JP2000144351A - Valve seat made of iron-base sintered alloy and its manufacture - Google Patents

Valve seat made of iron-base sintered alloy and its manufacture

Info

Publication number
JP2000144351A
JP2000144351A JP10327868A JP32786898A JP2000144351A JP 2000144351 A JP2000144351 A JP 2000144351A JP 10327868 A JP10327868 A JP 10327868A JP 32786898 A JP32786898 A JP 32786898A JP 2000144351 A JP2000144351 A JP 2000144351A
Authority
JP
Japan
Prior art keywords
weight
phase
alloy
valve seat
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10327868A
Other languages
Japanese (ja)
Other versions
JP3346306B2 (en
Inventor
Kinya Kawase
欣也 川瀬
Koichiro Morimoto
耕一郎 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP32786898A priority Critical patent/JP3346306B2/en
Publication of JP2000144351A publication Critical patent/JP2000144351A/en
Application granted granted Critical
Publication of JP3346306B2 publication Critical patent/JP3346306B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a valve seat made of iron-base sintered alloy, excellent in wear resistance and reduced in attacks on mating materials. SOLUTION: This valve seat has a composition consisting of, by weight, 15-40% Cu, 0.3-12% Ni, 0.8-3.0% C, and the balance Fe with inevitable impurities and containing, if necessary, 0.1-10% Co and 0.1-10% Cr and also has a structure where a hard particle phase 3 of 500-1700 MHV is dispersed in a matrix formed by binding an Fe-base alloy phase 1 composed essentially of Fe with a Cu-base alloy phase 2 composed essentially of Cu. The Fe-base alloy phase 1 is an Fe alloy phase containing Ni, Cu, and C and also containing >=50 wt.% Fe, and the Cu-base alloy phase 2 is a Cu alloy phase 4 containing Ni, Fe, and C and also containing >=50 wt.% Cu. Further, the concentrations of Ni and C, contained in the Fe-base alloy phase, are higher than the concentrations of Ni and C contained in the Cu-base alloy phase.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、耐摩耗性に優れ
かつ相手攻撃性の少ない鉄基焼結合金製バルブシートに
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a valve seat made of an iron-based sintered alloy having excellent abrasion resistance and low aggressiveness to a partner.

【0002】[0002]

【従来の技術】焼結技術が進歩し、鉄基焼結合金からな
る各種機械部品を精度良く大量に生産できるようにな
り、バルブシートも焼結により製造するようになってき
た。鉄基焼結合金からなるバルブシートの一例として、
Cr:1〜3重量%、Mo:0.5〜3重量%、Ni:
0.5〜3重量%、Co:2〜8重量%、C:0.6〜
1.5重量%、Nb:0.2〜1重量%を含有し、残り
がFeおよび不可避不純物からなる組成並びにパーライ
ト相およびベーナイト相を主体とした組織からなる鉄基
合金組織を有する素地中に、、Cr:25〜45重量
%、W:20〜30重量%、Co:20〜30重量%、
C:1〜3重量%、Si:0.2〜2重量%、Nb:
0.2〜2重量%を含有し、残りがFeおよび不可避不
純物からなる組成を有する硬質粒子と、Mo:25〜3
2重量%、Cr:7〜10重量%、Si:1.5〜3.
5重量%を含有し、残りがCoおよび不可避不純物から
なる組成の硬質粒子が合計で10〜25容量%が均一に
分散した組織を有する鉄基焼結合金製バルブシートが知
られている(特開平3−158445号公報参照)。
2. Description of the Related Art As sintering technology has advanced, various mechanical parts made of iron-based sintered alloy can be produced in large quantities with high precision, and valve seats have also been produced by sintering. As an example of a valve seat made of an iron-based sintered alloy,
Cr: 1 to 3% by weight, Mo: 0.5 to 3% by weight, Ni:
0.5 to 3% by weight, Co: 2 to 8% by weight, C: 0.6 to
In a substrate containing 1.5% by weight and Nb: 0.2 to 1% by weight, the balance being a composition comprising Fe and unavoidable impurities and an iron-based alloy structure mainly comprising a pearlite phase and a bainite phase. , Cr: 25 to 45% by weight, W: 20 to 30% by weight, Co: 20 to 30% by weight,
C: 1 to 3% by weight, Si: 0.2 to 2% by weight, Nb:
Hard particles containing 0.2 to 2% by weight, the balance being Fe and unavoidable impurities; Mo: 25 to 3
2% by weight, Cr: 7 to 10% by weight, Si: 1.5 to 3.
There is known a valve seat made of an iron-based sintered alloy having a structure in which 5% by weight of hard particles having a composition of Co and unavoidable impurities is uniformly dispersed in a total of 10 to 25% by volume. See JP-A-3-158445).

【0003】[0003]

【発明が解決しようとする課題】しかし、近年、高性能
化、高燃費化、軽量化を追求して開発され実用化されて
いる燃料を燃焼室内に直接噴射する直噴射エンジンや空
燃比を高め希薄燃焼させるリーンバーンエンジンなどで
は燃焼室内が従来のエンジンよりも高温になり、かかる
高温下では前記従来のバルブシートでは十分な耐摩耗性
が得られず、さらに相手材であるバルブを激しく摩耗さ
せるという欠点があった。
However, in recent years, a direct injection engine for directly injecting fuel into a combustion chamber, which has been developed and put to practical use in pursuit of high performance, high fuel efficiency and light weight, and an increase in air-fuel ratio, have been proposed. In a lean burn engine or the like that performs lean combustion, the temperature in the combustion chamber becomes higher than that of a conventional engine. Under such a high temperature, the conventional valve seat does not provide sufficient wear resistance, and furthermore, the valve which is a mating material is severely worn. There was a disadvantage.

【0004】[0004]

【課題を解決するための手段】そこで、本発明者らは、
上述のような観点から、高温下で従来よりも耐摩耗性に
優れかつ相手材であるバルブに対する相手攻撃性の少な
い鉄基焼結合金製バルブシートを得るべく研究を行って
いたところ、(a)Cu:15〜40重量%、Ni:
0.3〜12重量%、C:0.8〜3.0重量%を含有
し、残りがFeおよび不可避不純物からなる組成を有し
かつFeを主成分とするFe基合金相をCuを主成分と
するCu基合金相により結合してなる組織を有する素地
中に、マイクロビッカース硬さ(以下、MHVとい
う):500〜1700の硬質粒子相が5〜30容量%
の割合で前記Fe基合金相により包囲された状態で分散
している鉄基焼結合金で構成された鉄基焼結合金製バル
ブシートは、従来の鉄基焼結合金製バルブシートよりも
強度および耐摩耗性が優れ、かつ相手攻撃性が少ない、
(b)Cu:15〜40重量%、Ni:0.3〜12重
量%、C:0.8〜3.0重量%を含有し、残りがFe
および不可避不純物からなる組成を有しかつFeを主成
分とするFe基合金相をCuを主成分とするCu基合金
相により結合してなる組織を有する素地中に、MHV:
500〜1700の硬質粒子相が5〜30容量%の割合
で断面花びら状の前記Fe基合金相により包囲された状
態で分散している鉄基焼結合金で構成された鉄基焼結合
金製バルブシートは、従来の鉄基焼結合金製バルブシー
トよりも一層強度および耐摩耗性が優れ、かつ相手攻撃
性が一層少ない、(c)Coまたは/およびCrを含有
する硬質粒子を、Fe粉末、C粉末およびNi−Cu合
金粉末(またはNi粉末とCu粉末の混合粉末)と共に
混合し、成形し、焼結すると、硬質粒子成分のCoまた
は/およびCrの一部が素地に拡散して、Cu:15〜
40重量%、Ni:0.3〜12重量%、C:0.8〜
3.0重量%、Co:0.1〜10重量%または/およ
びCr:0.1〜10重量%を含有する素地が形成さ
れ、かかる成分組成の素地を有する鉄基焼結合金製バル
ブシートは、従来の鉄基焼結合金製バルブシートよりも
さらに一層強度および耐摩耗性が優れ、かつ相手攻撃性
が一層少なくなる、という知見を得たのである。
Means for Solving the Problems Accordingly, the present inventors have:
From the above-mentioned viewpoints, a study was conducted to obtain a valve seat made of an iron-based sintered alloy having higher abrasion resistance and less aggressiveness to a valve as a mating material at a high temperature than in the past. ) Cu: 15-40% by weight, Ni:
0.3 to 12% by weight, C: 0.8 to 3.0% by weight, the balance being Fe and an unavoidable impurity, and containing Fe as a main component in a Fe-based alloy phase mainly containing Cu. A hard particle phase having a micro Vickers hardness (hereinafter referred to as MHV): 500 to 1700 is 5 to 30% by volume in a base having a structure formed by bonding with a Cu-based alloy phase as a component.
The iron-based sintered alloy valve seat composed of the iron-based sintered alloy dispersed in a state of being surrounded by the Fe-based alloy phase at a ratio of: is stronger than the conventional iron-based sintered alloy valve seat. Excellent abrasion resistance and low opponent aggression,
(B) Cu: 15 to 40% by weight, Ni: 0.3 to 12% by weight, C: 0.8 to 3.0% by weight, the balance being Fe
And MHV in a substrate having a composition composed of unavoidable impurities and having a structure in which an Fe-based alloy phase mainly composed of Fe is bonded by a Cu-based alloy phase mainly composed of Cu.
Made of an iron-based sintered alloy composed of an iron-based sintered alloy in which 500 to 1700 hard particle phases are dispersed at a rate of 5 to 30% by volume and surrounded by the Fe-based alloy phase having a petal cross section. The valve seat is composed of (c) hard particles containing Co or / and Cr, which are more excellent in strength and abrasion resistance and less aggressive than a conventional iron-based sintered alloy valve seat. , C powder and Ni-Cu alloy powder (or a mixed powder of Ni powder and Cu powder), and then molded and sintered, a part of the hard particle component Co or / and Cr diffuses into the matrix, Cu: 15
40% by weight, Ni: 0.3 to 12% by weight, C: 0.8 to
A base sheet containing 3.0% by weight, Co: 0.1 to 10% by weight or / and Cr: 0.1 to 10% by weight is formed, and a valve seat made of an iron-based sintered alloy having a base having such a component composition. Has obtained the finding that the strength and wear resistance are further improved and the opponent aggressiveness is further reduced as compared with the conventional iron-based sintered alloy valve seat.

