JPH03225008A - Valve seat made of fe-based sintered alloy having superior abrasion resistance - Google Patents

Valve seat made of fe-based sintered alloy having superior abrasion resistance

Info

Publication number
JPH03225008A
JPH03225008A JP2104790A JP2104790A JPH03225008A JP H03225008 A JPH03225008 A JP H03225008A JP 2104790 A JP2104790 A JP 2104790A JP 2104790 A JP2104790 A JP 2104790A JP H03225008 A JPH03225008 A JP H03225008A
Authority
JP
Japan
Prior art keywords
hard particles
valve seat
based sintered
sintered alloy
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2104790A
Other languages
Japanese (ja)
Inventor
Tomomi Ishikawa
石川 智美
Osamu Mayama
間山 治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2104790A priority Critical patent/JPH03225008A/en
Publication of JPH03225008A publication Critical patent/JPH03225008A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To improve the abrasion resistance by dispersing hard particles of a specific composition, CaF2 and MnS about Fe-base alloy material of a specific composition and structure. CONSTITUTION:The abrasion resistance of a valve seat is improved by using the Fe-base sintered alloy basic material which is formed by dispersing the hard particles A having the composition containing Cr 25-45%, each of W, Co 20-30%, C 1-3%, each of Si, Nb 0.2-2%, and the rest Fe and inevitable impurities and the hard particles B having the composition containing Co 55-65%, Cr 25-32%, Mo 7-10%, Si 1.5-3.5%, and the rest Fe and inevitable impurities, into the Fe-base alloy material which has the composition containing Cr 1-3%, each of Mo, Ni 0.5-3%, Co 2-8%, C 0.6-1.5%, Nb 0.2-1%, and the rest Fe and inevitable impurities and has the structure of pearlite phase and bainite phase as main body, so that the sum of the hard particles A and B becomes 10-25%, and one or two kinds between CaF2 and MnS is 0.2-5wt.% or more.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、デーゼルエンジンやガソリンエンジンなど
の内燃機関のうちでも特に高出力の内燃機関に適した耐
摩耗性に優れたかつ相手攻撃性の少ないFe基燻焼結合
金製バルブシート関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention is directed to an engine that has excellent wear resistance and is particularly suitable for high-output internal combustion engines such as diesel engines and gasoline engines. The present invention relates to a valve seat made of a smoked alloy containing a small amount of Fe-based material.

C従来の技術〕 従来、特開昭58−178073号公報に記載されるよ
うに、重量%で(以下、%は、重量%を示す。)、Mo
 : 0.1〜0.9%、   NI  :o、5〜2
.5%。
C. Prior Art] Conventionally, as described in Japanese Unexamined Patent Publication No. 58-178073, Mo
: 0.1-0.9%, NI: o, 5-2
.. 5%.

Co : 4.5〜7.5%、   Cr : 3〜6
.5%。
Co: 4.5-7.5%, Cr: 3-6
.. 5%.

C:0.5〜1.7%、 W :1〜2.7%。C: 0.5-1.7%, W: 1-2.7%.

を含有し、残りがFeと不可避不純物からなる組成を有
するFe基合金素地に、 C:2〜3%、     Coニア〜15%。
2 to 3%, and 15% to 15% Co.

W:15〜25%、     Fe:1〜8%。W: 15-25%, Fe: 1-8%.

を含有し、残りがC「と不可避不純物からなる組成を有
するCr基合金粒子と、Fe−Mo合金粒子:8〜I2
容量%、 が分散含有した組織並びに6〜14容量%の気孔率を有
するFe基焼結合金基体に、Cuを溶浸してなる銅含浸
Fe基焼結合金製バルブシートが知られている。
Cr-based alloy particles having a composition with the remainder consisting of C and inevitable impurities, and Fe-Mo alloy particles: 8 to I2
A valve seat made of a copper-impregnated Fe-based sintered alloy is known, which is obtained by infiltrating Cu into an Fe-based sintered alloy substrate having a structure in which % by volume is dispersed and a porosity of 6 to 14 % by volume.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、最近の内燃機関は、過給機の採用、多弁化、高
速回転化などにより高出力化が計られて、熱的および機
械的負荷がますます増加する傾向があり、このような内
燃機関に上記従来の銅含浸Fe基焼結合金製バルブシー
トを装備すると、Fe基合金素地に分散するCr基合金
粒子およびFe−Mo合金粒子は、硬質であるけれども
Fe基合金素地に対する密着性が悪く、内燃機関の作動
中にFe基合金素地に分散するCr基合金粒子およびF
e−Mo合金粒子は酸化して脱落し、バルブシート自体
が摩耗し、さらに、この脱落した合金粒子は、相手部材
であるバルブをも摩耗せしめるという問題があった。
However, recent internal combustion engines have been designed to achieve higher output through the use of superchargers, multiple valves, and higher rotation speeds, resulting in an increasing thermal and mechanical load. When equipped with the above-mentioned conventional copper-impregnated Fe-based sintered alloy valve seat, the Cr-based alloy particles and Fe-Mo alloy particles dispersed in the Fe-based alloy substrate have poor adhesion to the Fe-based alloy substrate, although they are hard. , Cr-based alloy particles and F dispersed in the Fe-based alloy matrix during operation of the internal combustion engine.
There is a problem in that the e-Mo alloy particles oxidize and fall off, causing the valve seat itself to wear out, and furthermore, the falling alloy particles also wear out the valve, which is a mating member.

