JPH0318604A - Valve seat - Google Patents

Valve seat

Info

Publication number
JPH0318604A
JPH0318604A JP15105789A JP15105789A JPH0318604A JP H0318604 A JPH0318604 A JP H0318604A JP 15105789 A JP15105789 A JP 15105789A JP 15105789 A JP15105789 A JP 15105789A JP H0318604 A JPH0318604 A JP H0318604A
Authority
JP
Japan
Prior art keywords
alloy
valve seat
powder
wear
wear resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15105789A
Other languages
Japanese (ja)
Inventor
Yoshiteru Yasuda
芳輝 保田
Akira Fujiki
章 藤木
Keitaro Suzuki
啓太郎 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Resonac Corp
Original Assignee
Hitachi Powdered Metals Co Ltd
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Powdered Metals Co Ltd, Nissan Motor Co Ltd filed Critical Hitachi Powdered Metals Co Ltd
Priority to JP15105789A priority Critical patent/JPH0318604A/en
Publication of JPH0318604A publication Critical patent/JPH0318604A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Lift Valve (AREA)

Abstract

PURPOSE:To obtain heat resistance and wear resistance at high temperature, and to prevent increase in wear of opponent material by manufacturing valve seat material through infiltration of Pb or Pb alloy into holes of a sintered body having a prescribed composition. CONSTITUTION:Cu or Cu alloy coating of 5 to 30weight% is applied to the whole or a part of raw material powder of one kind or more. Powder, which is composed of C of 0.4 to 3.0weight%, Mo and/or W of 5 to 25weight%, Co and/or Ni of 0.5 to 20weight%, Si of 0.1 to 0.9weight%, P of 0.1 to 0.8weight%, Cr of 2 to 15weight%, Cu of 5 to 15weight%, Fe and impurities for the remainder, is mixed, compacted and sintered. In this way, a sintered body for valve seat material is manufactured so that it has Cu or Cu alloy powder distributed finely and uniformly in its matrix, and holes of 10 to 25volume% with Pb or Pb alloy infiltrated into them. By this constitution, such a valve seat can be furnished that has heat resistance, wear resistance at high temperature, and does not cause remarkable wear of a valve.

Description

【発明の詳細な説明】[Detailed description of the invention] 【発明の目的】[Purpose of the invention]