【0005】この発明は、かかる知見にもとづいて成さ
れたものであって、(1)Cu:15〜40重量%、N
i:0.3〜12重量%、C:0.8〜3.0重量%を
含有し、残りがFeおよび不可避不純物からなる組成を
有しかつFeを主成分とするFe基合金相をCuを主成
分とするCu基合金相で結合してなる素地中に、MH
V:500〜1700の硬質粒子相が5〜30容量%の
割合で前記Fe基合金相により包囲された状態で分散し
ている組織を有する鉄基焼結合金製バルブシート、
(2)Cu:15〜40重量%、Ni:0.3〜12重
量%、C:0.8〜3.0重量%を含有し、残りがFe
および不可避不純物からなる組成を有しかつFeを主成
分とするFe基合金相をCuを主成分とするCu基合金
相により結合してなる素地中に、MHV:500〜17
00の硬質粒子相が5〜30容量%の割合で断面花びら
状の前記Fe基合金相により包囲された状態で分散して
いる組織を有する鉄基焼結合金製バルブシート、(3)
Cu:15〜40重量%、Ni:0.3〜12重量%、
C:0.8〜3.0重量%、Co:0.1〜10重量%
を含有し、残りがFeおよび不可避不純物からなる組成
を有しかつFeを主成分とするFe基合金相をCuを主
成分とするCu基合金相により結合してなる素地中に、
MHV:500〜1700の硬質粒子相が5〜30容量
%の割合で前記Fe基合金相により包囲された状態で分
散している組織を有する鉄基焼結合金製バルブシート、
(4)Cu:15〜40重量%、Ni:0.3〜12重
量%、C:0.8〜3.0重量%、Co:0.1〜10
重量%を含有し、残りがFeおよび不可避不純物からな
る組成を有しかつFeを主成分とするFe基合金相をC
uを主成分とするCu基合金相により結合してなる素地
中に、MHV:500〜1700の硬質粒子相が5〜3
0容量%の割合で前記Fe基合金相により断面花びら状
に包囲された状態で分散している組織を有する鉄基焼結
合金製バルブシート、(5)Cu:15〜40重量%、
Ni:0.3〜12重量%、C:0.8〜3.0重量
%、Cr:0.1〜10重量%を含有し、残りがFeお
よび不可避不純物からなる組成を有しかつFeを主成分
とするFe基合金相をCuを主成分とするCu基合金相
により結合してなる素地中に、MHV:500〜170
0の硬質粒子相が5〜30容量%の割合で前記Fe基合
金相により包囲された状態で分散している組織を有する
鉄基焼結合金製バルブシート、(6)Cu:15〜40
重量%、Ni:0.3〜12重量%、C:0.8〜3.
0重量%、Cr:0.1〜10重量%を含有し、残りが
Feおよび不可避不純物からなる組成を有しかつFeを
主成分とするFe基合金相をCuを主成分とするCu基
合金相により結合してなる素地中に、MHV:500〜
1700の硬質粒子相が5〜30容量%の割合で前記F
e基合金相により断面花びら状に包囲された状態で分散
している組織を有することを特徴とする鉄基焼結合金製
バルブシート、(7)Cu:15〜40重量%、Ni:
0.3〜12重量%、C:0.8〜3.0重量%、C
o:0.1〜10重量%、Cr:0.1〜10重量%を
含有し、残りがFeおよび不可避不純物からなる組成を
有しかつFeを主成分とするFe基合金相をCuを主成
分とするCu基合金相により結合してなる素地中に、M
HV:500〜1700の硬質粒子相が5〜30容量%
の割合で前記Fe基合金相により包囲された状態で分散
している組織を有する鉄基焼結合金製バルブシート、
(8)Cu:15〜40重量%、Ni:0.3〜12重
量%、C:0.8〜3.0重量%、Co:0.1〜10
重量%、Cr:0.1〜10重量%を含有し、残りがF
eおよび不可避不純物からなる組成を有しかつFeを主
成分とするFe基合金相をCuを主成分とするCu基合
金相により結合してなる素地中に、MHV:500〜1
700の硬質粒子相が5〜30容量%の割合で前記Fe
基合金相により断面花びら状に包囲された状態で分散し
ている組織を有する鉄基焼結合金製バルブシート、に特
徴を有するものである。
The present invention has been made on the basis of the above findings. (1) Cu: 15 to 40% by weight, N
i: 0.3 to 12% by weight, C: 0.8 to 3.0% by weight, the balance being Fe and an Fe-based alloy phase containing Fe and inevitable impurities and containing Fe as a main component. MH is contained in a base material which is bonded by a Cu-based alloy phase containing
V: a valve seat made of an iron-based sintered alloy having a structure in which a hard particle phase of 500 to 1700 is dispersed in a state of being surrounded by the Fe-based alloy phase in a ratio of 5 to 30% by volume,
(2) Cu: 15 to 40% by weight, Ni: 0.3 to 12% by weight, C: 0.8 to 3.0% by weight, the balance being Fe
MHV: 500 to 17 in a base having a composition of unavoidable impurities and combining an Fe-based alloy phase mainly containing Fe with a Cu-based alloy phase mainly containing Cu.
(3) a valve seat made of an iron-based sintered alloy having a structure in which the hard particle phase of No. 00 is dispersed in a state of being surrounded by the Fe-based alloy phase having a petal cross section at a ratio of 5 to 30% by volume.
Cu: 15 to 40% by weight, Ni: 0.3 to 12% by weight,
C: 0.8 to 3.0% by weight, Co: 0.1 to 10% by weight
Containing, and the remainder has a composition consisting of Fe and unavoidable impurities, and in a body formed by combining an Fe-based alloy phase mainly composed of Fe with a Cu-based alloy phase mainly composed of Cu,
MHV: a valve seat made of an iron-based sintered alloy having a structure in which a hard particle phase of 500 to 1700 is dispersed in a state of being surrounded by the Fe-based alloy phase at a ratio of 5 to 30% by volume,
(4) Cu: 15 to 40% by weight, Ni: 0.3 to 12% by weight, C: 0.8 to 3.0% by weight, Co: 0.1 to 10%
% By weight, the balance being Fe and an unavoidable impurity.
A hard particle phase having an MHV of 500 to 1700 contains 5 to 3 hard particles in a matrix formed by a Cu-based alloy phase containing u as a main component.
A valve seat made of an iron-based sintered alloy having a structure in which the Fe-based alloy phase is dispersed in a petal-like cross section at a rate of 0% by volume, (5) Cu: 15 to 40% by weight,
Ni: 0.3 to 12% by weight, C: 0.8 to 3.0% by weight, Cr: 0.1 to 10% by weight, the balance being composed of Fe and unavoidable impurities. MHV: 500 to 170 in a substrate formed by combining an Fe-based alloy phase containing a main component with a Cu-based alloy phase containing Cu as a main component.
0: a valve seat made of an iron-based sintered alloy having a structure in which a hard particle phase of 0 is dispersed in a state of being surrounded by the Fe-based alloy phase at a ratio of 5 to 30% by volume, (6) Cu: 15 to 40
% By weight, Ni: 0.3 to 12% by weight, C: 0.8 to 3%.
Cu-based alloy containing 0% by weight and Cr: 0.1 to 10% by weight, the balance being a composition comprising Fe and inevitable impurities, and a Fe-based alloy phase containing Fe as a main component and Cu as a main component. MHV: 500-
The hard particle phase of 1700 contains 5 to 30% by volume of the F
A valve seat made of an iron-based sintered alloy having a structure dispersed in a state of being surrounded by a petal-like cross section by an e-based alloy phase, (7) Cu: 15 to 40% by weight, Ni:
0.3 to 12% by weight, C: 0.8 to 3.0% by weight, C
o: 0.1 to 10% by weight, Cr: 0.1 to 10% by weight, the balance being Fe and an unavoidable impurity and having a composition mainly composed of Fe In the base material bonded by the Cu-based alloy phase as a component, M
HV: 5 to 30% by volume of hard particle phase of 500 to 1700
A valve seat made of an iron-based sintered alloy having a structure dispersed in a state of being surrounded by the Fe-based alloy phase at a ratio of
(8) Cu: 15 to 40% by weight, Ni: 0.3 to 12% by weight, C: 0.8 to 3.0% by weight, Co: 0.1 to 10%
% By weight, Cr: 0.1 to 10% by weight, the balance being F
e and an unavoidable impurity, and an MHV: 500 to 1 in a body formed by combining an Fe-based alloy phase mainly composed of Fe with a Cu-based alloy phase mainly composed of Cu.
700 hard particle phase in the proportion of 5 to 30% by volume
A valve seat made of an iron-based sintered alloy having a structure dispersed in a state of being surrounded by a base alloy phase in a petal cross section is characterized.