〔課題を解決するための手段〕[Means to solve the problem]

そこで、本発明者らは、上述のような観点から、上記内
燃機関の高出力化に対しても十分に耐えることのできる
一段と優れた耐摩耗性を有するバルブシートを開発すべ
く研究を行った結果、Cr:0.5〜3%、   Mo
 : 0.5〜3%。
Therefore, from the above-mentioned viewpoint, the present inventors conducted research to develop a valve seat that has even better wear resistance and can sufficiently withstand the increased output of the internal combustion engine. Results: Cr: 0.5-3%, Mo
: 0.5-3%.

Ni  : 0.5〜396.   Co : 2〜8
%。
Ni: 0.5-396. Co: 2-8
%.

c  :0.6〜1,5%、 Nb : 0.2〜1%
c: 0.6-1.5%, Nb: 0.2-1%
.

を含有し、残りがFeおよび不可避不純物からなる組成
並びにパーライト相およびベーナイト相を主体とした組
織からなるFe基合金素地に、Cr :25〜45%、
W:20〜30%。
Cr: 25 to 45%, Cr: 25 to 45%,
W: 20-30%.

Co:20〜30%、C:1〜3%。Co: 20-30%, C: 1-3%.

Sl:0.2〜2%、  Nb:0.2〜2%。Sl: 0.2-2%, Nb: 0.2-2%.

を含有し、残りがFeおよび不可避不純物からなる組成
を有する硬質粒子Aと、 co=55〜65%、    Cr : 25〜32%
hard particles A having a composition containing Fe and unavoidable impurities, co = 55 to 65%, Cr: 25 to 32%
.

Mo : 7〜10%、    Si : 1.5〜3
.5%。
Mo: 7-10%, Si: 1.5-3
.. 5%.

を含有し、残りがFeおよび不可避不純物からなる組成
を有する硬質粒子Bとを、 硬質粒子Aと硬質粒子Bの合計が10〜25%、CaF
2.MnSのうち1種または2種:0.2〜5 (1,
、S、 (以上重量06)となるように分散した組織を合するF
e基焼結合金基体からなるFe基燻焼結合金製バルブシ
ート上記要求を十分に満たすことができるという知見を
得たのである。
and hard particles B having a composition with the remainder consisting of Fe and unavoidable impurities, the total of hard particles A and hard particles B is 10 to 25%, CaF
2. One or two types of MnS: 0.2 to 5 (1,
, S, F which combines the dispersed structures so that (the weight is 06)
It has been found that a valve seat made of an Fe-based sintered alloy having an e-based sintered alloy base can fully satisfy the above requirements.

この発明は、かかる知見に基づいてなされたものであっ
て、この発明は、上記組織を有するFe基焼結合金基体
に、さらに、5〜20重量%のCuを溶浸してなる銅含
浸Fe基焼結合金から構成してなるFe基燻焼結合金製
バルブシートたは5〜20重量%のPbを溶浸してなる
鉛含浸Fe基焼結合金から構成してなるFe基燻焼結合
金製バルブシート含まれる。
The present invention was made based on this knowledge, and the present invention is directed to a copper-impregnated Fe base formed by further infiltrating 5 to 20% by weight of Cu into an Fe-based sintered alloy base having the above-mentioned structure. A valve seat made of an Fe-based sintered alloy made of a sintered alloy or a Fe-based smoldered alloy made of a lead-impregnated Fe-based sintered alloy made by infiltrating 5 to 20% by weight of Pb. Valve seat included.

つぎに、この発明のバルブシートにおいて、これを構成
するFe基焼結合金基体の組成を上記の通りに限定した
理由について説明する。
Next, in the valve seat of the present invention, the reason why the composition of the Fe-based sintered alloy base constituting the valve seat is limited as described above will be explained.

A、Fe基合金素地の成分限定理由 (a)  C C成分には、MoおよびCrと結合して炭化物を形成し
、硬さを向上させる作用があるほか、パーライトおよび
ベーナイトを主体とする素地を形成して、耐摩耗性を向
上させる作用があるが、その含有量が0.5%未満では
上記作用に所望の効果が得られず、一方、その含有量が
1.5%を越えると、素地の硬さが高くなり、相手攻撃
性が増すようになることから、その含有量を0.6〜1
.5%に定めた。
A. Reasons for limiting the components of the Fe-based alloy base (a) C The C component combines with Mo and Cr to form carbides and has the effect of improving hardness, and it also has the effect of improving the hardness of the base, which is mainly composed of pearlite and bainite. When the content is less than 0.5%, the desired effect cannot be obtained; on the other hand, when the content exceeds 1.5%, Since the hardness of the base increases and the opponent's aggressiveness increases, its content is increased to 0.6 to 1.
.. It was set at 5%.

(b)  Cr C「成分には、素地に固溶して耐熱性を向上させる作用
があるほか炭化物を形成して耐摩耗性を向上させる作用
があるが、その含有量が1%未満では上記作用に所望の
効果が得られず、一方、その含有量が3%を越えると、
焼結性が劣化して高強度を確保することが困難になるこ
とから、その含有量を1〜3%に定めた。
(b) CrC component has the effect of improving heat resistance by forming a solid solution in the base material, and also has the effect of forming carbide to improve wear resistance, but if its content is less than 1%, the above-mentioned On the other hand, if the content exceeds 3%, the desired effect cannot be obtained.
Since the sinterability deteriorates and it becomes difficult to ensure high strength, the content was set at 1 to 3%.

(c)  M。(c) M.