(産業上の利用分野) 本発明は、エンジンの動弁機構におけるバルブを相手材
としてこれと対をなして利用されるバルプシ一トに係り
、より詳しくは、優れた耐熱性および高温耐摩耗性を示
すと共に、相手バルブに対する攻撃性の小さいなじみ性
に優れた耐熱耐摩耗性バルブシ一トに関するものである
. (従来の技術) 近年、自動車用エンジンに対する高出力,高回転化およ
び省燃費化ならびに排ガス対策の要求に伴って、エンジ
ンの動弁系部材の摩耗が注視されつつあり、特にバルブ
およびバルブシ一トはエンジンの高排気温化もあって従
来以上に厳しい条件にさらされるようになっている. 従来、自動車用エンジンのバルブシ一トには、鉄系焼結
合金,耐熱鋼.鋳鉄がその素材として使用されているが
、特に高温での耐摩耗性を高めるため、クロム,コバル
ト,モリブデン,ニッケル等の合金化元素を添加したも
のや鉄系焼結合金に鉛を溶浸したものなども開発されて
おり、例えば、特開昭57−108246号公報,特開
昭62−211355号公報,特開昭63−10914
2号公報,特開昭63−203754号公報,特開昭6
3−290249号公報などに開示されたものがある. (発明が解決しようとする課題) しかしながら、このような従来のバルブシ一トにあって
は、従来以上の高温での耐摩耗性の向上を実現するため
にさらに合金元素を添加して複合炭化物や金属間化合物
を極度に増加させるようにすると、相手材であるバルブ
の摩耗を増大させるという不具合が生じ,また、鉛の溶
浸を施した鉄系焼結合金においてはバルブシ一トの表面
温度が300℃程度を超えると、鉛の膨張によりシート
内部および表面にクラックが入ったり、溶浸した鉛が抜
け出して耐摩耗性を著しく低下させてバルブシ一ト自身
も大きく摩耗することがありうるという問題があった. そこで、このような背景から、高温燃焼下において耐熱
性,耐摩耗性を維持するために、鉛に代って、銅あるい
は銅合金を溶浸するかあるいは圧粉体戊形時に銅あるい
は銅合金粉を混合し焼結して、lII!#熱性,高温耐
摩耗性を高めたバルブシ一トも開発されているが、溶浸
あるいは混粉一焼結という製造方法においては、銅の偏
析が起こることがあり、銅あるいは銅合金を均一かつ微
細に分散させることは困難であってさらにはバルブシ一
トの使用環境が厳しくなるという点から考えると耐熱性
,高温耐摩耗性においては改善の余地があるという課題
を有していた. (発明の目的) 本発明は、このような従来の課題にかんがみてなされた
もので,自動車用エンジン,とくに高性能エンジンのバ
ルブシ一トに要求される耐熱性,高温耐摩耗性を具備し
かつ相手材であるバルブの摩耗を著しく増大させること
がないようなバルブシ一トを提供することを目的として
いるものである.
(Field of Industrial Application) The present invention relates to a valve seat that is used as a companion material to a valve in an engine valve mechanism, and more specifically, to a valve seat that has excellent heat resistance and high-temperature wear resistance. The present invention relates to a heat-resistant and wear-resistant valve seat that exhibits excellent compatibility and is less aggressive to mating valves. (Prior Art) In recent years, with the demand for high output, high rotation speed, fuel efficiency, and exhaust gas countermeasures for automobile engines, attention has been paid to the wear and tear of engine valve train components, especially valves and valve seats. are now exposed to more severe conditions than before, due in part to higher engine exhaust temperatures. Conventionally, valve seats for automobile engines have been made of ferrous sintered alloys and heat-resistant steel. Cast iron is used as the material, but in order to increase wear resistance especially at high temperatures, alloying elements such as chromium, cobalt, molybdenum, and nickel are added, or iron-based sintered alloys are infiltrated with lead. For example, JP-A-57-108246, JP-A-62-211355, and JP-A-63-10914.
Publication No. 2, JP-A-63-203754, JP-A-6
Some of them are disclosed in Publication No. 3-290249. (Problem to be solved by the invention) However, in such conventional valve seats, alloying elements are further added to improve wear resistance at higher temperatures than before, such as composite carbide or composite carbide. If the amount of intermetallic compounds is increased excessively, there will be a problem that the wear of the valve seat, which is the mating material, will increase.In addition, in iron-based sintered alloys that have been infiltrated with lead, the surface temperature of the valve seat will increase. If the temperature exceeds about 300℃, cracks may appear inside and on the seat due to lead expansion, and infiltrated lead may escape, significantly reducing wear resistance and causing significant wear on the valve seat itself. was there. Therefore, in order to maintain heat resistance and wear resistance under high-temperature combustion, copper or copper alloys are infiltrated instead of lead, or copper or copper alloys are infiltrated during compaction. Mix the powder and sinter it, lII! # Valve seats with improved heat resistance and high-temperature wear resistance have been developed, but copper segregation may occur in the infiltration or mixed powder-sintering manufacturing methods, and copper or copper alloys cannot be uniformly coated. Considering that it is difficult to disperse finely and the environment in which valve seats are used becomes harsher, there is still room for improvement in heat resistance and high-temperature wear resistance. (Object of the Invention) The present invention has been made in view of the above-mentioned conventional problems, and provides a valve seat for automobile engines, particularly high-performance engines, which has the heat resistance and high-temperature wear resistance required. The purpose of this product is to provide a valve seat that does not significantly increase the wear of the mating material, the valve.

【発明の構成】[Structure of the invention]

