JPH03192719A - Compound semiconductor crystal growing method - Google Patents

Compound semiconductor crystal growing method

Info

Publication number
JPH03192719A
JPH03192719A JP33128489A JP33128489A JPH03192719A JP H03192719 A JPH03192719 A JP H03192719A JP 33128489 A JP33128489 A JP 33128489A JP 33128489 A JP33128489 A JP 33128489A JP H03192719 A JPH03192719 A JP H03192719A
Authority
JP
Japan
Prior art keywords
oxide film
crystal
mask
gaas
selective growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP33128489A
Other languages
Japanese (ja)
Other versions
JP2598707B2 (en
Inventor
Yuji Hiratani
雄二 平谷
Yoshimasa Oki
大木 芳正
Hiromi Hidaka
日高 啓視
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Optoelectronics Technology Research Laboratory
Original Assignee
Optoelectronics Technology Research Laboratory
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Optoelectronics Technology Research Laboratory filed Critical Optoelectronics Technology Research Laboratory
Priority to JP33128489A priority Critical patent/JP2598707B2/en
Publication of JPH03192719A publication Critical patent/JPH03192719A/en
Application granted granted Critical
Publication of JP2598707B2 publication Critical patent/JP2598707B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Drying Of Semiconductors (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To make it possible to conduct a selective growth mask patterning by a consistent vacuum process, and to expand the range of manufacturable element structure. CONSTITUTION:An oxide film 3 having a desired pattern is grown on the substrate crystal 1 of a III-V compound semiconductor, and the remaining part is left in an exposed state. Then, an epitaxial crystal growing operation is conducted at a temperature, at which the oxide film 3 is not desorbed, using two materials separately containing III group and V group component constituting the substrate crystal 1, as raw material, and crystal is selectively grown on the exposed part using the oxide film 3 as a mask. In other words, the patterning of the mask for selective growth can be conducted by a vacuum process by making combinations of the properties of GaAs surface and the GaAs surface oxide film 3. Also, as the oxide film 3 can be removed by heating in an As atmosphere, crystal can be regrown on the part where the mark is present. As a result, the range of structure of element, which can be manufactured using a selective growth mask, can be extended.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は化合物半導体の結晶成長法に関するものである
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for growing crystals of compound semiconductors.

[従来の技術] AfIAs表面の酸化膜を選択成長用マスクとしてGa
Asの選択成長を行った場合を例に第2図により説明を
行う。
[Prior art] The oxide film on the surface of AfIAs is used as a mask for selective growth.
An example of selective growth of As will be explained with reference to FIG.

GaAs基板結晶5上に選択成長用マスク材料としてA
IAsa6を結晶成長させる(a)。次に、フォトリソ
グラフィ、エツチング等により上記基板結晶表面に、G
aAs、AfIAsの露出した面7が現れる構造を形成
する(b)。この基板結晶を酸素雰囲気中で加熱すると
、基板結晶表面のGaAs、AlAsの表面は、それぞ
れの酸化膜8.9が形成される(C)。次に、この基板
結晶をAs雰囲気中で加熱すると、GaAsの酸化膜だ
け除去され、基板結晶表面には、AlAsの酸化膜9と
基板のGaAsの露出面7とが現れる(d)。MOCV
D (有機金属気相成長法)によりGaAsの結晶成長
を行うと、ある成長温度の範囲においてGaAs結晶1
0が、基板加熱により露出したGaAs基板結晶表面7
の上に成長する(e)。
A as a mask material for selective growth on the GaAs substrate crystal 5
IAsa6 is grown as a crystal (a). Next, G is etched onto the crystal surface of the substrate by photolithography, etching, etc.
A structure is formed in which exposed surfaces 7 of aAs and AfIAs appear (b). When this substrate crystal is heated in an oxygen atmosphere, oxide films 8.9 are formed on the GaAs and AlAs surfaces of the substrate crystal (C). Next, when this substrate crystal is heated in an As atmosphere, only the GaAs oxide film is removed, and an AlAs oxide film 9 and an exposed GaAs surface 7 of the substrate appear on the substrate crystal surface (d). MOCV
When GaAs crystals are grown by D (organic metal vapor phase epitaxy), the GaAs crystal 1 grows within a certain growth temperature range.
0 is the GaAs substrate crystal surface 7 exposed by substrate heating.
grows on (e).

