型フオトレジストの一部
が溶解する。この時第1のポジ型フオトレジスト
表面近くに形成された難溶解領域はほとんど溶解
せず、基板に近い領域が優先的に溶解する。その
結果第1のポジ型フオトレジスト層にオーバーハ
ングが形成される。次に薄膜を堆積すると、薄膜
はオーバーハング下には堆積せず、又レジスト側
壁に付着した薄膜はオーバーハング部分で不連続
になる。その結果レジストをレジスト溶解液中で
容易に溶解する事ができる。リフトオフ後の試料
表面には、従来レジスト側壁上に生じていた残査
及び溝がなく品質の高い平坦表面が実現できる。
Next, when this sample is exposed to a developer, a portion of the first positive photoresist exposed by etching is dissolved. At this time, the hardly soluble region formed near the surface of the first positive photoresist is hardly dissolved, and the region close to the substrate is preferentially dissolved. As a result, an overhang is formed in the first positive photoresist layer. When the thin film is then deposited, the thin film will not be deposited under the overhang, and the thin film deposited on the resist sidewalls will be discontinuous at the overhang. As a result, the resist can be easily dissolved in the resist solution. After lift-off, the sample surface is free of the residue and grooves that conventionally occur on resist sidewalls, making it possible to achieve a high-quality flat surface.

(実施例) 第1図a〜fは本発明の実施例を説明するため
のリフトオフ平坦化法工程断面図である。例えば
ニオブ基板1上に厚さ100nmの二酸化シリコン
膜2をスパツタ法で堆積した試料に例えばシプレ
イ社製マイクロポジツト1300−31を用いて第1の
ポジ型フオトレジスト3を50nmの厚さに塗布し
た後、窒素ガス中で70℃30分の熱処理を行つた。
次にクロロベンゼンに7分浸漬し、現像液に対す
る難溶解層4を形成した。(第1図a)次に70℃、
30分窒素ガス中で熱処理した後、例えばシプレイ
社製マイクロポジツト1300−31を用いて、第2の
ポジ型フオトレジスト5を1.0μmの厚さに塗布し
た後、窒素ガス中で80℃、30分の熱処理を行つ
た。その後、紫外光40mJを選択的に照射しシプ
レイ社製マイクロポジツトデベロツパで30秒現像
処理を行つた。(第1図b)水洗後80℃、30分の
窒素中熱処理を経て、平行平板反応性イオンエツ
チング装置を用いてガス圧5PaのCF4、放電電圧
密度0.16W/cm2の条件で第1のポジ型フオトレジ
スト3と、二酸化シリコン膜2を連続的にエツチ
ングし、第2のポジ型フオトレジスト開孔部にニ
オブ基板1を露出させた。(第1図c)その後シ
プレイ社製マイクロポジツトデベロツパに15秒浸
し、第1のポジ型フオトレジストの一部を溶解し
た。この場合、難溶解層4はほとんど溶解しない
ため、6つのアンダーカツトを形成する事ができ
た。(第1図d)上記試料上に例えばニオブ膜7
をスパツタ法で100nmの膜厚に堆積した。(第1
図e)ニオブ膜7は、アンダーカツト6部の下に
は堆積しなかつた。次に例えば、アセトン中で第
1のポジ型フオトレジスト3を溶解すると、二酸
化シリコン膜2の凹部のみにニオブ膜7が残つ
た。その結果、第1図fの示す如く良好な平坦性
を有する試料表面を形成する事ができた。
(Example) FIGS. 1A to 1F are cross-sectional views of a lift-off planarization process for explaining an example of the present invention. For example, a first positive type photoresist 3 is applied to a thickness of 50 nm using Microposit 1300-31 manufactured by Shipley Co., Ltd. on a sample in which a silicon dioxide film 2 with a thickness of 100 nm is deposited by sputtering on a niobium substrate 1. After that, heat treatment was performed at 70°C for 30 minutes in nitrogen gas.
Next, it was immersed in chlorobenzene for 7 minutes to form a layer 4 hardly soluble in a developer. (Figure 1a) Next, 70℃,
After heat treatment in nitrogen gas for 30 minutes, a second positive type photoresist 5 is applied to a thickness of 1.0 μm using, for example, Shipley Microposit 1300-31, and then heated at 80° C. in nitrogen gas. Heat treatment was performed for 30 minutes. Thereafter, it was selectively irradiated with 40 mJ of ultraviolet light and developed for 30 seconds using a Microposit Developer manufactured by Shipley. (Fig. 1b) After washing with water, heat treatment in nitrogen at 80°C for 30 minutes, and then using a parallel plate reactive ion etching apparatus under the conditions of CF 4 gas pressure of 5 Pa and discharge voltage density of 0.16 W/cm 2 . The positive type photoresist 3 and the silicon dioxide film 2 were successively etched to expose the niobium substrate 1 in the opening of the second positive type photoresist. (FIG. 1c) Thereafter, it was immersed in a Microposit Developer manufactured by Shipley for 15 seconds to dissolve a portion of the first positive type photoresist. In this case, since hardly soluble layer 4 was dissolved, six undercuts could be formed. (Fig. 1d) For example, a niobium film 7 is placed on the sample.
was deposited to a thickness of 100 nm using a sputtering method. (1st
Figure e) The niobium film 7 was not deposited under the undercut 6. Next, for example, when the first positive photoresist 3 was dissolved in acetone, the niobium film 7 remained only in the recessed portions of the silicon dioxide film 2. As a result, it was possible to form a sample surface with good flatness as shown in FIG. 1(f).