(課題を解決するための手段) 本発明に係るバルブシ一トは、1種または2種以上の原
料粉末の全部または一部にgi量比で5〜30%のCu
あるいはCu合金のコーティングが施され且つ重量比で
C;0.4〜3.0%、MOおよびWのうちいずれか1
種または2,l!.5〜25%、CoおよびNiのうち
いずれか1種または2種;0.5〜20%、St;0.
1〜0.9%、P;0.1x0.8%、Cr;2 〜1
5%、Cu;5〜30%を含有し、残部Feおよび不純
物からなる組成を有する粉末を混粉,成形,焼結してな
り、マトリックス中にCuあるいはCu合金が微細にか
つ均一に分散していると共にlO〜25容量%の空孔率
を有する焼結体の前記空孔にPbあるいはPb合金を溶
浸してなる構成としたことを特徴としており、このよう
なバルブシ一トの構成を前述した従来の課題を解決する
ための手段としている. 本発明者らは、バルブシ一トのマトリックス中に微細な
炭化物が分散していると共に、このマトリックス中にC
uあるいはCu合金が微細にかつ゛均一に分散した組織
を有し、空孔内に溶浸したPbあるいはPb合金の自己
潤滑性によって、すぐれた耐熱,高温耐摩耗性およびな
じみ性を示すという新規な知見を得た. 本発明はこのような従来にない知見に基づいてなされた
ものであり、まず、l,?!または2種以上の原料粉末
の全部あるいはその一部にCuあるいはCu合金のコー
ティングを施したものを用いて、混粉および成形しさら
に焼結することによって、CuあるいはCu合金がマト
リックス中に微細にかつ均一に分散したものにして、熱
伝導性を高め,耐熱性,高温耐摩耗性およびなじみ性を
向上させ、しかも、Cuの一部がマトリックスに固溶し
てマトリックスを強化し、高温でのバルブシ一トの強度
を高め、高温下でのPbあるいはPb合金の膨張,溶け
出しによる強度低下を抑えることができるようにしたも
のである.また、焼結過程において、原料粉末の表面に
CuあるいはCu合金がコーティングされているため、
炭化物の凝集を抑制し、均一に炭化物を分散させること
ができるようになっている.さらに、CuによるFeと
Pbの濡れ性の改善によって、PbあるいはPb合金を
溶浸したことによる潤滑効果が向上し、低速回転時すな
わち低温下(150〜250℃)であってもすぐれた耐
摩耗性となじみ性を有し、高温から低温までの広い領域
にわたってすぐれた耐摩耗性を有し、とくに無鉛ガンリ
ンを使用するエンジンのバルブシ一トとして用いた場合
にすぐれた性能を発揮することが判明した. 次に,本発明に係るバルブシ一トの各成分元素が持つ作
用および組威(重量%)ならびに気孔率の限定理由につ
いて述べる. C;O.,a〜3.0% Cはその一部が成分中のMo ,W,C rなどの炭化
物形或元素と結合して炭化物を形威することにより耐摩
耗性を向上させると共に、残りはマトリックス中に固溶
して高い硬さと強度を与える作用を有するが、0.4%
未満ではその効果がさほど認められず、3.0%を超え
ると炭化物の析出量増加と粗大化が起こり合金が脆化す
るばかりか相手部材を損傷するようになるため、その含
有量を0.4〜3.0%とした. MnおよびWのうちいずれか1種または2種;5〜25
% MOおよびWは成分中のFeやCrとともに複炭化物を
形威して耐摩耗性を与え、一部はマトリックス中に固溶
してマトリックスを強化するとともに、焼もどし硬化能
を有しているので選択的に含有されるが、その合計含有
量が5%未満では所望の効果が得られず、合計含有量が
25%を超えて含有させてもコストの上昇の割にはより
一層の改善効果は認められないので、5〜25%と定め
た. CoおよびNiのうちいずれか1種または2種;0.5
〜20% CoおよびNiはマトリックスのより一層の強化と耐熱
性およびなじみ性のより一層の改善をはかるために選択
的に含有されるが、その合計含有量が0.5%未満では
所望の添加効果が認められず、合計含有量が20%を超
えてもコストの上昇の割には特性向上の効果がなく、し
たがって0.5〜20%と定めた. St;0.1〜0.9% Siは0.1%未満の添加量では脱酸効果が少なく、粉
末中の酸素含有量が多くなり、焼結性が低下するので好
ましくなく、0.9%を超えても脱酸効果が少なく、戒
形性が低下するだけであるので,その含有量を061〜
0.9%と定めた. P;0.1〜0.8% Pは鉄系合金粉末の低融点液相を形成し,低温活性化に
より液相焼結を促進させる上で重要であると共に、一部
は硬質相として析出して耐摩耗性向上に有効であるが、
0.1%未満ではその効果が少なく、また0.8%を超
えると液相が過多となり、ネットワーク状に液相が形成
されて焼結合金を脆化させ、焼結部品の寸法精度を悪化
させるので、その含有量を0.1−0.8%に限定した
. Cr;2〜15% CrはMo,W等とともに複炭化物を形威し、耐摩耗性
を向上させると同時に、マトリックス中に固溶し、焼入
れ焼もどし効果を高め、さらにマトリックスの耐食性を
高めるが、2%未満ではその効果は少なく,15%を超
えて含有させてもより一層の改善がないばかりでなく、
焼結体の機械的強度を低下させてしまうことから,その
含有量を2〜15%に限定した. コーティングされるCuあるいはCu合金;5〜30% 1種または2種以上の原料粉末の全部または一部にコー
ティングされたCuあるいはCu合金は、原料粉末の混
粉,成形,焼結後にCuが一部マトリックス中に固溶し
、マトリックスを強化し、残部はマトリックス中に均一
に分散することによって、熱伝導性を向上させ,熱負荷
を軽減して#熱性を高めると同時に,エンジンの燃焼作
動時には表面に酸化膜を形成してこの皮膜が潤滑作用を
なして耐摩耗性を向上させる.そして、CuあるいはC
u合金のコーティング量が5%未満ではその効果は少な
く、30%を超えると焼結体の強度が低下するため,原
料粉末へのコーティング量は5〜30%とした. 本発明において、CuあるいはCu合金の添加方法とし
て、マトリックス中にCuあるいはCu合金を微細にか
つ均一に分散させるために、原料粉末の全部またはその
一部にCuあるいはCu合金のコーティングを施し、混
粉一威形一焼結の過程をとる. この場合のコーティングは、例えば化学的あるいは電気
化学的方法で行い、微細にかつ均一に焼結体のマトリッ
クス中にCuあるいはCu合金を分散させることを考慮
して、コーティングの形態は、原料粉末をCuあるいは
Cu合金でほぼ完全に被覆したものよりも原料粉末の一
部分を被覆したものの方が好ましく、経済的にも有利で
ある.なお、上記Cu合金としては耐食性のすぐれたい
ずれも公知のcu−Zn合金,Cu−Co合金.Cu−
Cr合金,Cu−Sn合金,Cu−Ni合金などの使用
が望ましい. 焼結体の空孔率;10〜25容量% 焼結体の空孔率が10容量%未満では、オープンボア量
が少なすぎて潤滑性にすぐれたPbあるいはPb合金を
十分に溶没することができず、耐摩耗性,耐なじみ性お
よび強度も十分でなく、25容量%を超えた空孔率とな
ると強度の低下が著しく,かつまた耐摩耗性も劣化する
ようになることから、焼結体の空孔率を10〜25容量
%と限定した. 空孔に溶浸されるPbあるいはPb合金:焼結体の空孔
に溶浸されるPbあるいはPb合金において,Pb合金
としては潤滑性にすぐれたいずれも公知のPb−Sn合
金,Pb−In合金,Pb−Sb合金などの使用が望ま
しい. (発明の作用) 本発明に係るバルブシ一トは上記した構成を有するもの
であり、バルブシ一トのマトリックス中に微細な炭化物
が分散していると共に、マトリックス中にCuあるいは
Cu合金が微細にかつ均一に分散した組織を有し、空孔
内に溶浸したPbあるいはPb合金の自己潤滑性によっ
て、すぐれた#熱性,耐摩耗性およびなじみ性を示すも
のになるという作用がもたらされる. (実施例) つぎに、本発明に係るバルブシ一トの実施例を比較例と
対比しながら詳細に説明する.原料粉末として、−10
0メッシュのFe一Cr−Mo −W−St−C系アト
マイズ合金粉末数種類と、−325メッシュのF e 
− M o合金粉末あるいは純MO粉末,Fe−W合金
粉末あるいは純W粉末およびFe−Cr合金粉末と、一
250メッシュのFe−26%P合金粉末と、−100
メッシュのCO粉末と、−200メッシュのNi粉末と
、−250メッシュのPb粉末と、−250メッシュの
Pb−Sn合金粉末等を用意し、まず、これらの原料粉
末を第1表のN0.1〜5に示す配合組或となるように
それぞれ配合し,V型混合機を用いて30分間混合した
.このうち、第1表に示す被コーティング原料粉末の比
率で原料粉末の全部または一部にCuのコーティングを
施し、高級脂肪酸を0.5重量%加えて再びV型混合機
により混合した.このとき、Cuのコーティングは、コ
ーティングCu量が重量%でlO〜20%となるように
行った. 次に、得られた各混合粉末を7tonf/cm2の戒形
圧にてバルブシ一ト形状の圧粉体に或形し、アンモニア
分解ガス中において温度1080〜1200℃に60分
間保持して焼結し、引き続いて焼入れ焼戻し処理を施す
ことにより、第2表に示す組或の焼結体を得た.ついで
、得られた焼結体を同じく第2表に示す溶浸材であるP
bあるいはPb合金を融解した500℃前後の浴中に浸
漬し、焼結体の空孔内にPbあるいはPb合金を高圧溶
浸したのち、機械加工を加えることによって本発明実施
例のバルプシ一トN0.  1〜5を得た. (比較例) 比較のために、第3表に示す比較例のバルブシ一トNo
,  1〜5を用意した.これらのうち、比較例N0.
  1〜3は、Cuの添加をCu粉末の混合により行い
,戊形.焼結したvkPbを溶浸して製造したものであ
って、第3表に示すように、第1表に示した実施例のバ
ルブシー}N0.1〜3とそれぞれ同じ組成を有するバ
ルブシ一トである(ただし、比較例N0. 3ではCu
を含まず.).また、比較例N0. 4およびN0. 
5は一般に使用されているそれぞれPbを溶浸したタイ
プのバルプシ一トおよびJIS耐熱鋼材SUH4を材料
とするバルブシ一トである. (評価試験例) ついで、実機動弁機構部を模した第1図に示すようなバ
ルブーバルブシート単体試験機を用いて、実施例N0.
 1〜5および比較例N0. 1〜5の各バルブシ一ト
について摩耗試験を行った.このバルブーバルブシ一ト
単体試験Ia1は,回転するカム2によって上下運動す
るバルブ3がスプリング4によってバルブシ一ト5を衝
撃的にたたく動作を繰り返し行うようになっており、バ
ルブ3の上方に配設したガスバーナ6によりバルブ3を
加熱し、ヘッド7にとりつけられたエアーノズル8より
矢印方向にエアーを吹き付けるようになっている.この
とき、バーナ6に供給されるプロパンガス供給量とノズ
ル8からのエアーの吹き付け量を制御して,バルブ3の
温度およびバルブシ一ト5の温度を一定に雑持し、吸気
バルブシ一トの使用環境を葱定した第4表の条件で試験
を行い,バルブシ一ト5およびバルブ3の当り面の形状
変化よりそれぞれの摩耗量を求めた. 第  4  表 この摩耗試験結果を第2図に示す. 第2図より明らかなように、本発明実施例のバルブシ一