MO酸成分は、素地に固溶して炭化物を形成し、耐摩耗
性を向上させる作用があるが、その含有量が0.5%未
満では上記作用に所望の効果が得られず、一方、その含
有量が3%を越えると、材料強度が低下することから、
その含有量を0.5〜3%に定めた。
The MO acid component forms a carbide in the base material and has the effect of improving wear resistance, but if its content is less than 0.5%, the desired effect cannot be obtained; If the content exceeds 3%, the strength of the material decreases.
Its content was set at 0.5-3%.

(d)  Ni Ni成分には、素地に固溶してこれを強化する作用があ
るが、その含有量が0.5%未満では上記作用に所望の
効果が得られず、一方、その含有量が3%を越えて含有
させても上記作用は飽和するだけであり、不経済である
ことから、その含有量を0.5〜3%に定めた。
(d) Ni The Ni component has the effect of forming a solid solution in the base material and strengthening it, but if its content is less than 0.5%, the desired effect cannot be obtained from the above effect; Even if the content exceeds 3%, the above-mentioned effect will only be saturated and it is uneconomical, so the content was set at 0.5 to 3%.

(e)  C。(e) C.

Co成分には、素地に固溶してこれを強化する作用があ
るが、その含有量が2%未満では上記作用に所望の効果
が得られず、一方、その含有量が8%を越えて含有させ
ても上記作用は飽和するだけであり、不経済であること
から、その含有量を2〜8%に定めた。
The Co component has the effect of solidly dissolving in the base material and strengthening it, but if the content is less than 2%, the desired effect cannot be obtained from the above effect, while on the other hand, if the content exceeds 8% Even if it is contained, the above-mentioned effect is only saturated and it is uneconomical, so its content is set at 2 to 8%.

(f)  Nb 素地のNb成分には、Cr−Nb系微細炭化物を形成し
て素地中に分散し、耐摩耗性を向上させる作用があるが
、その含有量が0.2%未満では所望の効果が得られず
、一方、その含有量が1%を越えて含有させても上記作
用は飽和するだけてあり、−層の向上効果は現れないこ
とから、その含有量を0.2〜1%に定めた。
(f) Nb The Nb component of the base material has the effect of forming Cr-Nb-based fine carbides and dispersing them in the base material to improve wear resistance, but if the content is less than 0.2%, the desired level of wear resistance cannot be achieved. On the other hand, even if the content exceeds 1%, the above effect will be saturated, and the effect of improving the - layer will not appear, so the content should be reduced to 0.2 to 1%. %.

B、硬質粒子Aの成分限定理由 (g)  C C成分には、炭化物を形成して硬質粒子Aを強化する作
用があるが、その含有量が1%未満では上記作用に所望
の効果が得られず、一方、その含有量が3%を越えると
、硬さが高くなりすぎ、相手攻撃性が増すようになるこ
とから、その含有量を1〜3%に定めた。
B. Reason for limiting the components of hard particles A (g) C The C component has the effect of forming carbides and strengthening the hard particles A, but if its content is less than 1%, the desired effect will not be achieved. On the other hand, if the content exceeds 3%, the hardness becomes too high and the aggressiveness of the opponent increases, so the content was set at 1 to 3%.

(h)  Cr Cr成分には、硬質粒子Aの素地に固溶して耐熱性を向
上させる作用があるほか炭化物、金属間化合物を形成し
て耐摩耗性を向上させる作用があるが、その含有量が2
5%未満では上記作用に所望の効果が得られず、一方、
その含有量が45%を越えると、硬さの上昇を招き、相
手攻撃性が増加することから、その含有量を25〜45
%に定めた。
(h) Cr The Cr component has the effect of improving heat resistance by forming a solid solution in the matrix of hard particles A, and also has the effect of forming carbides and intermetallic compounds to improve wear resistance. amount is 2
If it is less than 5%, the desired effect cannot be obtained in the above action; on the other hand,
If the content exceeds 45%, the hardness will increase and the opponent's aggressiveness will increase, so the content should be reduced to 25-45%.
%.

(i)  W W成分には、硬質粒子Aの素地中に炭化物および金属間
化合物を形成して耐摩耗性を向上させる作用があるが、
その含有量が20%未満では上記作用に所望の効果が得
られず、一方、その含有量が30%を越えると、硬さの
上昇を招き、相手攻撃性が増加することから、その含有
量を20〜30%に定めた。
(i) W The W component has the effect of forming carbides and intermetallic compounds in the matrix of hard particles A to improve wear resistance.
If the content is less than 20%, the desired effect will not be obtained in the above action, while if the content exceeds 30%, the hardness will increase and the aggressiveness of the opponent will increase. was set at 20-30%.

(j)  Nb Nb成分には、硬質粒子Aの素地中に炭化物を形成して
硬質粒子Aの耐摩耗性を向上させる作用および硬質粒子
Aの素地に対する密着性を強化する作用があるが、その
含有量が0.2%未満では上記作用に所望の効果が得ら
れず、一方、その含有量が2%を越えると、上記作用は
飽和するだけであり、また粉末アトマイズ時のぬれ性が
低下するようになることから、その含有量を0.2〜2
%に定めた。
(j) Nb The Nb component has the effect of forming carbides in the matrix of the hard particles A to improve the wear resistance of the hard particles A and the effect of strengthening the adhesion of the hard particles A to the matrix. If the content is less than 0.2%, the desired effect cannot be obtained in the above action, while if the content exceeds 2%, the above action is only saturated, and the wettability during powder atomization decreases. Therefore, the content should be reduced to 0.2 to 2.
%.

(k)  C。(k) C.