【0006】例えば、前記硬質粉末としてFe:10〜
50重量%を含有し、残部がMoである組成のMo基合
金からなる硬質粉末を添加し焼結すると、硬質粉末に含
まれるMoは焼結中に素地にほとんど拡散せず、したが
って、Cu:15〜40重量%、Ni:0.3〜12重
量%、C:0.8〜3.0重量%を含有し、残りがFe
および不可避不純物からなる組成を有しかつFeを主成
分とするFe基合金相をCuを主成分とするCu基合金
相で結合してなる素地を形成し、一方、Fe:10〜5
0重量%を含有し、さらに素地から拡散したNi:0.
01〜5%、Cu:0.01〜5%およびC:0.1〜
3%を含有するMo基合金からなるMHV:500〜1
700の硬質粒子相がこの素地中に形成され、前記
(1)または(2)記載のこの発明の鉄基焼結合金製バ
ルブシートが作られる。
For example, as the hard powder, Fe: 10
When a hard powder consisting of a Mo-based alloy containing 50% by weight and the balance of Mo is added and sintered, Mo contained in the hard powder hardly diffuses into the base material during sintering. 15 to 40% by weight, Ni: 0.3 to 12% by weight, C: 0.8 to 3.0% by weight, the balance being Fe
And a base formed by combining an Fe-based alloy phase having a composition of unavoidable impurities and containing Fe as a main component with a Cu-based alloy phase containing Cu as a main component.
0 wt% and further diffused from the substrate: Ni.
01-5%, Cu: 0.01-5% and C: 0.1-
MHV comprising Mo-based alloy containing 3%: 500-1
700 hard particle phases are formed in the substrate, and the valve seat made of the iron-based sintered alloy of the present invention described in the above (1) or (2) is produced.

【0007】したがって、この発明は、(9)前記MH
V:500〜1700の硬質粒子相は、MoおよびFe
を主成分とするMo−Fe系合金からなる前記(1)ま
たは(2)記載の鉄基焼結合金製バルブシート、に特徴
を有するものである。
Therefore, the present invention relates to (9) the MH
V: The hard particle phase of 500 to 1700 is composed of Mo and Fe
The valve seat made of an iron-based sintered alloy according to the above (1) or (2), comprising a Mo—Fe-based alloy mainly composed of:

【0008】また、例えば、前記硬質粉末としてFe:
10〜50重量%を含有し、残部がCoである組成のC
o基合金からなる硬質粉末を添加し焼結すると、焼結中
に硬質粉末に含まれるCoは素地に拡散し、したがっ
て、Cu:15〜40重量%、Ni:0.3〜12重量
%、C:0.8〜3.0重量%、Co:0.1〜10重
量%を含有し、残りがFeおよび不可避不純物からなる
組成を有しかつFeを主成分とするFe基合金相をCu
を主成分とするCu基合金相で結合してなる素地を形成
し、一方、Fe:10〜50重量%を含有し、さらに素
地から拡散したNi:0.01〜5%、Cu:0.01
〜5%およびC:0.1〜3%を含有するCo基合金か
らなるMHV:500〜1700の硬質粒子相がこの素
地中に形成され、前記(3)または(4)記載のこの発
明の鉄基焼結合金製バルブシートが作られる。
Further, for example, Fe:
C having a composition containing 10 to 50% by weight and the balance being Co
When a hard powder composed of an o-based alloy is added and sintered, Co contained in the hard powder diffuses into the base material during sintering, so that Cu: 15 to 40% by weight, Ni: 0.3 to 12% by weight, C: 0.8 to 3.0% by weight, Co: 0.1 to 10% by weight, the balance being Fe and an Fe-based alloy phase having a composition of Fe and unavoidable impurities and containing Fe as a main component.
Is formed by bonding with a Cu-based alloy phase whose main component is Fe. On the other hand, Fe: 10 to 50% by weight, Ni: 0.01 to 5% diffused from the base, and Cu: 0. 01
A hard particle phase of MHV: 500 to 1700 comprising a Co-based alloy containing 55% and C: 0.1-3% is formed in the matrix, and the hard particle phase of the invention according to the above (3) or (4) is formed. A valve seat made of an iron-based sintered alloy is made.

【0009】したがって、この発明は、(10)前記MH
V:500〜1700の硬質粒子相は、CoおよびFe
を主成分とするCo−Fe系合金からなる前記(3)ま
たは(4)記載の鉄基焼結合金製バルブシート、に特徴
を有するものである。
Therefore, the present invention relates to (10)
V: The hard particle phase of 500 to 1700 is composed of Co and Fe.
The valve seat made of an iron-based sintered alloy according to the above (3) or (4), which is made of a Co-Fe-based alloy containing (i) as a main component.