トN0.1.2とほぼ同じ組成をもっと共にCu粉末を
混粉により添加した比較例のバルブシー}N0.1.2
では、シート温度400℃での摩耗量が本発明実施例の
バルプシー}N0.1.2の同温度での摩耗量に比べて
多くなっており,またシート温度250℃の低温ではC
uが均一に分散されてないため硬質な炭化物の凝集がみ
ちれ、耐摩耗性が不足していることが認められた.また
、比較例のバルプシー}N0.3ではC量が少なく炭化
物の量が少ないため、シート温度250℃では優れた耐
摩耗性を示すがシート温度400℃では#摩耗性が著し
く劣化していることが認められた.さらに、従来材から
なる比較例のバルプシーH(0.4.5ではいずれもバ
ルブシ一ト温度400℃の高温での耐摩耗性に劣り、こ
のうち比較例のバルプシー}N0.4では表面に割れが
生じていた. これに比べて、本発明実施例のバルブシ一トN0.  
1〜3は、いずれも低温(シート温度250℃)から高
温(シート温度400℃)まで耐摩耗性にすぐれており
、均一にCuを分散させた効果が認められた.そして、
本発明実施例のバルブシ一トの摩耗量は、分散した炭化
物量の多いもの(実施例のバルプシー}N0. 4 .
 5)において低温(シート温度250℃)での摩耗量
が若干多くなっているが高温での摩耗量はかなり少なく
、従来材からなる比較例のバルブシー}N0.. 4 
. 5に比べて高温耐摩耗性が著しく改善されているこ
とが認められた.
(Means for Solving the Problems) The valve seat according to the present invention has a Cu content of 5 to 30% in gi ratio in all or part of one or more raw material powders.
Alternatively, a Cu alloy coating is applied and the weight ratio is C; 0.4 to 3.0%, any one of MO and W.
Seed or 2,l! .. 5-25%, any one or two of Co and Ni; 0.5-20%, St; 0.
1-0.9%, P; 0.1x0.8%, Cr; 2-1
It is made by mixing, molding, and sintering a powder containing 5% to 30% Cu, and the balance consisting of Fe and impurities, and Cu or Cu alloy is finely and uniformly dispersed in the matrix. The valve seat is characterized by having a structure in which Pb or a Pb alloy is infiltrated into the pores of a sintered body having a porosity of 10 to 25% by volume. This is a means to solve the conventional problems. The present inventors have discovered that fine carbides are dispersed in the matrix of the valve seat, and that carbon dioxide is present in this matrix.
It has a structure in which U or Cu alloy is finely and uniformly dispersed, and the self-lubricating properties of Pb or Pb alloy infiltrated into the pores provide excellent heat resistance, high-temperature wear resistance, and conformability. I got some knowledge. The present invention was made based on such unprecedented knowledge, and firstly, l,? ! Alternatively, by using two or more types of raw material powders coated with Cu or Cu alloy on all or a part thereof, Cu or Cu alloy is finely mixed into the matrix by mixing the powder, forming it, and sintering it. Cu is dispersed uniformly to improve thermal conductivity, heat resistance, high-temperature wear resistance, and conformability. Moreover, a part of Cu dissolves in the matrix and strengthens the matrix, making it resistant to high-temperature performance. This increases the strength of the valve seat and suppresses the decrease in strength due to expansion and melting of Pb or Pb alloy at high temperatures. In addition, during the sintering process, the surface of the raw material powder is coated with Cu or Cu alloy, so
This suppresses agglomeration of carbides and enables uniform dispersion of carbides. Furthermore, by improving the wettability of Fe and Pb with Cu, the lubricating effect of Pb or Pb alloy infiltration is improved, resulting in excellent wear resistance even during low speed rotation, that is, at low temperatures (150 to 250 degrees Celsius). It has been found to have excellent wear resistance over a wide range of temperatures from high to low temperatures, and exhibits particularly excellent performance when used as a valve seat in an engine that uses lead-free Ganlin. did. Next, we will discuss the effects of each component element of the valve sheet according to the present invention, and the reasons for limiting the composition (wt%) and porosity. C;O. , a ~ 3.0% C improves wear resistance by combining with carbide-form elements such as Mo, W, and Cr in the components to form carbides, and the rest is in the matrix. It has the effect of providing high hardness and strength when dissolved in solid solution, but 0.4%
If the content is less than 3.0%, the effect will not be so noticeable, and if it exceeds 3.0%, the amount of carbide precipitated will increase and become coarse, which will not only embrittle the alloy but also damage the mating member. It was set at 4 to 3.0%. Any one or two of Mn and W; 5 to 25
% MO and W, along with Fe and Cr in the components, form double carbides and provide wear resistance, and some of them are dissolved in the matrix to strengthen the matrix and have temper hardening ability. Therefore, they are selectively included, but if the total content is less than 5%, the desired effect cannot be obtained, and even if the total content is more than 25%, the improvement will be even greater considering the increase in cost. Since no effect was observed, it was set at 5-25%. Any one or two of Co and Ni; 0.5