Co成分には、硬質粒子Aの素地に固溶してこれを強化
する作用と耐熱性を向上させる作用があるが、その含有
量が20%未満ては上記作用に所望の効果が得られず、
一方、その含有量が30%を越えて含有させても上記作
用は飽和するだけであり、不経済であることから、その
含有量を20〜30%に定めた。
The Co component has the effect of solidly dissolving in the matrix of hard particles A to strengthen it and improve heat resistance, but if its content is less than 20%, the desired effect cannot be obtained from the above effects. ,
On the other hand, if the content exceeds 30%, the above effect will only be saturated and it is uneconomical, so the content is set at 20 to 30%.

(+)  5I Si成分には、炭化物を形成して硬質粒子Aの耐摩耗性
を向上させる作用があるが、その含有量が0.2%未満
では上記作用に所望の効果が得られず、一方、その含有
量が2%を越えると、硬質粒子Aを脆弱化するだけであ
ることから、その含有量を0,2〜2%に定めた。
The (+) 5I Si component has the effect of forming carbides and improving the wear resistance of the hard particles A, but if its content is less than 0.2%, the desired effect cannot be obtained, On the other hand, if the content exceeds 2%, it will only weaken the hard particles A, so the content was set at 0.2 to 2%.

C1硬質粒子Bの成分限定理由 (m)  Cr Cr成分には、硬質粒子Bの耐熱性を向上させるばか炭
化物および金属間化合物を形成して硬質粒子Bの耐摩耗
性を向上させる作用および硬質粒子Bの素地に対する密
着性を強化する作用があるか、その含有量が25%未満
ては上記作用に所望の効果が得られず、一方、その含有
量が32%を越えると、上記作用は飽和するたけであり
、また粉末アトマイズ時のぬれ性が低下するようになる
ことから、その含有量を25〜32%に定めた。
C1 Reason for limiting the components of hard particles B (m) Cr The Cr component has the effect of forming carbides and intermetallic compounds that improve the heat resistance of hard particles B and improving the wear resistance of hard particles B. If B has the effect of strengthening the adhesion to the substrate, if its content is less than 25%, the desired effect cannot be obtained, whereas if the content exceeds 32%, the above effect is saturated. The content was determined to be 25 to 32% since the powder content was determined to be 25% to 32% since the wettability during powder atomization decreased.

(n)  M。(n) M.

Mo成分には、硬質粒子Bの素地中に固溶して炭化物を
形成し、耐摩耗性を向上させる作用があるが、その含有
量が7%未満では上記作用に所望の効果が得られず、一
方、その含有量が10%を越えると、材料強度が低下す
ることから、その含有量を7〜10%に定めた。
The Mo component has the effect of forming a solid solution in the matrix of the hard particles B to form a carbide and improving wear resistance, but if the content is less than 7%, the desired effect cannot be obtained from the above effect. On the other hand, if the content exceeds 10%, the strength of the material decreases, so the content was set at 7 to 10%.

(o)  5I Si成分には、金属間化合物を形成して硬質粒子Bの耐
摩耗性を向上させる作用があるか、その含有量が1.5
%未満ては上記作用に所望の効果が得られず、一方、そ
の含有量が3.5%を越えると、硬質粒子Bの相手攻撃
性を増すようになることから、その含有量を1.5〜3
,5%に定めた。
(o) The 5I Si component has the effect of forming an intermetallic compound to improve the wear resistance of the hard particles B, or its content is 1.5
If the content is less than 3.5%, the desired effect cannot be obtained. On the other hand, if the content exceeds 3.5%, the aggressiveness of hard particles B increases, so the content should be reduced to 1.5%. 5-3
, set at 5%.

(p)  C。(p) C.

CO成分には、硬質粒子Bの素地に固溶してこれを強化
する作用と耐熱性を向上させる作用があるが、その含有
量が55%未満ては上記作用に所望の効果が得られず、
一方、その含有量が65%を越えても、飽和するので経
済性を考慮して、その含有量を55〜65%に定めた。
The CO component has the effect of solidly dissolving in the matrix of hard particles B to strengthen it and improve heat resistance, but if its content is less than 55%, the desired effect cannot be obtained from the above effects. ,
On the other hand, even if the content exceeds 65%, the content will be saturated, so in consideration of economic efficiency, the content was set at 55 to 65%.

D、硬質粒子Aと硬質粒子Bを同時に素地中に分散せし
める理由 硬質粒子Aは、安価で硬さが優れているが酸化されやす
く、酸化されると素地から脱落して十分な耐摩耗性が得
られない。一方、硬質粒子Bは、耐酸化性に優れており
かつ相手攻撃性が少ないが、高価でありかつ硬さが不足
する。そこで上記硬質粒子Aと硬質粒子Bを同時に素地
中に分散せしめると、硬質粒子Bの存在が硬質粒子Aの
酸化による脱落を防止して耐摩耗性を向上せしめかつ相
手攻撃性をも低下せしめるのである。しかしながら硬質
粒子Aと硬質粒子Bの合計が素地に対して1006未満
ては所望の効果か得られず、一方、25%を越えて含有
させるとバルブシートの強度の低下を招く。したがって
硬質粒子Aと硬質粒子Bの合計は素地に対して10〜2
5%と定めた。
D. Reason for simultaneously dispersing hard particles A and hard particles B into the substrate Hard particles A are inexpensive and have excellent hardness, but they are easily oxidized, and when oxidized, they fall off from the substrate and do not have sufficient wear resistance. I can't get it. On the other hand, hard particles B have excellent oxidation resistance and are less likely to attack others, but are expensive and lack hardness. Therefore, if the above-mentioned hard particles A and hard particles B are simultaneously dispersed in the base material, the presence of hard particles B prevents the hard particles A from falling off due to oxidation, improves the wear resistance, and also reduces the aggressiveness of the opponent. be. However, if the total amount of hard particles A and hard particles B is less than 100% of the base material, the desired effect cannot be obtained, whereas if the total amount exceeds 25%, the strength of the valve seat will be reduced. Therefore, the total of hard particles A and hard particles B is 10 to 2
It was set at 5%.