[発明が解決しようとする課題] 上述の従来技術においては次の問題点がある。[Problem to be solved by the invention] The above-mentioned conventional technology has the following problems.

すなわち、(1)選択成長用マスクのバターニングの際
し、フォトレジスト等による基板結晶表面の汚染が避け
られず、(2)選択成長用マスクとして用いたAfIA
s表面の酸化膜が加熱により除去することが困難である
ため、上記選択成長用マスクを用いて製作できる素子構
造が限さられており。
That is, (1) contamination of the substrate crystal surface by photoresist etc. is unavoidable when patterning the mask for selective growth, and (2) the AfIA used as the mask for selective growth cannot be avoided.
Since it is difficult to remove the oxide film on the s surface by heating, the device structures that can be manufactured using the selective growth mask described above are limited.

(3)ANAs表面の酸化膜上にGaAsの再成長を起
こさせないための成長温度が限られていてプロセスの低
温化が困難であり、その上(4)選択成長マスク用の結
晶を成長する必要があった。
(3) The growth temperature to prevent GaAs from regrowing on the oxide film on the ANAs surface is limited, making it difficult to lower the process temperature, and (4) it is necessary to grow crystals for selective growth masks. was there.

本発明の結晶成長法は、上記の従来法の欠点に鑑み、基
板結晶に汚染を受けることなく、マスクが加熱により容
易に除去でき、マスクの上の再結晶が比較的低温で防止
できる結晶成長法を得ようとするものである。
In view of the drawbacks of the conventional methods described above, the crystal growth method of the present invention allows for crystal growth in which the mask can be easily removed by heating without contaminating the substrate crystal, and recrystallization on the mask can be prevented at a relatively low temperature. It is an attempt to obtain the law.

[課題を解決するための手段] 本発明によれば、mlV族化合物半導体の基板結晶に所
望のパターンの酸化膜を成長させ残りの部分を露出した
まま残して置く工程と、前記基板結晶を構成する■族お
よび■族の2つの成分を別々に含む2つの材料を原料と
し前記酸化膜が脱離しない温度でエピタキシ結晶成長を
行ない、前記酸化膜をマスクとして前記露出した部分に
選択成長させる工程とを含む化合物半導体結晶成長法が
得られる。
[Means for Solving the Problems] According to the present invention, a step of growing an oxide film in a desired pattern on a substrate crystal of an mlV compound semiconductor and leaving the remaining portion exposed, and forming the substrate crystal. A step of performing epitaxial crystal growth on the exposed portions using the oxide film as a mask using two materials separately containing two components of the group (III) and group (III) as raw materials at a temperature at which the oxide film does not desorb. A compound semiconductor crystal growth method including the following is obtained.

また本発明によれば、上記2つの工程あとに。Further, according to the present invention, after the above two steps.

前記結晶基板を前記V族の成分の雰囲気で前記酸化膜が
脱離する温度で加熱して前記マスクの酸化膜を除去する
工程を付加した化合物半導体結晶成長法が得られる。
A compound semiconductor crystal growth method is obtained which includes a step of removing the oxide film of the mask by heating the crystal substrate in an atmosphere of the group V component at a temperature at which the oxide film is desorbed.

[作用] GaAsの表面に酸素雰囲気中で光を照射すると、光の
あった部分だけにGaAs酸化膜を形成することができ
る。
[Operation] When the surface of GaAs is irradiated with light in an oxygen atmosphere, a GaAs oxide film can be formed only on the portions exposed to the light.

またGaAs表面の酸化膜は塩素雰囲気中で電子ビーム
を照射することにより、電子ビームのあたった部分だけ
酸化膜を除去することができる。
Further, by irradiating the oxide film on the GaAs surface with an electron beam in a chlorine atmosphere, the oxide film can be removed only in the portions hit by the electron beam.

上記のGaAs表面及びGaAs表面酸化膜の性質を組
み合わせることにより1選択成長用マスクのバターニン
グが真空プロセスで可能となる。
By combining the properties of the GaAs surface and the GaAs surface oxide film described above, patterning of a mask for one selective growth becomes possible in a vacuum process.