~20% Co and Ni are selectively included in order to further strengthen the matrix and further improve heat resistance and conformability, but if the total content is less than 0.5%, the desired addition is not possible. No effect was observed, and even if the total content exceeded 20%, there was no effect of improving properties despite the increase in cost, so it was set at 0.5 to 20%. St; 0.1 to 0.9% Si is not preferable because if it is added in an amount less than 0.1%, the deoxidizing effect will be small, the oxygen content in the powder will increase, and the sinterability will decrease. If it exceeds 0.6%, the deoxidizing effect will be small and the deoxidizing property will only decrease, so the content should be reduced to 0.61~
It was set at 0.9%. P; 0.1 to 0.8% P forms a low melting point liquid phase of iron-based alloy powder, and is important in promoting liquid phase sintering by low-temperature activation, and some of it precipitates as a hard phase. Although it is effective in improving wear resistance,
If it is less than 0.1%, the effect will be small, and if it exceeds 0.8%, the liquid phase will be excessive, forming a network of liquid phases, embrittling the sintered alloy, and worsening the dimensional accuracy of sintered parts. Therefore, its content was limited to 0.1-0.8%. Cr; 2 to 15% Cr forms double carbides together with Mo, W, etc., and improves wear resistance. At the same time, it dissolves in solid solution in the matrix, enhances the quenching and tempering effect, and further increases the corrosion resistance of the matrix. If it is less than 2%, the effect will be small, and if it is contained more than 15%, not only will there be no further improvement,
Since it reduces the mechanical strength of the sintered body, its content was limited to 2 to 15%. Cu or Cu alloy to be coated; 5 to 30% Cu or Cu alloy coated on all or part of one or more raw material powders is coated with Cu or Cu alloy after mixing, molding, and sintering of the raw material powders. The remaining part is dissolved in solid solution in the matrix to strengthen the matrix, and the remaining part is uniformly dispersed in the matrix, improving thermal conductivity, reducing heat load, and increasing thermal properties.At the same time, during combustion operation of the engine, An oxide film is formed on the surface, which acts as a lubricant and improves wear resistance. And Cu or C
If the amount of U alloy coating is less than 5%, the effect will be small, and if it exceeds 30%, the strength of the sintered body will decrease, so the amount of coating on the raw material powder was set to 5 to 30%. In the present invention, as a method for adding Cu or Cu alloy, in order to finely and uniformly disperse Cu or Cu alloy in the matrix, all or a part of the raw material powder is coated with Cu or Cu alloy, and mixed. It takes the process of powder, shape, and sintering. The coating in this case is performed, for example, by a chemical or electrochemical method, and the form of the coating is determined by mixing the raw material powder in consideration of finely and uniformly dispersing Cu or Cu alloy in the matrix of the sintered body. It is preferable to partially coat the raw material powder than to coat almost completely with Cu or Cu alloy, and it is also economically advantageous. The above-mentioned Cu alloys include well-known cu-Zn alloys, Cu-Co alloys, etc., which have excellent corrosion resistance. Cu-
It is desirable to use Cr alloy, Cu-Sn alloy, Cu-Ni alloy, etc. Porosity of sintered body: 10 to 25% by volume If the porosity of the sintered body is less than 10% by volume, the amount of open bores is too small to sufficiently melt Pb or Pb alloy, which has excellent lubricity. However, when the porosity exceeds 25% by volume, the strength decreases significantly and the abrasion resistance also deteriorates. The porosity of the aggregate was limited to 10 to 25% by volume. Pb or Pb alloy infiltrated into the pores: In the Pb or Pb alloy infiltrated into the pores of the sintered body, Pb-Sn alloy and Pb-In alloy, both of which have excellent lubricity, are used as the Pb alloy. It is desirable to use alloys such as Pb-Sb alloys. (Function of the invention) The valve seat according to the present invention has the above-described structure, in which fine carbides are dispersed in the matrix of the valve seat, and Cu or Cu alloy is finely dispersed in the matrix. It has a uniformly dispersed structure and the self-lubricating properties of Pb or Pb alloy infiltrated into the pores provide excellent thermal properties, wear resistance, and conformability. (Example) Next, an example of a valve seat according to the present invention will be explained in detail while comparing it with a comparative example. -10 as raw material powder
Several types of 0 mesh Fe-Cr-Mo-W-St-C atomized alloy powder and -325 mesh Fe
- Mo alloy powder or pure MO powder, Fe-W alloy powder or pure W powder and Fe-Cr alloy powder, -1250 mesh Fe-26% P alloy powder, -100