E 、 Ca F 2 、 M n S材料に耐摩耗性
を付与するためには、耐熱性をもつ素地中に硬質粒子を
分散させる必要があるが、素地の高合金化、高密度化に
より、フェース部最表面では、酸化物が生成しにくくな
るため、固体潤滑剤を分散させ、材料自体に自己潤滑作
用を付与する必要があり、この発明のFe基焼結合金に
分散させる固体潤滑剤としては、Ca F 2粉末、M
nS粉末が好ましいが、しかし、Ca F 2粉末、M
nS粉末のうち1種または2種の添加量が0.2%未満
では上記作用に所望の効果が得られず、方、5%を越え
て含有させると、材料強度の低下を招くことから、その
添加量は0.2〜5%と定めた。
In order to impart wear resistance to E, CaF2, MnS materials, it is necessary to disperse hard particles in a heat-resistant matrix, but by making the matrix highly alloyed and dense, the face Since oxides are difficult to form on the outermost surface of the part, it is necessary to disperse the solid lubricant and give the material itself a self-lubricating effect.The solid lubricant dispersed in the Fe-based sintered alloy of this invention , CaF2 powder, M
nS powder is preferred, but CaF2 powder, M
If the amount of one or two of the nS powders added is less than 0.2%, the desired effect will not be obtained in the above action, while if it is added in excess of 5%, the strength of the material will decrease. The amount added was determined to be 0.2 to 5%.

F、Cu溶浸量 この発明のバルブシートは、上記Fe基焼結合金基体の
空孔に銅を溶浸せしめ、封孔による素地の強化と熱伝導
性の向上により耐熱性を向上させることもできるが、そ
の溶浸量が5%未満では上記作用に所望の効果がjりら
れず、一方、その溶浸量が20%を越えて溶浸させるた
めにはFe基焼結合金基体の気孔率を上げなければなら
ず、Fe基焼結合金基体の気孔率を上げると得られたバ
ルブシートの強度が低下することから、Cu溶浸量は5
〜20%に定めた。
F, Cu infiltration amount The valve seat of the present invention can improve heat resistance by infiltrating copper into the pores of the Fe-based sintered alloy base, strengthening the base material by sealing the pores, and improving thermal conductivity. However, if the amount of infiltration is less than 5%, the desired effect cannot be obtained from the above action. Since increasing the porosity of the Fe-based sintered alloy substrate reduces the strength of the obtained valve seat, the amount of Cu infiltration was
It was set at ~20%.

G、Pb溶浸量 また、この発明のバルブシートは、上記Fe基焼結合金
基体の空孔に鉛を溶浸せしめ、封孔による素地の強化と
鉛のもつ自己潤滑性によりバルブ攻撃性を低下させるこ
ともできるが、その溶浸量が596未満では上記作用に
所望の効果が得られず、一方、その溶浸量が20%を越
えて溶浸させるためにはFe基焼結合金基体の気孔率を
上げなければならず、Fe基焼結合金基体の気孔率を上
げると、得られたバルブシートの強度か低下することか
ら、Pb溶浸量は5〜20%に定めた。
Amount of G, Pb infiltration Further, in the valve seat of the present invention, lead is infiltrated into the pores of the Fe-based sintered alloy base, and the valve aggressiveness is reduced by strengthening the base material by sealing the pores and by self-lubricating property of lead. However, if the amount of infiltration is less than 596, the desired effect cannot be obtained in the above action.On the other hand, in order to infiltrate with the amount of infiltration exceeding 20%, the The amount of Pb infiltration was set at 5 to 20% because increasing the porosity of the Fe-based sintered alloy substrate would reduce the strength of the obtained valve seat.

なお、この発明の耐摩耗性に優れたFe基焼結合金製ハ
ルブンートを製造するに際して、成形後400〜600
℃に30分間保持し脱油を行った合金及び成形後真空ま
たは還元ガス中、温度は700〜900℃で仮焼結を行
った後再度5〜8Ton/cdの圧力で加圧し密度向上
を行った合金について焼結は真空または還元性ガス雰囲
気中、温度: 1100〜1250℃に1時間保持の条
件、 Cu溶浸は、還元性ガス雰囲気中、温度:1090〜1
150℃に20分間保持の条件、Pb溶浸は、中性ガス
雰囲気中、温度:550〜700℃に1時間保持の条件
、 鍛造はメタン変成ガス雰囲気中、温度: 1000〜1
100℃の条件でそれぞれ実施し、さらに必要に応じて
温度:550〜750℃に1時間保持の条件で熱処理を
施すのが望ましい。
In addition, when producing the Fe-based sintered alloy halbunto with excellent wear resistance of the present invention, after molding, the
The alloy was held at ℃ for 30 minutes to remove oil, and after forming, it was pre-sintered in vacuum or reducing gas at a temperature of 700 to 900℃, and then pressurized again at a pressure of 5 to 8 Tons/cd to improve density. For the alloy, sintering was carried out in a vacuum or reducing gas atmosphere at a temperature of 1,100 to 1,250°C for 1 hour; Cu infiltration was carried out in a reducing gas atmosphere at a temperature of 1,090 to 1,000°C.
Conditions of holding at 150°C for 20 minutes, Pb infiltration in neutral gas atmosphere, temperature: 550 to 700°C for 1 hour, forging in methane metamorphic gas atmosphere, temperature: 1000 to 1
It is preferable to carry out the heat treatment at 100°C, and if necessary, heat treatment at a temperature of 550 to 750°C for 1 hour.