【0010】また、例えば、前記硬質粉末としてCr:
10〜40重量%、Mo:5〜25重量%を含有し、残
部がNiである組成のNi基合金からなる硬質粉末を添
加し焼結すると、焼結中に硬質粉末に含まれるCrは素
地に拡散するがMoは素地に拡散しないところから、C
u:15〜40重量%、Ni:0.3〜12重量%、
C:0.8〜3.0重量%、Cr:0.1〜10重量%
を含有し、残りがFeおよび不可避不純物からなる組成
を有しかつFeを主成分とするFe基合金相をCuを主
成分とするCu基合金相で結合してなる素地を形成し、
一方、Cr:10〜40重量%、Mo:5〜25重量%
を含有し、さらに素地から拡散したFe:2〜20%、
Cu:0.01〜10%およびC:0.1〜3%を含有
するNi基合金で構成されたMHV:500〜1700
の範囲内の硬質粒子相が素地中に形成され、前記(5)
または(6)記載のこの発明の鉄基焼結合金製バルブシ
ートが作られる。
[0010] Further, for example, as the hard powder, Cr:
When a hard powder composed of a Ni-based alloy containing 10 to 40% by weight and Mo: 5 to 25% by weight and the balance being Ni is added and sintered, the Cr contained in the hard powder during the sintering is reduced to the substrate. But Mo does not diffuse into the substrate,
u: 15 to 40% by weight, Ni: 0.3 to 12% by weight,
C: 0.8 to 3.0% by weight, Cr: 0.1 to 10% by weight
Containing, and the remainder has a composition consisting of Fe and unavoidable impurities, and forms a matrix formed by combining an Fe-based alloy phase mainly containing Fe with a Cu-based alloy phase mainly containing Cu,
On the other hand, Cr: 10 to 40% by weight, Mo: 5 to 25% by weight
Fe further diffused from the substrate: 2 to 20%,
MHV composed of a Ni-based alloy containing Cu: 0.01 to 10% and C: 0.1 to 3%: 500 to 1700
The hard particle phase in the range of
Alternatively, the iron-based sintered alloy valve seat of the present invention described in (6) is produced.

【0011】したがって、この発明は、(11)前記MH
V:500〜1700の硬質粒子相は、Ni、Crおよ
びMoを主成分として含有するNi系合金からなる前記
(5)または(6)記載の鉄基焼結合金製バルブシー
ト、に特徴を有するものである。
Therefore, the present invention relates to (11) the MH
V: The hard particle phase of 500 to 1700 is characterized by the iron-based sintered alloy valve seat according to the above (5) or (6), comprising a Ni-based alloy containing Ni, Cr and Mo as main components. Things.

【0012】また、例えば、前記硬質粉末としてMo:
15〜35%,Cr:2〜13%,Si:0.5〜5%
を含有し、残部がCoのCo基合金からなる硬質粉末を
添加し焼結すると、焼結中に硬質粉末に含まれるCoお
よびCrは素地に拡散し、Moはほとんど素地に拡散し
ないところから、Cu:15〜40重量%、Ni:0.
3〜12重量%、C:0.8〜3.0重量%、Co:
0.1〜10重量%、Cr:0.1〜10重量%を含有
し、残りがFeおよび不可避不純物からなる組成を有し
かつFeを主成分とするFe基合金相をCuを主成分と
するCu基合金相で結合してなる素地を形成し、一方、
Mo:15〜35%,Cr:2〜13%,Si:0.5
〜5%を含有し、さらに素地から拡散したNi:0.0
1〜5%、Cu:0.01〜5%,Fe:2〜20%お
よびC:0.1〜3%を含有するCo系合金で構成され
たMHV:500〜1700の範囲内の硬質粒子相が素
地中に形成され、前記(7)または(8)記載のこの発
明の鉄基焼結合金製バルブシートが作れれる。
Further, for example, as the hard powder, Mo:
15 to 35%, Cr: 2 to 13%, Si: 0.5 to 5%
When the hard powder containing the Co-based alloy of Co is added and sintered, the Co and Cr contained in the hard powder diffuse into the base during sintering, and Mo hardly diffuses into the base. Cu: 15 to 40% by weight, Ni: 0.
3 to 12% by weight, C: 0.8 to 3.0% by weight, Co:
Fe-based alloy phase containing 0.1 to 10% by weight, Cr: 0.1 to 10% by weight, the balance being Fe and unavoidable impurities, and containing Fe as a main component. To form a matrix that combines with the Cu-based alloy phase
Mo: 15 to 35%, Cr: 2 to 13%, Si: 0.5
-5% and further diffused from the substrate: 0.0
Hard particles in the range of MHV: 500 to 1700 composed of a Co-based alloy containing 1 to 5%, Cu: 0.01 to 5%, Fe: 2 to 20% and C: 0.1 to 3%. The phase is formed in the base material, and the valve seat made of the iron-based sintered alloy of the present invention described in the above (7) or (8) can be produced.

【0013】したがって、この発明は、(12)前記MH
V:500〜1700の硬質粒子相は、Co、Mo、C
rおよびSiを主成分とするCo−Mo−Cr−Si系
合金からなる前記(7)または(8)記載の鉄基焼結合
金製バルブシート、に特徴を有するものである。
Therefore, the present invention relates to (12) the MH
V: The hard particle phase of 500 to 1700 is composed of Co, Mo, C
The valve seat made of an iron-based sintered alloy according to the above (7) or (8), comprising a Co-Mo-Cr-Si-based alloy containing r and Si as main components, is characterized.

【0014】また、例えば、前記硬質粉末として重量%
で、Cr:5〜40%,W:15〜30%,Co:5〜
30%,C:0.1〜3%,Si:0.1〜3%,N
b:0.1〜3%を含有し、残部がFeのFe基合金か
らなる硬質粉末を添加し焼結すると、焼結中に硬質粉末
に含まれるCoおよびCrは素地に拡散するところか
ら、Cu:15〜40重量%、Ni:0.3〜12重量
%、C:0.8〜3.0重量%、Co:0.1〜10重
量%、Cr:0.1〜10重量%を含有し、残りがFe
および不可避不純物からなる組成を有しかつFeを主成
分とするFe基合金相をCuを主成分とするCu基合金
相で結合してなる素地を形成し、一方、Cr:5〜40
%,W:15〜30%,Co:5〜30%,C:0.1
〜3%,Si:0.1〜3%,Nb:0.1〜3%を含
有し、さらに素地から拡散したNi:0.01〜8%、
Cu:0.01〜8%を含有する合金で構成されたMH
V:500〜1700の範囲内の硬質粒子相が素地中に
形成され、前記(7)または(8)記載のこの発明の鉄
基焼結合金製バルブシートが作られる。
Further, for example, as the hard powder,
And Cr: 5 to 40%, W: 15 to 30%, Co: 5 to
30%, C: 0.1-3%, Si: 0.1-3%, N
b: A hard powder containing 0.1 to 3%, the balance being Fe-based alloy of Fe, is added and sintered. When sintering, Co and Cr contained in the hard powder diffuse into the base material. Cu: 15 to 40% by weight, Ni: 0.3 to 12% by weight, C: 0.8 to 3.0% by weight, Co: 0.1 to 10% by weight, Cr: 0.1 to 10% by weight Containing, the balance being Fe
And a base formed by combining an Fe-based alloy phase mainly composed of Fe and having a composition composed of unavoidable impurities with a Cu-based alloy phase mainly composed of Cu.
%, W: 15 to 30%, Co: 5 to 30%, C: 0.1
-3%, Si: 0.1-3%, Nb: 0.1-3%, and Ni diffused from the substrate: 0.01-8%,
MH composed of an alloy containing Cu: 0.01 to 8%
V: A hard particle phase in the range of 500 to 1700 is formed in the base material, and the valve seat made of the iron-based sintered alloy of the present invention described in the above (7) or (8) is produced.

【0015】したがって、この発明は、(13)前記MH
V:500〜1700の硬質粒子相は、Fe、Cr、
W、Co、C、Si、Nbを主成分とするFe−Cr−
W−Co−C−Si−Nb系合金からなる前記(7)ま
たは(8)記載の鉄基焼結合金製バルブシート、に特徴
を有するものである。
Therefore, the present invention relates to (13) the MH
V: The hard particle phase of 500 to 1700 is Fe, Cr,
Fe-Cr- containing W, Co, C, Si and Nb as main components
A valve seat made of an iron-based sintered alloy according to the above (7) or (8), comprising a W-Co-C-Si-Nb-based alloy.