Prepare mesh CO powder, -200 mesh Ni powder, -250 mesh Pb powder, -250 mesh Pb-Sn alloy powder, etc., and first convert these raw material powders to N0.1 in Table 1. They were mixed to give the composition set shown in ~5 and mixed for 30 minutes using a V-type mixer. All or part of the raw material powder was coated with Cu at the ratio of the raw material powder to be coated shown in Table 1, 0.5% by weight of higher fatty acid was added, and the mixture was mixed again using a V-type mixer. At this time, the Cu coating was performed such that the amount of Cu in the coating was 10 to 20% by weight. Next, each of the obtained mixed powders was shaped into a bulb seat-shaped compact at a pressure of 7 tonf/cm2, and sintered by holding it at a temperature of 1080 to 1200°C for 60 minutes in an ammonia decomposition gas. By subsequently performing quenching and tempering treatment, a sintered body having the composition shown in Table 2 was obtained. Then, the obtained sintered body was treated with P, which is an infiltrant shown in Table 2.
The valve seat of the embodiment of the present invention is produced by immersing the sintered body in a bath containing melted Pb or Pb alloy at around 500°C, infiltrating the pores of the sintered body with Pb or Pb alloy under high pressure, and then machining it. N0. I got a score of 1-5. (Comparative example) For comparison, the valve seat No. of the comparative example shown in Table 3 is shown in Table 3.
, 1 to 5 were prepared. Among these, Comparative Example No.
In Nos. 1 to 3, Cu was added by mixing Cu powder. It is manufactured by infiltrating sintered vkPb, and as shown in Table 3, it is a valve seat having the same composition as the valve seats of Examples No. 0.1 to 3 shown in Table 1. (However, in Comparative Example No. 3, Cu
Does not include. ). Moreover, comparative example No. 4 and N0.
5 is a commonly used type of valve seat infiltrated with Pb and a valve seat made of JIS heat-resistant steel SUH4. (Evaluation Test Example) Next, using a valve-valve seat unit testing machine as shown in FIG.
1 to 5 and Comparative Example No. A wear test was conducted for each valve seat No. 1 to No. 5. In this valve-valve seat unit test Ia1, the valve 3, which is moved up and down by the rotating cam 2, repeatedly hits the valve seat 5 with impact by the spring 4. The valve 3 is heated by a gas burner 6, and air is blown in the direction of the arrow from an air nozzle 8 attached to a head 7. At this time, by controlling the amount of propane gas supplied to the burner 6 and the amount of air blown from the nozzle 8, the temperature of the valve 3 and the temperature of the valve seat 5 are kept constant, and the temperature of the intake valve seat is kept constant. Tests were conducted under the conditions shown in Table 4, which determined the operating environment, and the amount of wear was determined from changes in the shape of the contact surfaces of valve seat 5 and valve 3. Table 4 The results of this wear test are shown in Figure 2. As is clear from FIG. 2, the valve seat No. 0.1.2 of the comparative example had almost the same composition as the valve seat No. 0.1.2 of the example of the present invention, and Cu powder was added as a mixed powder.
In this case, the amount of wear at a seat temperature of 400°C is larger than that of Valp Sea}N0.1.2 of the example of the present invention at the same temperature, and at a low seat temperature of 250°C, C
It was observed that because u was not uniformly dispersed, hard carbides agglomerated and the wear resistance was insufficient. In addition, the comparative example Valpsi}N0.3 has a small amount of C and a small amount of carbide, so it shows excellent wear resistance at a seat temperature of 250°C, but the wear resistance deteriorates markedly at a seat temperature of 400°C. was recognized. Furthermore, the comparative example Valpsi H (0.4.5 made of conventional material) was inferior in wear resistance at a valve seat temperature of 400°C, and among these, the comparative example Valpsi H (N0.4) had cracks on the surface. Compared to this, valve seat No. 0 of the embodiment of the present invention.
Nos. 1 to 3 had excellent wear resistance from low temperatures (sheet temperature 250°C) to high temperatures (sheet temperature 400°C), and the effect of uniformly dispersing Cu was recognized. and,
The amount of wear of the valve seat of the example of the present invention is that of the valve seat with a large amount of dispersed carbide (valve seat of the example) N0.4.
5), the amount of wear at low temperatures (seat temperature of 250°C) is slightly greater, but the amount of wear at high temperatures is considerably less, compared to the valve seat of the comparative example made of conventional material}N0. .. 4
.. It was observed that the high temperature wear resistance was significantly improved compared to No. 5.