〔実 施 例〕〔Example〕

つぎに、この発明を実施例に基づいて具体的に説明する
Next, the present invention will be specifically explained based on examples.

原料粉末として、いずれも粒度ニー100メツシユ以下
のFe粉末、Fe−Cr系粉末(Fe1%Cr−0,3
%Mo)、Fe−Cr−Nb系粉末(Fe−1396C
r−5%Nb)、Ni粉末、CO粉末、MO粉末および
天然黒鉛粉末を用意し、また、いずれも粒度ニー100
メツシユ以下で第1表に示される成分組成の硬質粒子A
用原料粉末および硬質粒子B用原料粉末を用意し、さら
に、固体潤滑剤として、いずれも粒度:100メツシユ
以下の、Ca F 2粉末、MnS粉末を用意し、これ
ら原料粉末、硬質粒子A用原料粉末、硬質粒子B用原料
粉末および固体潤滑剤をそれぞれ配合し、混合した後、
6〜6.5Ton/c−の圧力で圧粉体にプレス成型し
、この圧粉体を500℃に30分間保持の条件で脱油ま
たは圧粉体をアンモニア分解ガス中で温度=800℃1
時間保持の条件で仮焼結を行なった後、6〜7Ton/
cdの圧力で再加圧し、密度上昇を行った後、さらにア
ンモニア分解ガス中で温度: 1200℃、1時間保持
の条件で焼結を行い、この焼結体をメタン変成ガス中、
温度1050℃で鍛造し、さらに大気中温度:620℃
、1時間保持の条件で焼戻しを行い、外径+ 34m1
1、内径: 27mm、厚さ・7.2mmの寸法をもっ
た本発明Fe基焼結合金製バルブンート(以下、本発明
バルブシートという)1〜32および比較Fc基焼結合
金製バルブシート(以下、比較バルブシートという)1
〜22を製造した。
As raw material powder, Fe powder, Fe-Cr powder (Fe1%Cr-0,3
%Mo), Fe-Cr-Nb powder (Fe-1396C
r-5%Nb), Ni powder, CO powder, MO powder, and natural graphite powder, all of which had a particle size of 100
Hard particles A having the composition shown in Table 1 below:
In addition, as a solid lubricant, Ca F 2 powder and MnS powder, both of which have a particle size of 100 mesh or less, are prepared. After blending and mixing the powder, raw material powder for hard particles B, and solid lubricant,
Press molding into a green compact at a pressure of 6 to 6.5 Ton/c-, and hold the green compact at 500°C for 30 minutes to remove oil or heat the green compact in an ammonia decomposition gas at a temperature of 800°C.
After pre-sintering under the condition of time holding, 6~7Ton/
After repressurizing at a pressure of cd to increase the density, sintering was performed in an ammonia decomposition gas at a temperature of 1200°C and held for 1 hour, and this sintered body was sintered in a methane converted gas.
Forged at a temperature of 1050℃, and further in the atmosphere at a temperature of 620℃
, tempering was performed under the condition of holding for 1 hour, and the outer diameter was +34m1.
1. Inner diameter: 27 mm, thickness: 7.2 mm valve seats made of Fe-based sintered alloy of the present invention (hereinafter referred to as the present invention valve seat) 1 to 32 and comparative Fc-based sintered alloy valve seat (hereinafter referred to as the present invention valve seat) , referred to as comparative valve seat)1
-22 were produced.

なお、上記本発明バルブシー)23.24および比較バ
ルブシート20.22は、メタン変成ガス雰囲気中、温
度: 1110℃、20分間保持の条件てCu溶浸を行
い、さらに大気中、温度二620℃、1時間保持の条件
で焼戻しすることにより製造し、さらに、本発明バルブ
シート25.26および比較バルブシト21は、窒素ガ
ス雰囲気中、温度二650℃、1時間保持の条件でPb
溶浸を行うことにより製造したものである。
The above-mentioned valve seats of the present invention) 23.24 and comparative valve seats 20.22 were infiltrated with Cu in a methane converted gas atmosphere at a temperature of 1110°C and held for 20 minutes, and then heated to a temperature of 2620°C in the atmosphere. Further, the valve seats 25, 26 of the present invention and the comparative valve seat 21 were manufactured by tempering under the conditions of holding for 1 hour in a nitrogen gas atmosphere at a temperature of 2650°C and tempering for 1 hour.
It is manufactured by infiltration.

このようにして得られた各種バルブシートについて、下
記の条件で耐摩耗試験を行い、上記各種バルブシートの
最大摩耗深さを測定して耐摩耗性を評価し、さらにバル
ブの最大摩耗深さを測定してバルブ攻撃性を評価し、こ
れらの結果を第1表に示した。
The various valve seats obtained in this way were subjected to wear resistance tests under the following conditions, and the maximum wear depth of the various valve seats was measured to evaluate the wear resistance, and the maximum wear depth of the valve was also measured. The valve aggressiveness was evaluated by measurements and the results are shown in Table 1.