また、GaAs表面の酸化膜は、As雰囲気中で加熱す
ることにより容易に除去できるので、従来技術で困難で
あった選択成長用マスクのあった場所への再成長が可能
となる。したがって、製作できる素子構造の選択成長用
マスクツくターンによる制約が少なくなる。
Furthermore, since the oxide film on the GaAs surface can be easily removed by heating in an As atmosphere, it becomes possible to re-grow the GaAs at the location where the selective growth mask was located, which was difficult in the prior art. Therefore, there are fewer restrictions on the device structure that can be manufactured by turning the mask for selective growth.

上記結晶成長原料と結晶成長法を用−)ること1こより
選択成長できる基板温度範囲が広がり、プロセスの低温
化が可能となる。
By using the above-mentioned crystal growth raw materials and crystal growth method, the substrate temperature range in which selective growth can be performed is expanded, and the temperature of the process can be lowered.

[実施例] 結晶成長原料として、TMG ()リメチルガリウム)
とAs4を用いたMOMBE (有機金属分子線エピタ
キシー)法による。GaAsの選択成長を例にとり実施
例の説明を行う。
[Example] As a raw material for crystal growth, TMG ()limethylgallium)
and MOMBE (organometallic molecular beam epitaxy) using As4. An example will be explained by taking selective growth of GaAs as an example.

室温のGaAs基板結晶1に酸素雰囲気中で。GaAs substrate crystal 1 at room temperature in an oxygen atmosphere.

Arレーザ光2を照射する。この時Arレーザ光の照射
されたGaAs基板結晶表面の酸化が促進され、GaA
s酸化膜3が形成される(a)。
Irradiate with Ar laser light 2. At this time, the oxidation of the GaAs substrate crystal surface irradiated with the Ar laser beam is promoted, and the GaAs
An s oxide film 3 is formed (a).

次に上記GaAs基板結晶1上に、TMGとAs4を原
料としてMOMBE法により、QaAsの結晶成長を行
う。この時GaAs酸化膜3以外の領域に、GaAs結
晶4が選択成長する。成長温度は、GaAs酸化膜3が
脱離しないように最高630℃に押さえる必要がある(
b)。
Next, QaAs crystal is grown on the GaAs substrate crystal 1 by the MOMBE method using TMG and As4 as raw materials. At this time, GaAs crystal 4 is selectively grown in a region other than GaAs oxide film 3. The growth temperature must be kept at a maximum of 630°C to prevent the GaAs oxide film 3 from desorbing (
b).

結晶成長が終了した後、GaAs基板結晶を蒸気圧の高
いV族のAsの雰囲気で630℃以上に加熱すると、G
aAs酸化膜3が除去でき、laで示すように、GaA
s基板結晶1が露出する。
After crystal growth is completed, when the GaAs substrate crystal is heated to 630°C or higher in an atmosphere of group V As with high vapor pressure, G
The aAs oxide film 3 can be removed, and as shown by la, the GaA
The s-substrate crystal 1 is exposed.

このGaAs酸化膜を除去した露出面1aには、再成長
GaAs結晶4aを形成することができる(d)。
A regrown GaAs crystal 4a can be formed on the exposed surface 1a from which the GaAs oxide film has been removed (d).

上記の実施例では光の当った所でGaAs表面の酸化が
進むことを利用して選択成長マスクの形成を行う場合に
ついて述べた。この他に、塩素雰囲気中でGaAs酸化
膜に電子ビームを照射すると、?11子ビームの照射さ
れたところのGaAs酸化膜が除去できることを利用し
ても2選択成長用のマスクの形成を行うことができる。
In the above embodiment, a case was described in which a selective growth mask was formed by utilizing the progress of oxidation of the GaAs surface in areas exposed to light. In addition to this, what happens when a GaAs oxide film is irradiated with an electron beam in a chlorine atmosphere? A mask for two-selective growth can also be formed by taking advantage of the ability to remove the GaAs oxide film in the area irradiated with the 11-element beam.