【発明の効果】【Effect of the invention】

本発明に係るバルブシ一トは、1種または2種以上の原
料粉末の全部または一部にCuあるいはCu合金のコー
ティングが施されたものを用いて混粉,T&形.焼結し
、CuあるいはCu合金をマトリックス中に均一にかつ
微細に分散させ,炭化物の凝集を抑え、炭化物が均一に
分散している焼結体を基材としていると共に,焼結体の
空孔にPbあるいはPb合金を溶浸させたものである−
b1ら、耐熱性に優れたものになっていると共に高温で
の耐摩耗性も従来のものに比較して著し〈改善されたも
のとなっており、さらには相手バルブに対する攻撃性も
小さくなじみ性の優れたものになっており、とくに過酷
な条件にも十分対応できるエンジン用バルブシ一トとし
て適用可能であるという著大なる効果を奏するものであ
る.
The valve seat according to the present invention is manufactured by using mixed powder, T& shape, etc., using one or more raw material powders, all or part of which is coated with Cu or Cu alloy. The base material is a sintered body in which Cu or Cu alloy is uniformly and finely dispersed in the matrix to suppress the agglomeration of carbides, and the pores of the sintered body are It is infiltrated with Pb or Pb alloy.
b1 etc. have excellent heat resistance, and their wear resistance at high temperatures is also significantly improved compared to conventional ones, and they are also less aggressive to mating valves. It has excellent properties, and has the remarkable effect of being applicable as an engine valve seat that can withstand particularly harsh conditions.