【0016】さらに、例えば、前記硬質粉末として重量
%で、Cr:5〜40%,Mo:15〜30%,Co:
5〜30%,C:0.1〜3%,Si:0.1〜3%,
Nb:0.1〜3%を含有し、残部がFeのFe基合金
からなる硬質粉末を使用すると、焼結中に硬質粉末に含
まれるCoおよびCrは素地に拡散するところから、C
u:15〜40重量%、Ni:0.3〜12重量%、
C:0.8〜3.0重量%、Co:0.1〜10重量
%、Cr:0.1〜10重量%を含有し、残りがFeお
よび不可避不純物からなる組成を有しかつFeを主成分
とするFe基合金相をCuを主成分とするCu基合金相
で結合してなる素地を形成し、この素地中に、Cr:5
〜40%,Mo:15〜30%,Co:5〜30%,
C:0.1〜3%,Si:0.1〜3%,Nb:0.1
〜3%を含有し、さらに素地から拡散したNi:0.0
1〜8%、Cu:0.01〜8%を含有する合金で構成
されたMHV:500〜1700の範囲内の硬質粒子相
が形成され、前記(7)または(8)記載のこの発明の
鉄基焼結合金製バルブシートが作られる。
Further, for example, as the hard powder, by weight%, Cr: 5 to 40%, Mo: 15 to 30%, Co:
5 to 30%, C: 0.1 to 3%, Si: 0.1 to 3%,
When a hard powder containing 0.1 to 3% Nb and the balance being Fe is used, the Co and Cr contained in the hard powder diffuse into the base during sintering.
u: 15 to 40% by weight, Ni: 0.3 to 12% by weight,
C: 0.8 to 3.0% by weight, Co: 0.1 to 10% by weight, Cr: 0.1 to 10% by weight, the balance being Fe and unavoidable impurities, and Fe A base is formed by combining an Fe-based alloy phase containing a main component with a Cu-based alloy phase containing Cu as a main component.
-40%, Mo: 15-30%, Co: 5-30%,
C: 0.1-3%, Si: 0.1-3%, Nb: 0.1
~ 3% and further diffused from the substrate: 0.0
A hard particle phase in the range of MHV: 500 to 1700 composed of an alloy containing 1 to 8% and Cu: 0.01 to 8% is formed, and the present invention according to the above (7) or (8), A valve seat made of an iron-based sintered alloy is made.

【0017】したがって、この発明は、(14)前記MH
V:500〜1700の硬質粒子相は、Fe、Cr、M
o、Co、C、Si、Nbを主成分とするFe−Cr−
Mo−Co−C−Si−Nb系合金からなる前記(7)
または(8)記載の鉄基焼結合金製バルブシート、に特
徴を有するものである。
Therefore, the present invention relates to (14) the MH
V: Hard particle phase of 500 to 1700 is Fe, Cr, M
o-Co-C-Si-Fe-Cr-
The above (7) comprising a Mo—Co—C—Si—Nb-based alloy
Or, the valve seat made of an iron-based sintered alloy according to (8) is characterized.

【0018】前記MHV:500〜1700の硬質粒子
相は、前記9、10、11、12、13および14記載
の合金からなる硬質粒子相が混在していてもよい。した
がって、この発明は、(15)MHV:500〜1700
の硬質粒子相は、前記(9)、(10)、(11)、
(12)、(13)および(14)記載の合金からなる
硬質粒子相の全部または一部が混在している前記
(3)、(4)、(5)、(6)、(7)または(8)
記載の鉄基焼結合金製バルブシート、に特徴を有するも
のである。
The hard particle phase having an MHV of 500 to 1700 may include a hard particle phase composed of the alloys described in 9, 10, 11, 12, 13 and 14. Therefore, the present invention relates to (15) MHV: 500 to 1700
The hard particle phase of (9), (10), (11),
(3), (4), (5), (6), (7) or (7) wherein all or a part of the hard particle phase composed of the alloy according to (12), (13) and (14) is mixed. (8)
The valve seat is made of an iron-based sintered alloy as described above.

【0019】前記鉄基焼結合金製バルブシートの素地中
に分散する硬質粒子相は、MHV:500〜1700の
範囲内の硬質粒子相であればよいが、相手材であるバル
ブの材質によって鉄基焼結合金製バルブシートの素地中
に分散する硬質粒子相をMHV:500〜1000の硬
質粒子相、MHV:800〜1700の硬質粒子相、並
びにMHV:500〜1000およびMHV:800〜
1700の硬質粒子混合相に分けて使用することが一層
好ましい。
The hard particle phase dispersed in the base material of the iron-based sintered alloy valve seat may be a hard particle phase having an MHV in the range of 500 to 1700. The hard particle phase dispersed in the base material of the base sintered alloy valve seat is a hard particle phase of MHV: 500 to 1000, a hard particle phase of MHV: 800 to 1700, and MHV: 500 to 1000 and MHV: 800 to 800.
It is more preferred to use 1700 hard particle mixed phases separately.

【0020】例えば、相手材であるバルブの材質がSU
H35、SUH36などのオーステナイト系耐熱鋼であ
る場合は、鉄基焼結合金製バルブシートの素地中に分散
する硬質粒子相をMHV:500〜1000の範囲内の
硬質粒子相であることが一層好ましく、相手材であるバ
ルブの材質がSUH3、SUH11などのマルテンサイ
ト系耐熱鋼である場合は、鉄基焼結合金製バルブシート
の素地中に分散する硬質粒子相をMHV:800〜17
00の硬質粒子相であることが一層好ましく、さらに、
相手材であるバルブのフェース面材質がCo基耐熱合金
の盛金である場合は、鉄基焼結合金製バルブシートの素
地中に分散する硬質粒子相をMHV:500〜1000
およびMHV:800〜1700の硬質粒子混合相とす
ることが好ましい。
For example, if the material of the valve as the mating material is SU
In the case of an austenitic heat-resistant steel such as H35 or SUH36, the hard particle phase dispersed in the base material of the valve seat made of an iron-based sintered alloy is more preferably a hard particle phase in the range of MHV: 500 to 1,000. When the material of the valve as a mating material is a martensitic heat-resistant steel such as SUH3 or SUH11, the hard particle phase dispersed in the base material of the valve seat made of an iron-based sintered alloy has an MHV of 800 to 17
More preferably, the hard particle phase is 00.
When the face surface material of the valve which is the mating member is a ferrite of a Co-based heat-resistant alloy, the hard particle phase dispersed in the base material of the valve seat made of an iron-based sintered alloy is MHV: 500 to 1000.
And a hard particle mixed phase having an MHV of 800 to 1700 is preferable.

【0021】前記鉄基焼結合金製バルブシートの素地を
構成するFeを主成分とするFe基合金相はNi、C
u、Cおよび硬質粒子から拡散した成分を含みFeを5
0重量%以上含むFe合金相であり、Cuを主成分とす
るCu基合金相はNi、FeおよびCを含みCuを50
重量%以上含むCu合金相であり、かつFe基合金相に
含まれるNiおよびCの濃度は、Cu基合金相に含まれ
るNiおよびCの濃度よりも大きい。
The Fe-based alloy phase mainly composed of Fe constituting the base material of the valve seat made of the iron-based sintered alloy is Ni, C
Fe, containing components diffused from u, C and hard particles,
An Fe alloy phase containing 0% by weight or more, and a Cu-based alloy phase containing Cu as a main component contains Ni, Fe and C, and contains 50% of Cu.
The concentration of Ni and C contained in the Fe-based alloy phase is higher than the concentration of Ni and C contained in the Cu-based alloy phase.

【0022】したがって、前記(1)〜(13)に記載の
鉄基焼結合金製バルブシートにおける素地を構成するF
eを主成分とするFe基合金相はNi、Cu、Cおよび
硬質粒子から拡散した成分を含みFeを50重量%以上
含むFe合金相であり、前記Fe基合金相を結合するC
uを主成分とするCu基合金相はNi、Fe、Cおよび
硬質粒子から拡散した成分を含みCuを50重量%以上
含むCu合金相であり、かつFe基合金相に含まれるN
iおよびCの濃度は、Cu基合金相に含まれるNiおよ
びCの濃度よりも大きい鉄基焼結合金製バルブシート、
に特徴を有するものである。
Therefore, F constituting the base material in the valve seat made of the iron-based sintered alloy according to the above (1) to (13).
The Fe-based alloy phase containing e as a main component is a Fe alloy phase containing Ni, Cu, C and components diffused from hard particles and containing 50% by weight or more of Fe.
The Cu-based alloy phase containing u as a main component is a Cu alloy phase containing Ni, Fe, C, and components diffused from hard particles, containing at least 50% by weight of Cu, and N contained in the Fe-based alloy phase.
a valve seat made of an iron-based sintered alloy in which the concentration of i and C is larger than the concentration of Ni and C contained in the Cu-based alloy phase;
It is characterized by the following.