父上記の実施例ではmlV族の一例としてGaA4結晶
について述べたが、他のmlV族たとえばANP、In
Sbなどにも適用できる。酸化膜の脱離温度、酸化膜の
除去に用いるV族の蒸気圧の高い元素を用いることなど
全く同じように扱うことができる。
In the above embodiment, GaA4 crystal was described as an example of the mlV group, but other mlV group crystals such as ANP, In
It can also be applied to Sb, etc. The desorption temperature of the oxide film and the use of a Group V element with a high vapor pressure for removing the oxide film can be handled in exactly the same way.

[発明の効果] 本発明を用いることによる効果を以下に述べる。[Effect of the invention] The effects of using the present invention will be described below.

(1)選択成長用マスクとしてGaAs表面の酸化膜を
用いることにより選択成長用マスクの形成−選択成長−
選択成長用マスクの除去−再成長を真空−貫プロセスと
して行うことが可能となる。したがって、大気、フォト
レジスト等による基板結晶表面の汚染を受けることがな
い。
(1) Formation of a mask for selective growth by using an oxide film on the GaAs surface as a mask for selective growth - Selective growth -
Removal of the selective growth mask and regrowth can be performed as a vacuum-through process. Therefore, the substrate crystal surface is not contaminated by the atmosphere, photoresist, etc.

(2)選択成長用マスクとして用いるGaAs表面の酸
化膜が、基板結晶の加熱により容易に除去できるため、
製作できる素子構造の範囲が広がる。
(2) The oxide film on the GaAs surface used as a mask for selective growth can be easily removed by heating the substrate crystal.
The range of device structures that can be manufactured is expanded.

(3)基板結晶表面の酸化膜上に再成長の起こらない成
長温度範囲が低温側に伸ばせるため、プロセスの低温化
が可能となる。
(3) Since the growth temperature range in which regrowth does not occur on the oxide film on the substrate crystal surface can be extended to the lower temperature side, the process temperature can be lowered.

(4)選択成長用マスクだけのための結晶を成長する必
要がなくなるため、プロセスの簡略化ができる。
(4) It is not necessary to grow a crystal only for the mask for selective growth, so the process can be simplified.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による選択成長および再成長の工程を示
す図、第2図は従来技術による選択成長および再成長の
工程を示す図である。 記号の説明:1はGaAs基板結晶、laはGaAs基
板結晶露出面、2はArレーザ光、3はGaAs酸化膜
、4はGaAs結晶、4aは再成長GaAs結晶をそれ
ぞれあられしている。 第1図 10 GaAs基板結晶露出面 第2図 手続補正書(自発) 平成2年3月19 日
FIG. 1 is a diagram showing the selective growth and regrowth process according to the present invention, and FIG. 2 is a diagram showing the selective growth and regrowth process according to the prior art. Explanation of symbols: 1 is a GaAs substrate crystal, la is an exposed surface of a GaAs substrate crystal, 2 is an Ar laser beam, 3 is a GaAs oxide film, 4 is a GaAs crystal, and 4a is a regrown GaAs crystal. Figure 1 10 GaAs substrate crystal exposed surface Figure 2 Procedure amendment (voluntary) March 19, 1990

Claims (2)

【特許請求の範囲】[Claims] (1)III/V族化合物半導体の基板結晶に所望のパタ
ーンの酸化膜を成長させ残りの部分を露出したまま残し
て置く工程と、前記基板結晶を構成するIII族およびV
族の2つの成分を別々に含む2つの材料を原料とし前記
酸化膜が脱離しない温度でエピタキシ結晶成長を行ない
、前記酸化膜をマスクとして前記露出した部分に選択成
長させる工程とを含む化合物半導体結晶成長法。
(1) A step of growing an oxide film in a desired pattern on a substrate crystal of a group III/V compound semiconductor and leaving the remaining portion exposed;
A compound semiconductor comprising the step of: performing epitaxial crystal growth using two materials separately containing two components of the group as raw materials at a temperature at which the oxide film does not desorb, and selectively growing on the exposed portion using the oxide film as a mask. Crystal growth method.
(2)III/V族化合物半導体の基板結晶に所望のパタ
ーンの酸化膜を成長させ残りの部分を露出したまま残し
て置く工程と、前記基板結晶を構成するIII族およびV
族の2つの成分を別々に含む2つの材料を原料とし前記
酸化膜が脱離しない温度でエピタキシ結晶成長を行ない
、前記酸化膜をマスクとして前記露出した部分に選択成
長させる工程と、前記結晶基板を前記V族の成分の雰囲
気で前記酸化膜が脱離する温度で加熱して前記マスクの
酸化膜を除去する工程とを含む化合物半導体結晶成長法
(2) A step of growing an oxide film in a desired pattern on a substrate crystal of a group III/V compound semiconductor and leaving the remaining portion exposed;
a step of performing epitaxial crystal growth using two materials separately containing two components of the group as raw materials at a temperature at which the oxide film does not desorb, and selectively growing on the exposed portion using the oxide film as a mask; a step of removing the oxide film of the mask by heating the mask in an atmosphere of the Group V component at a temperature at which the oxide film is desorbed.
JP33128489A 1989-12-22 1989-12-22 Compound semiconductor crystal growth method Expired - Lifetime JP2598707B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33128489A JP2598707B2 (en) 1989-12-22 1989-12-22 Compound semiconductor crystal growth method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33128489A JP2598707B2 (en) 1989-12-22 1989-12-22 Compound semiconductor crystal growth method