耐摩耗試験条件 バルブ材質:5UH−36、 バルブ加熱温度:900℃、 バルブ着座回数73000回/+g1n、、雰囲気: 
0.4kg/c−9プロパンガスと流量1.5j!/s
in、の酸素ガスによる燃焼ガス、バルブシート加熱温
度(水冷):250〜300℃、着座荷重: 30kg
Wear resistance test conditions Valve material: 5UH-36, Valve heating temperature: 900℃, Valve seating frequency 73,000 times/+g1n, Atmosphere:
0.4kg/c-9 propane gas and flow rate 1.5j! /s
combustion gas with oxygen gas, valve seat heating temperature (water cooling): 250-300℃, seating load: 30kg
.

試験時間:100時間、 〔発明の効果〕 第1表に示される結果から、本発明バルブシートは、摩
耗が少なく、バルブ攻撃性および全沈み量も低い値を示
しているに対し、比較バルブシートに見られるように、
この発明の条件から外れると上記特性のうちいずれかの
特性が劣ることが明らかであり、また従来バルブシート
よりも摩耗量および全沈み量が小さいことがわかる。
Test time: 100 hours [Effects of the Invention] From the results shown in Table 1, the valve seat of the present invention has less wear and shows lower values for valve aggressiveness and total sinkage, whereas the comparative valve seat As seen in
It is clear that any one of the above characteristics is inferior when the conditions of the present invention are not met, and it is also seen that the amount of wear and total amount of sinkage is smaller than that of the conventional valve seat.

なお、この実施例では、焼結体を熱間鍛造して得られた
Fe基燻焼結合金製バルブシートついて示したが、この
発明は、上記焼結体を熱間鍛造して得られたFe基燻焼
結合金製バルブシート限定されるものではなく、一般焼
結体のFQ基焼結合金製バルブシートおよび冷間鍛造し
て得られたFe基燻焼結合金製バルブシート含まれる。
In this example, a valve seat made of an Fe-based sintered alloy obtained by hot forging a sintered body was shown, but the present invention is directed to a valve seat made of an Fe-based sintered alloy obtained by hot forging a sintered body. The valve seat made of Fe-based sintered alloy is not limited, but includes a valve seat made of FQ-based sintered alloy of a general sintered body and a valve seat made of Fe-based smoldered alloy obtained by cold forging.

上述のように、この発明のFe基焼結合金バルブシート
は、優れた耐摩耗性と低いバルブ攻撃性を有しており、
高出力内燃機関のバルブシートとして長期にわたって著
しく優れた性能を発、揮する。
As mentioned above, the Fe-based sintered alloy valve seat of the present invention has excellent wear resistance and low valve aggressiveness,
Demonstrates outstanding long-term performance as a valve seat for high-output internal combustion engines.

出 願 人 : 三菱金属株式会社 代 理 人 品 田 和 夫 外1名Out wish Man : Mitsubishi Metals Co., Ltd. teenager Reason Man Goods Field sum husband 1 other person

Claims (3)

【特許請求の範囲】[Claims] (1)Cr:1〜3%、Mo:0.5〜3%、Ni:0
.5〜3%、Co:2〜8%、 C:0.6〜1.5%、Nb:0.2〜1%、を含有し
、残りがFeおよび不可避不純物からなる組成並びにパ
ーライト相およびベーナイト相を主体とした組織からな
るFe基合金素地に、Cr:25〜45%、W:20〜
30%、 Co:20〜30%、C:1〜3%、 Si:0.2〜2%、Nb:0.2〜2%、を含有し、
残りがFeおよび不可避不純物からなる組成を有する硬
質粒子Aと、 Co:55〜65%、Cr:25〜32%、Mo:7〜
10%、Si:1.5〜3.5%、を含有し、残りがF
eおよび不可避不純物からなる組成を有する硬質粒子B
とを、 硬質粒子Aと硬質粒子Bの合計が10〜25%、CaF
_2、MnSのうち1種または2種:0.2〜5%、 (以上重量%)となるように分散した組織を有するFe
基焼結合金基体からなることを特徴とする耐摩耗性に優
れたFe基焼結合金製バルブシート。
(1) Cr: 1-3%, Mo: 0.5-3%, Ni: 0
.. 5-3%, Co: 2-8%, C: 0.6-1.5%, Nb: 0.2-1%, with the remainder consisting of Fe and inevitable impurities, pearlite phase and bainite. Cr: 25 to 45%, W: 20 to
30%, Co: 20-30%, C: 1-3%, Si: 0.2-2%, Nb: 0.2-2%,
Hard particles A having a composition with the remainder consisting of Fe and unavoidable impurities, Co: 55-65%, Cr: 25-32%, Mo: 7-
10%, Si: 1.5-3.5%, and the rest is F.
Hard particles B having a composition consisting of e and inevitable impurities
and, the total of hard particles A and hard particles B is 10 to 25%, CaF
_2, one or two types of MnS: 0.2 to 5%, Fe having a structure dispersed so that (or more weight %)
A valve seat made of an Fe-based sintered alloy that has excellent wear resistance and is characterized by being made of a sintered-alloy base.
(2)請求項1記載のFe基焼結合金基体に、5〜20
重量%のCuを溶浸してなる銅含浸Fe基焼結合金から
構成してなることを特徴とする耐摩耗性に優れたFe基
焼結合金製バルブシート。
(2) The Fe-based sintered alloy substrate according to claim 1 has 5 to 20
A valve seat made of a Fe-based sintered alloy with excellent wear resistance, characterized in that it is made of a copper-impregnated Fe-based sintered alloy formed by infiltrating Cu in the amount of % by weight.
(3)請求項1記載のFe基焼結合金基体に、5〜20
重量%のPbを溶浸してなる鉛含浸Fe基焼結合金から
構成してなることを特徴とする耐摩耗性に優れたFe基
焼結合金製バルブシート。
(3) The Fe-based sintered alloy substrate according to claim 1 has 5 to 20
A valve seat made of a Fe-based sintered alloy with excellent wear resistance, characterized in that it is made of a lead-impregnated Fe-based sintered alloy formed by infiltrating Pb in an amount of % by weight.
JP2104790A 1990-01-31 1990-01-31 Valve seat made of fe-based sintered alloy having superior abrasion resistance Pending JPH03225008A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2104790A JPH03225008A (en) 1990-01-31 1990-01-31 Valve seat made of fe-based sintered alloy having superior abrasion resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2104790A JPH03225008A (en) 1990-01-31 1990-01-31 Valve seat made of fe-based sintered alloy having superior abrasion resistance