【0023】この発明の鉄基焼結合金製バルブシート
は、原料粉末として、Fe粉末、黒鉛粉末、Cu−Ni
合金粉末、Cu粉末、Ni粉末、MHV:500〜17
00の硬質粉末およびMHV:500〜1700の硬質
粉末を用意し、これら原料粉末を所定の割合で配合し混
合し、さらに金型成形時の潤滑剤であるステアリン酸亜
鉛粉末とともにダブルコーンミキサーで混合し、プレス
成形して圧粉体を作製し、圧粉体を水素を含む窒素雰囲
気中、温度:1100〜1300℃で焼結することによ
り製造する。焼結温度は1090〜1200℃が一層好
ましい。
The valve seat made of an iron-based sintered alloy according to the present invention is characterized in that Fe powder, graphite powder, Cu-Ni
Alloy powder, Cu powder, Ni powder, MHV: 500-17
A hard powder of No. 00 and a hard powder of MHV: 500-1700 are prepared, and these raw material powders are mixed and mixed in a predetermined ratio, and further mixed with a zinc stearate powder which is a lubricant at the time of mold molding by a double cone mixer. Then, press molding is performed to produce a green compact, and the green compact is manufactured by sintering in a nitrogen atmosphere containing hydrogen at a temperature of 1100 to 1300 ° C. The sintering temperature is more preferably from 1,900 to 1,200 ° C.

【0024】この発明の鉄基焼結合金製バルブシートの
製造方法において、原料粉末として前記Cu粉末および
Ni粉末の要素粉末を使用することができるが、前記C
u粉末およびNi粉末の要素粉末に代えてCu−Ni合
金粉末を使用する方が一層好ましく、その理由は下記の
焼結メカニズムによるものと考えられる。すなわち、C
u−Ni合金粉末を配合すると、焼結初期段階において
Cu−Ni合金の固液共存域に昇温されても一気に大量
のCu液相が発生するのではなく、穏やかに焼結が進行
し、焼結体に歪み、撓みなどの変形は生じさせない。焼
結中期段階において、Cu−Ni合金粉末のNiはFe
との親和性が高いため、Fe粉末中に拡散する。Fe粉
末中のNi濃度が高くなるとCuのFeへの固溶限が高
くなるため、FeへのCuの拡散も活発になり、Feと
Cuの密着性が向上する。焼結後期段階においては、C
u−Ni合金相中のNi含有量が低下しているため、C
u−Ni合金粉末の融点が下がり、一気に多量の液相が
発生し、ダイナミックな液相焼結が進行する。なお、焼
結後期段階において一気に多量の液相が発生しても、既
に十分な焼結が進行した後であるので焼結体に歪み、撓
みは発生しない。Cu−Ni合金粉末を原料粉末として
使用したこの発明の鉄基焼結合金製バルブシートの焼結
は前述のようなメカニズムによるものと考えられるか
ら、この発明の鉄基焼結合金製バルブシートを製造する
際に使用する原料粉末として、特にCu−Ni合金(N
i:1〜25重量%を含有し、残部がCuおよび不可避
不純物からなる母合金)粉末を使用することが好まし
い。
In the method of manufacturing a valve seat made of an iron-based sintered alloy according to the present invention, the element powders of the Cu powder and the Ni powder can be used as raw material powders.
It is more preferable to use a Cu—Ni alloy powder instead of the element powders of the u powder and the Ni powder, and the reason is considered to be due to the following sintering mechanism. That is, C
When the u-Ni alloy powder is blended, a large amount of Cu liquid phase is not generated at a stretch even if the temperature is raised to the solid-liquid coexistence region of the Cu-Ni alloy in the initial stage of sintering, and sintering proceeds gently, Deformation such as distortion and bending does not occur in the sintered body. In the middle stage of sintering, Ni of the Cu-Ni alloy powder is Fe
It has high affinity for and diffuses into Fe powder. When the Ni concentration in the Fe powder is increased, the solid solubility limit of Cu in Fe is increased, so that the diffusion of Cu into Fe is activated and the adhesion between Fe and Cu is improved. In the later stage of sintering, C
Since the Ni content in the u-Ni alloy phase is low, C
The melting point of the u-Ni alloy powder is lowered, a large amount of liquid phase is generated at a stretch, and dynamic liquid phase sintering proceeds. Note that even if a large amount of liquid phase is generated at a stretch in the latter stage of sintering, the sintered body is not distorted or bent since sufficient sintering has already progressed. Since the sintering of the iron-based sintered alloy valve seat of the present invention using the Cu-Ni alloy powder as the raw material powder is considered to be due to the mechanism described above, the iron-based sintered alloy valve seat of the present invention is used. As a raw material powder used in the production, particularly, a Cu—Ni alloy (N
i: a master alloy containing 1 to 25% by weight, with the balance being Cu and unavoidable impurities.

【0025】これらのメカニズムはこの発明の鉄基焼結
合金製バルブシートの素地を形成するメカニズムであっ
て、MHV:500〜1700の硬質粉末は焼結しても
溶融することなく、原料粉末とほぼ同じ形状を保ち、前
記MHV:500〜1700の硬質粉末は焼結中に硬質
粉末の周囲に存在するFe粉末を吸着し、Fe粉末は硬
質粒子相の周囲を断面花びら状(立体的にみると半団子
状)のFe基合金相が包囲した状態で分散している組織
を形成する。かかる断面花びら状(立体的にみると半団
子状)のFe基合金相はCu基合金相に対する接触面積
を増加させ、従来よりも一層Fe基合金相とCu基合金
相の結合強度を増加させる。
These mechanisms are the mechanisms for forming the base material of the iron-based sintered alloy valve seat of the present invention. The hard powder having an MHV of 500 to 1700 does not melt even after sintering. Maintaining substantially the same shape, the hard powder of MHV: 500 to 1700 adsorbs the Fe powder existing around the hard powder during sintering, and the Fe powder crosses the hard particle phase around the hard particle phase in a petal-like shape (as viewed three-dimensionally). And a semi-dense Fe-based alloy phase is formed in a dispersed state in a surrounding state. The Fe-based alloy phase having a petal cross-section (semi-dangling when viewed three-dimensionally) increases the contact area with the Cu-based alloy phase and further increases the bonding strength between the Fe-based alloy phase and the Cu-based alloy phase as compared with the related art. .

【0026】つぎに、この発明の鉄基焼結合金製バルブ
シートを構成する鉄基焼結合金の成分組成を上記のごと
く限定した理由について説明する。 [I]硬質粒子相 鉄基焼結合金製バルブシート素地に分散する硬質粒子相
のMHVを500〜1700に限定した理由は、MHV
が500未満の硬質粒子相では十分な耐摩耗性が得られ
ないので好ましくなく、一方、MHVが1700を越え
るとバルブを過大に摩耗させるので好ましくないことに
よるものである。また、鉄基焼結合金製バルブシート素
地中に5容量%分散していても十分な耐摩耗性が得られ
ないので好ましくなく、一方、30容量%を越えて分散
すると硬質粒子相が多過て靭性が不足するので好ましく
ない。したがって、硬質粒子相の分散量は5〜30容量
%に定めた。硬質粒子相の分散量の一層好ましい範囲は
8〜25容量%である。前記硬質粒子相は焼結中に素地
の成分であるFe、Cu、NiおよびCが拡散浸透す
る。したがって、硬質粒子相には微量のFe、Cu、N
iおよびCが含まれている。
Next, the reason why the component composition of the iron-based sintered alloy constituting the iron-based sintered alloy valve seat of the present invention is limited as described above will be described. [I] Hard particle phase The reason for limiting the MHV of the hard particle phase dispersed in the iron-based sintered alloy valve seat base to 500 to 1700 is that the MHV
Is less than 500, it is not preferable because sufficient wear resistance cannot be obtained. On the other hand, if the MHV exceeds 1,700, the valve is excessively worn, which is not preferable. In addition, even if 5% by volume is dispersed in the base material made of an iron-based sintered alloy, it is not preferable because sufficient wear resistance cannot be obtained. It is not preferable because of insufficient toughness. Therefore, the dispersion amount of the hard particle phase is set to 5 to 30% by volume. A more preferable range of the dispersion amount of the hard particle phase is 8 to 25% by volume. During the sintering, the base components Fe, Cu, Ni and C diffuse and penetrate into the hard particle phase. Therefore, a small amount of Fe, Cu, N
i and C are included.