Publications (2)

Publication Number Publication Date
JPH03192719A true JPH03192719A (en) 1991-08-22
JP2598707B2 JP2598707B2 (en) 1997-04-09

Family

ID=18241967

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33128489A Expired - Lifetime JP2598707B2 (en) 1989-12-22 1989-12-22 Compound semiconductor crystal growth method

Country Status (1)

Country Link
JP (1) JP2598707B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005101470A1 (en) * 2004-04-13 2005-10-27 Riber Method of three-dimensional microfabrication and high-density three-dimensional fine structure
JP2006237339A (en) * 2005-02-25 2006-09-07 Sanyo Electric Co Ltd Manufacturing method of nitride-based semiconductor device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005101470A1 (en) * 2004-04-13 2005-10-27 Riber Method of three-dimensional microfabrication and high-density three-dimensional fine structure
US7432176B2 (en) 2004-04-13 2008-10-07 Riber Method of three-dimensional microfabrication and high-density three-dimentional fine structure
CN100449691C (en) * 2004-04-13 2009-01-07 瑞必尔 Method of three-dimensional microfabrication and high-density three-dimensional fine structure
KR101026507B1 (en) * 2004-04-13 2011-04-01 리베르 Method of three-dimensional microfabrication and high-density three-dimensional fine structure
JP2006237339A (en) * 2005-02-25 2006-09-07 Sanyo Electric Co Ltd Manufacturing method of nitride-based semiconductor device

Also Published As

Publication number Publication date
JP2598707B2 (en) 1997-04-09

Similar Documents

Publication Publication Date Title
JP3330218B2 (en) Semiconductor device manufacturing method and semiconductor device
JPH0794494A (en) Manufacture of compound semiconductor device
JP3152877B2 (en) Method of masking a substrate during the manufacture of a semiconductor device
JPH03192719A (en) Compound semiconductor crystal growing method
JP2704931B2 (en) Method for forming selective growth mask and method for removing same
JPS59116192A (en) Crystal growth method by molecular beam
JP2686699B2 (en) Method for forming GaN mask for selective growth
JP2711475B2 (en) Selective epitaxial growth method
JP2671089B2 (en) Quantum structure fabrication method
JPS5839014A (en) Manufacture of semiconductor device
JP2714703B2 (en) Selective epitaxial growth method
JP2729866B2 (en) Compound semiconductor epitaxial growth method
JP3495786B2 (en) Oxygen removal method, contaminant removal method, compound semiconductor device growth method using the same, and growth apparatus used therefor
JPH04306821A (en) Compound semiconductor crystal growth method
JPS63148616A (en) Manufacture of semiconductor device
JP2897107B2 (en) Crystal growth method
JP2810175B2 (en) Vapor growth method
JP2737925B2 (en) Selective heteroepitaxial growth method
JP2764488B2 (en) Method of patterning protective film
JP2721683B2 (en) Method for growing compound semiconductor thin film crystal
JPS6398120A (en) Crystal growth method
JPS59228715A (en) Selective epitaxial growth method
JPH08316149A (en) Crystal growing method for compound semiconductor
JPH01226796A (en) Treatment of indium-phosphorus substrate
JPH0832047A (en) Manufacture of semiconductor fine structure