(発明の効果) 本発明によれば、基板の凹部をセルフアライン
で埋め込むリフトオフ工程において従来よりも薄
いポジ型フオトレジストを用いて高精度の微細パ
ターン転写に適した平坦化リフトオフプロセスが
可能になる。
(Effects of the Invention) According to the present invention, a flattening lift-off process suitable for highly accurate fine pattern transfer is made possible by using a thinner positive photoresist than before in the lift-off process of filling the recesses of the substrate in a self-aligned manner. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図a〜fは本発明の実施例を示すための工
程断面図である。図において、1はNb基板、2
はSiO2膜、3は第1のポジ型フオトレジスト、
4は難溶解層、5は第2のポジ型フオトレジス
ト、6はアンダーカツト、7はNb膜である。
FIGS. 1a to 1f are process cross-sectional views showing an embodiment of the present invention. In the figure, 1 is the Nb substrate, 2
is the SiO 2 film, 3 is the first positive photoresist,
4 is a hardly soluble layer, 5 is a second positive type photoresist, 6 is an undercut, and 7 is a Nb film.

Claims (1)

【特許請求の範囲】[Claims] 1 薄膜基板上にフエノール樹脂を基体とする第
1のポジ型フオトレジストを塗布した後、該第1
のポジ型フオトレジストを芳香族系の溶剤にさら
す第1の工程と、第1の工程後、該第1のポジ型
フオトレジスト上に第2のポジ型フオトレジスト
を塗布する第2の工程と、第2の工程後露光、現
像処理を施して該第2のポジ型フオトレジストを
パターニングし、その後第2のポジ型フオトレジ
ストをエツチングマスクに用いて、該第1のポジ
型フオトレジスト及び薄膜基板を選択的にエツチ
ングし、次に該第1のポジ型フオトレジストを現
像液にさらす第3の工程と、第3の工程後薄膜を
堆積し次に、該第1のポジ型フオトレジスト及び
該第2のポジ型フオトレジストを溶解する工程と
を含む事を特徴とするリフトオフ平坦化法。
1 After applying a first positive photoresist based on phenolic resin on a thin film substrate,
a first step of exposing the positive photoresist to an aromatic solvent; and a second step of applying a second positive photoresist on the first positive photoresist after the first step. After the second step, the second positive photoresist is patterned by exposure and development, and then the second positive photoresist is used as an etching mask to form the first positive photoresist and the thin film. a third step of selectively etching the substrate and then exposing the first positive photoresist to a developer; depositing a thin film after the third step; A lift-off planarization method comprising the step of dissolving the second positive type photoresist.
JP16878887A 1987-07-08 1987-07-08 Lift-off flatting method Granted JPS6413731A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16878887A JPS6413731A (en) 1987-07-08 1987-07-08 Lift-off flatting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16878887A JPS6413731A (en) 1987-07-08 1987-07-08 Lift-off flatting method

Publications (2)

Publication Number Publication Date
JPS6413731A JPS6413731A (en) 1989-01-18
JPH0319697B2 true JPH0319697B2 (en) 1991-03-15

Family

ID=15874481

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16878887A Granted JPS6413731A (en) 1987-07-08 1987-07-08 Lift-off flatting method

Country Status (1)

Country Link
JP (1) JPS6413731A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003032092A1 (en) * 2001-10-05 2003-04-17 The Regents Of The University Of Michigan Planarizing recess etch

Also Published As

Publication number Publication date
JPS6413731A (en) 1989-01-18

Similar Documents

Publication Publication Date Title
JP2004071587A (en) Stamper, method of transferring pattern using it, and method of forming structure by transferring pattern
JPH0779106B2 (en) Method for manufacturing semiconductor integrated circuit
JPS63304644A (en) Method of forming via-hole
US6465157B1 (en) Dual layer pattern formation method for dual damascene interconnect
US4362598A (en) Method of patterning a thick resist layer of polymeric plastic
JP2003218009A (en) Method of forming etching pattern and fine pattern work
JP4039036B2 (en) Alignment mark manufacturing method
JPH0319697B2 (en)
JP2594572B2 (en) Lift-off flattening method
JPH0319696B2 (en)
KR0124638B1 (en) Manufacturing method of multilayer lining for semiconductor device
JPH03119720A (en) Photoresist for lift-off processing use; formation of pattern of photoresist for lift-off processing use; lift-off
JPH02156244A (en) Pattern forming method
JPH0821574B2 (en) Pattern forming method
JP2000181077A (en) Wiring pattern forming method by lift-off method
JPS604221A (en) Manufacture of semiconductor device
KR101016341B1 (en) Method of manufacturing inductor in a semiconductor device
JP2621624B2 (en) Method for manufacturing semiconductor device
JP2001148562A (en) Method of manufacturing wiring board
JP2779528B2 (en) Method for manufacturing semiconductor device
JPS6086543A (en) Formation of micropattern
JPS6154629A (en) Forming process of photoresist pattern
JPH03268427A (en) Formation of organic resin film pattern and manufacture of multilayered wiring board
JPS62137831A (en) Manufacture of semiconductor device
JPH03104113A (en) Formation of resist pattern

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term