【0027】[II]素地 Cu:15〜40重量%、Ni:0.3〜12重量%、
C:0.8〜3.0重量%を含有し、さらに必要に応じ
て硬質粉末の構成元素が拡散して含有し、残りがFeお
よび不可避不純物からなる組成を有しかつFeを主成分
とするFe基合金相をCuを主成分とするCu基合金相
で結合してなる組織を有するが、前記組成となるように
限定した理由は、以下の通りである。
[II] Base Cu: 15 to 40% by weight, Ni: 0.3 to 12% by weight,
C: contains 0.8 to 3.0% by weight, and, if necessary, contains constituent elements of the hard powder in a diffused manner, and the remainder has a composition of Fe and unavoidable impurities, and contains Fe as a main component. The alloy has a structure in which the Fe-based alloy phase is bonded by a Cu-based alloy phase containing Cu as a main component. The reason why the composition is limited to the above-described composition is as follows.

【0028】(a)Cu Cuは、密度、強度および耐摩耗性を向上させる効果が
あるが、その含有量が15重量%未満では液相の発生量
が十分でなく、したがって密度、強度および耐摩耗性の
効果が十分でなく、一方、40重量%を越えると液相が
過大となり、焼結中に変形が生じて寸法のバラツキが大
きくなるので好ましくない。したがって、Cuの含有量
は15〜40重量%に定めた。Cuの含有量の一層好ま
しい範囲は17〜30重量%であり、さらに一層好まし
い範囲は20〜28重量%である。
(A) Cu Cu has the effect of improving the density, strength and abrasion resistance. However, if its content is less than 15% by weight, the amount of liquid phase generated is not sufficient, so that the density, strength and resistance to abrasion are insufficient. The effect of abrasion is not sufficient. On the other hand, if it exceeds 40% by weight, the liquid phase becomes excessively large, which is not preferable because deformation occurs during sintering and dimensional dispersion increases. Therefore, the content of Cu is set to 15 to 40% by weight. A more preferred range for the Cu content is 17-30% by weight, and an even more preferred range is 20-28% by weight.

【0029】(b)Ni Niは、Cu合金相中においてCu合金相の融点を上昇
させ、液相焼結をコントロールし、またFe合金相の強
度および靭性を向上させる作用があるが、その含有量が
0.3重量%未満ではその効果が十分でなく、一方、1
2重量%を越えて含有してもそれ以上の効果が少ない。
したがって、Niの含有量は0.3〜12重量%に定め
た。Niの含有量の一層好ましい範囲は2〜6重量%で
ある。
(B) Ni Ni has the effect of increasing the melting point of the Cu alloy phase in the Cu alloy phase, controlling liquid phase sintering, and improving the strength and toughness of the Fe alloy phase. If the amount is less than 0.3% by weight, the effect is not sufficient.
Even if the content exceeds 2% by weight, no further effect is obtained.
Therefore, the content of Ni is set to 0.3 to 12% by weight. A more preferable range of the Ni content is 2 to 6% by weight.

【0030】(c)C Cは、強度および硬さを向上させる作用があるが、その
含有量が0.8重量%未満では効果が十分でなく、一
方、3.0重量%を越えて含有する靭性を低下させるの
で好ましくない。したがって、Cの含有量は0.8〜
3.0重量%に定めた。Cの含有量の一層好ましい範囲
は0.9〜1.6重量%である。
(C) C C has the effect of improving the strength and hardness, but if its content is less than 0.8% by weight, the effect is not sufficient, while the content exceeds 3.0% by weight. This is not preferred because the resulting toughness is reduced. Therefore, the content of C is 0.8 to
It was determined to be 3.0% by weight. A more preferable range of the content of C is 0.9 to 1.6% by weight.

【0031】(d)素地の組織 この発明の鉄基焼結合金製バルブシートの素地は、C
u:15〜40重量%、Ni:0.3〜12重量%、
C:0.8〜3.0重量%を含有し、残りがFeおよび
不可避不純物からなる組成を有し、大部分がFeを主成
分とするFe基合金相をCuを主成分とするCu基合金
相により結合した組織を有するが、前記硬質粒子の成分
が拡散してFe基合金相およびCu基合金相に含まれる
こともある。かかる硬質粒子相の周囲を包囲しているF
e基合金相は断面花びら状(立体的にみると半団子状)
になっていることが一層好ましく、硬質粒子相の周囲を
包囲しているFe基合金相が断面花びら状(立体的にみ
ると半団子状)になることによりFe基合金相とCu基
合金相の接触面積が増大し、より一層大きな結合力が得
られる。
(D) Base Structure The base of the iron-based sintered alloy valve seat of the present invention is C
u: 15 to 40% by weight, Ni: 0.3 to 12% by weight,
C: a Cu-based alloy containing 0.8 to 3.0% by weight, the balance being composed of Fe and unavoidable impurities, and a Fe-based alloy phase mainly composed of Fe as a major component Although it has a structure bonded by an alloy phase, the components of the hard particles may diffuse and be contained in the Fe-based alloy phase and the Cu-based alloy phase. F surrounding the hard particle phase
e-base alloy phase is petal-shaped in cross section (semi-dangling when viewed three-dimensionally)
It is more preferable that the Fe-based alloy phase surrounding the hard particle phase becomes petal-shaped (semi-dangling when viewed three-dimensionally) so that the Fe-based alloy phase and the Cu-based alloy phase Is increased, and a greater bonding force is obtained.

【0032】[0032]

【発明の実施の形態】原料粉末として、平均粒径:55
μmのFe粉末、下記の表1に示される成分組成および
平均粒径を有するCu−Ni合金粉末a〜e、平均粒
径:11μmのCu粉末、平均粒径:10μmのNi粉
末、平均粒径:18μmの黒鉛粉末を用意し、さらに下
記の表2に示される成分組成を有する硬質粉末A〜Fを
用意した。
BEST MODE FOR CARRYING OUT THE INVENTION The raw material powder has an average particle size of 55.
μm Fe powder, Cu—Ni alloy powders ae having the component compositions and average particle diameters shown in Table 1 below, average particle diameter: 11 μm Cu powder, average particle diameter: 10 μm Ni powder, average particle diameter : 18 μm graphite powder was prepared, and hard powders A to F having the component compositions shown in Table 2 below were prepared.

【0033】[0033]

【表1】 [Table 1]

【0034】[0034]

【表2】 [Table 2]

【0035】実施例1 前記Fe粉末、表1のCu−Ni合金粉末a〜e、黒鉛
粉末および表2の硬質粉末A〜Fを表3〜4に示される
割合で配合し混合することにより原料混合粉末を作製し
た。
Example 1 The Fe powder, the Cu-Ni alloy powders a to e in Table 1, the graphite powder, and the hard powders A to F in Table 2 were mixed and mixed in the ratios shown in Tables 3 and 4 to obtain raw materials. A mixed powder was prepared.