Publications (1)

Publication Number Publication Date
JPH03225008A true JPH03225008A (en) 1991-10-04

Family

ID=12044014

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2104790A Pending JPH03225008A (en) 1990-01-31 1990-01-31 Valve seat made of fe-based sintered alloy having superior abrasion resistance

Country Status (1)

Country Link
JP (1) JPH03225008A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5498483A (en) * 1994-11-09 1996-03-12 Sumitomo Electric Industries, Ltd. Wear-resistant sintered ferrous alloy for valve seat
WO1999025889A1 (en) * 1997-11-14 1999-05-27 Mitsubishi Materials Co. VALVE SEAT MADE OF Fe-BASE SINTERED ALLOY EXCELLENT IN WEAR RESISTANCE
JP2000017369A (en) * 1998-07-06 2000-01-18 Riken Corp Wear resistant sintered alloy and its production
JP2000144351A (en) * 1998-11-18 2000-05-26 Mitsubishi Materials Corp Valve seat made of iron-base sintered alloy and its manufacture
JP2000226644A (en) * 1999-02-04 2000-08-15 Mitsubishi Materials Corp HIGH STRENGTH Fe BASE SINTERED VALVE SEAT AND ITS PRODUCTION
KR100316928B1 (en) * 1999-04-21 2001-12-22 이계안 Valve seat for internal combustion engine and method making the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5498483A (en) * 1994-11-09 1996-03-12 Sumitomo Electric Industries, Ltd. Wear-resistant sintered ferrous alloy for valve seat
WO1999025889A1 (en) * 1997-11-14 1999-05-27 Mitsubishi Materials Co. VALVE SEAT MADE OF Fe-BASE SINTERED ALLOY EXCELLENT IN WEAR RESISTANCE
US6305666B1 (en) * 1997-11-14 2001-10-23 Mitsubishi Materials Corporation Valve seat made of Fe-based sintered alloy excellent in wear resistance
KR100339297B1 (en) * 1997-11-14 2002-06-03 후지무라 마사지카, 아키모토 유미 VALVE SEAT MADE OF Fe-BASE SINTERED ALLOY EXCELLENT IN WEAR RESISTANCE
JP2000017369A (en) * 1998-07-06 2000-01-18 Riken Corp Wear resistant sintered alloy and its production
JP2000144351A (en) * 1998-11-18 2000-05-26 Mitsubishi Materials Corp Valve seat made of iron-base sintered alloy and its manufacture
JP2000226644A (en) * 1999-02-04 2000-08-15 Mitsubishi Materials Corp HIGH STRENGTH Fe BASE SINTERED VALVE SEAT AND ITS PRODUCTION
KR100316928B1 (en) * 1999-04-21 2001-12-22 이계안 Valve seat for internal combustion engine and method making the same

Similar Documents

Publication Publication Date Title
JPH03158445A (en) Valve seat made of fe-base sintered alloy excellent in wear resistance
JP4948636B2 (en) Hard particles for blending sintered alloys, wear-resistant iron-based sintered alloys, and valve seats
JPH0313299B2 (en)
JP2000199040A (en) Wear resistant ferrous sintered alloy material for valve seat and valve seat made of ferrous sintered alloy
EP0711845A1 (en) Wear-resistant sintered ferrous alloy for valve seat
JPH03225008A (en) Valve seat made of fe-based sintered alloy having superior abrasion resistance
JP3186816B2 (en) Sintered alloy for valve seat
JPH03158444A (en) Valve seat made of fe-base sintered alloy excellent in wear resistance
JPH0115583B2 (en)
JPH0313546A (en) Ferrous sintered alloy for valve seat
JP2643740B2 (en) Two-layer valve seat made of copper infiltrated iron-based sintered alloy for internal combustion engines
JPH0561346B2 (en)
JP3068127B2 (en) Wear-resistant iron-based sintered alloy and method for producing the same
JP3331963B2 (en) Sintered valve seat and method for manufacturing the same
JP3440008B2 (en) Sintered member
JPH05179390A (en) Sintered alloy for valve seat
JP2643741B2 (en) Two-layer valve seat made of lead impregnated iron-based sintered alloy for internal combustion engines
JPH0115577B2 (en)
JPH0543998A (en) Valve seat made of metal-filled fe-base sintered alloy extremely reduced in attack on mating material
JP3264092B2 (en) Wear-resistant iron-based sintered alloy and method for producing the same
JPH0372052A (en) Manufacture of wear-resistant sintered alloy
JPS63114945A (en) Sintered alloy member excellent in wear resistance and corrosion resistance
JPS6152301A (en) Iron base alloy powder for wear resistant sintered parts
JPH08291376A (en) Combination of ferrous sintered alloy valve seat material with heat resistant and wear resistant alloy valve face material
JPS61183447A (en) Sintered iron alloy for valve seat