【図面の簡単な説明】[Brief explanation of drawings]

Claims (1)

【特許請求の範囲】[Claims] (1)1種または2種以上の原料粉末の全部または一部
に重量比で5〜30%のCuあるいはCu合金のコーテ
ィングが施され且つ重量比でC;0.4〜3.0%、M
oおよびWのうちいずれか1種または2種;5〜25%
、CoおよびNiのうちいずれか1種または2種;0.
5〜20%、Si;0.1〜0.9%、P;0.1〜0
.8%、Cr;2〜15%、Cu;5〜30%を含有し
、残部Feおよび不純物からなる組成を有する粉末を混
粉、成形、焼結してなり、マトリックス中にCuあるい
はCu合金が微細にかつ均一に分散していると共に10
〜25容量%の空孔率を有する焼結体の前記空孔にPb
あるいはPb合金を溶浸してなることを特徴とするバル
ブシート。
(1) Coating of Cu or Cu alloy of 5 to 30% by weight is applied to all or part of one or more raw material powders, and C: 0.4 to 3.0% by weight; M
Any one or two of o and W; 5 to 25%
, any one or two of Co and Ni; 0.
5-20%, Si; 0.1-0.9%, P; 0.1-0
.. 8% of Cr, 2 to 15% of Cu, and 5 to 30% of Cu, with the balance consisting of Fe and impurities. Finely and uniformly dispersed and 10
Pb is added to the pores of the sintered body having a porosity of ~25% by volume.
Or a valve seat characterized by being made by infiltrating a Pb alloy.
JP15105789A 1989-06-14 1989-06-14 Valve seat Pending JPH0318604A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15105789A JPH0318604A (en) 1989-06-14 1989-06-14 Valve seat

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15105789A JPH0318604A (en) 1989-06-14 1989-06-14 Valve seat

Publications (1)

Publication Number Publication Date
JPH0318604A true JPH0318604A (en) 1991-01-28

Family

ID=15510355

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15105789A Pending JPH0318604A (en) 1989-06-14 1989-06-14 Valve seat

Country Status (1)

Country Link
JP (1) JPH0318604A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2008146432A1 (en) * 2007-05-28 2010-08-19 三菱電機株式会社 Valve device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2008146432A1 (en) * 2007-05-28 2010-08-19 三菱電機株式会社 Valve device

Similar Documents

Publication Publication Date Title
US6139599A (en) Abrasion resistant iron base sintered alloy material for valve seat and valve seat made of iron base sintered alloy
JP2765811B2 (en) Hard phase dispersed iron-based sintered alloy and method for producing the same
JP4127021B2 (en) Hard particles, wear-resistant iron-based sintered alloy, method for producing wear-resistant iron-based sintered alloy, and valve seat
JP2003268414A (en) Sintered alloy for valve seat, valve seat and its manufacturing method
JP2001050020A (en) Valve device for internal combustion engine
JP2002129296A (en) Iron-base sintered alloy material for valve seat, and valve seat made of iron-base sintered alloy
WO2015141331A1 (en) Valve seat constituted of iron-based sintered alloy
CN108868941B (en) Alcohol fuel engine valve seat ring and manufacturing method thereof, alcohol fuel engine and automobile
JP6929313B2 (en) Iron-based sintered alloy for high-temperature wear resistance
JPH0453944B2 (en)
JPH10226855A (en) Valve seat for internal combustion engine made of wear resistant sintered alloy
JP4693170B2 (en) Wear-resistant sintered alloy and method for producing the same
JP3434527B2 (en) Sintered alloy for valve seat
JPH0318604A (en) Valve seat
JP5079417B2 (en) Manufacturing method of high temperature corrosion resistant wear resistant sintered parts
KR950014353B1 (en) Process for making sintering alloy of valve sheet and article made thereby
JPH0116905B2 (en)
JP2003166025A (en) Hard-grain dispersion type sintered alloy and manufacturing method therefor
JP3569166B2 (en) Wear-resistant sintered alloy and method for producing the same
JPH03225008A (en) Valve seat made of fe-based sintered alloy having superior abrasion resistance
JPH0313546A (en) Ferrous sintered alloy for valve seat
JPS61291954A (en) Sintering material having wear resistance and corrosion resistance at high temperature and its manufacture
JPS5814501B2 (en) High temperature sliding parts
JPH0561346B2 (en)
KR890003408B1 (en) Manufacturing method of fe sintering alloy for valve seat