【0036】[0036]

【表3】 [Table 3]

【0037】[0037]

【表4】 [Table 4]

【0038】この原料混合粉末にさらに金型成形時の潤
滑剤であるステアリン酸亜鉛粉末を外掛けで0.8重量
%に当たる量だけ添加して混合し、プレス成形して外
径:34mm、内径:27mm、厚さ:7mmの寸法を
有するバルブシート形状圧粉体を作製した。この圧粉体
をN2 −5%H2 の混合雰囲気中、温度:1140℃、
20分保持の条件で焼結し、本発明鉄基焼結合金製バル
ブシート(以下、本発明バルブシートという)1〜16
および比較鉄基焼結合金製バルブシート(以下、比較バ
ルブシートという)1〜6を作製した。これら本発明バ
ルブシート1〜16および比較バルブシート1〜6の素
地の成分組成、並びに硬質粒子相の分散量(容量%)お
よびMHVを測定し、その結果を表5〜7に示した。な
お、硬質粒子相の分散量は画像解析により硬質粒子の面
積率を測定した後、これを体積率に変換することにより
測定し、さらに硬質粒子相のMHVはマイクロビッカー
ス硬さ測定により測定した。
To this raw material mixed powder, zinc stearate powder, which is a lubricant at the time of molding, is added in an amount equivalent to 0.8% by weight on an outer surface, mixed, and press-molded to form an outer diameter of 34 mm, an inner diameter of 34 mm. : 27 mm, thickness: 7 mm, to produce a valve seat compact. This green compact was heated in a mixed atmosphere of N 2 -5% H 2 at a temperature of 1140 ° C.
Sintered under the condition of holding for 20 minutes, and the valve seat made of the iron-based sintered alloy of the present invention (hereinafter referred to as the valve seat of the present invention)
And comparative iron-based sintered alloy valve seats (hereinafter referred to as comparative valve seats) 1 to 6 were produced. The component compositions of the bases of the valve seats 1 to 16 of the present invention and the comparative valve seats 1 to 6, the dispersion amount (volume%) of the hard particle phase, and the MHV were measured, and the results are shown in Tables 5 to 7. In addition, the dispersion amount of the hard particle phase was measured by measuring the area ratio of the hard particles by image analysis, and then converting the area ratio into a volume ratio. Further, the MHV of the hard particle phase was measured by micro Vickers hardness measurement.

【0039】このようにして作製した本発明バルブシー
ト1を切断し、研磨し、金属顕微鏡による組織観察を行
い、硬質粒子相を中心とした組織写生図を図1に示し
た。図1において1はFe基合金相、2はCu基合金
相、3は硬質粉末Aにより形成された硬質粒子相であ
る。さらに本発明バルブシート3を切断し、研磨し、金
属顕微鏡による組織観察を行い、硬質粒子相を中心とし
た組織写生図を図2に示した。図2において1はFe基
合金相、2はCu基合金相、3は硬質粉末Cにより形成
された硬質粒子相である。図1および図2金属組織の写
生図から明らかなように、本発明バルブシート1および
3はFe基合金相1をCu基合金相2で結合してなる素
地を有し、特に素地中に分散しているMHV500〜1
700の硬質粒子相3は断面花びら状(立体的にみると
半団子状)のFe基合金相1´により包囲された状態で
分散していることが分かる。さらに本発明バルブシート
2および4〜14についても素地中に断面花びら状(立
体的にみると半団子状)のFe基合金相1´が存在する
か否かを観察し、その結果を表5〜7に示した。
The valve seat 1 of the present invention thus produced was cut and polished, and the structure was observed with a metallographic microscope. FIG. 1 shows a structure photograph centered on the hard particle phase. In FIG. 1, reference numeral 1 denotes an Fe-based alloy phase, 2 denotes a Cu-based alloy phase, and 3 denotes a hard particle phase formed by the hard powder A. Further, the valve seat 3 of the present invention was cut and polished, and the structure was observed with a metallographic microscope. A structure photograph centered on the hard particle phase is shown in FIG. In FIG. 2, 1 is an Fe-based alloy phase, 2 is a Cu-based alloy phase, and 3 is a hard particle phase formed by hard powder C. As is clear from the sketches of the metal structures in FIGS. 1 and 2, the valve seats 1 and 3 of the present invention have a base obtained by bonding an Fe-based alloy phase 1 with a Cu-based alloy phase 2, and in particular, disperse in the base. MHV 500-1
It can be seen that the 700 hard particle phase 3 is dispersed in a state surrounded by the Fe-based alloy phase 1 ′ having a petal cross section (semi-dangling when viewed three-dimensionally). Further, with respect to the valve seats 2 and 4 to 14 of the present invention, it was observed whether or not an Fe-based alloy phase 1 ′ having a petal cross section (semi-dangling when viewed three-dimensionally) was present in the substrate. 7 are shown.

【0040】さらに、前記本発明バルブシート1および
3の組織のFe基合金相およびCu基合金相の成分含有
量をEPMAにより測定した結果、前記Fe基合金相は
Ni、CuおよびCを含みかつFeを50重量%以上含
み、前記Cu基合金相はNi、FeおよびCを含みかつ
Cuを50重量%以上含み、さらにFe基合金相に含ま
れるNiおよびCの濃度は、Cu基合金相に含まれるN
iおよびCの濃度よりも大であることを確認した。また
Fe基合金相およびCu基合金相には硬質粒子相の成分
が一部拡散浸透して含まれており、一方、硬質粒子相に
はFe、Cu、NiおよびCが一部拡散浸透して含まれ
ていることが分かった。
Further, as a result of measuring the component contents of the Fe-based alloy phase and the Cu-based alloy phase in the structures of the valve seats 1 and 3 of the present invention by EPMA, the Fe-based alloy phase contains Ni, Cu and C; Fe is contained in an amount of 50% by weight or more, the Cu-based alloy phase contains Ni, Fe and C, and contains Cu in an amount of 50% by weight or more. N included
It was confirmed that the concentration was higher than the concentrations of i and C. The Fe-based alloy phase and the Cu-based alloy phase partially contain the components of the hard particle phase by diffusion and infiltration, while the hard particle phase partially diffuses and infiltrates Fe, Cu, Ni and C. Turned out to be included.

【0041】さらにCr:2重量%、Mo:1.5重量
%、Ni:1.5重量%、Co:5重量%、C:1.0
重量%、Nb:0.6重量%を含有し、残りがFeおよ
び不可避不純物からなる組成並びにパーライト相および
ベーナイト相を主体とした組織からなる鉄基合金組織を
有する素地中に、表2の硬質粒子AとEが合計で17容
量%が均一に分散した組織を有する鉄基焼結合金で構成
された従来鉄基焼結合金製バルブシート(以下、従来バ
ルブシートという)を用意した。
Further, Cr: 2% by weight, Mo: 1.5% by weight, Ni: 1.5% by weight, Co: 5% by weight, C: 1.0%
% By weight, Nb: 0.6% by weight, the balance being Fe and an unavoidable impurity, and a base having an iron-based alloy structure mainly composed of a pearlite phase and a bainite phase. A valve seat made of a conventional iron-based sintered alloy (hereinafter, referred to as a conventional valve seat) made of an iron-based sintered alloy having a structure in which particles A and E had a structure in which a total of 17% by volume of particles were uniformly dispersed was prepared.

【0042】摩耗試験 前記本発明バルブシート1〜16、比較バルブシート1
〜6および従来バルブシートについて下記の摩耗試験を
行った。SUH36の材質からなり外径が30mmの傘
部分を有するバルブを用意し、このバルブの傘部分を温
度:900℃に保持し、さらに本発明バルブシート1〜
16、比較バルブシート1〜6および従来バルブシート
をそれぞれ内部が水冷されている治具に圧入し、ガソリ
ン燃焼雰囲気中で着座荷重:30kg、バルブ着座回
数:3000回/分の条件で150時間試験し、バルブ
シートおよびバルブの最大摩耗量を測定し、その結果を
表5〜7に示した。
Abrasion test Valve seats 1 to 16 of the present invention, comparative valve seat 1
The following abrasion tests were carried out on No. 6 and the conventional valve seat. A valve having an umbrella portion made of SUH36 material and having an outer diameter of 30 mm is prepared. The umbrella portion of this valve is maintained at a temperature of 900 ° C.
16. Each of the comparative valve seats 1 to 6 and the conventional valve seat are pressed into a jig whose inside is water-cooled, and a seating load: 30 kg, a valve seating frequency: 3,000 times / min in a gasoline combustion atmosphere for 150 hours. The maximum wear of the valve seat and the valve was measured, and the results are shown in Tables 5 to 7.

【0043】[0043]

【表5】 [Table 5]

【0044】[0044]

【表6】 [Table 6]

【0045】[0045]

【表7】 [Table 7]

【0046】表3〜表7に示される結果から、本発明バ
ルブシート1〜16は従来バルブシートに比べて、バル
ブシート自体の最大摩耗量および相手材であるバルブの
最大摩耗量が少ないことが分かる。しかし、この発明の
範囲から外れている成分組成を有する比較バルブシート
1〜6は、バルブシートの最大摩耗量および相手材であ
るバルブの最大摩耗量のうちの少なくともいずれかが好
ましくない値を示すことが分かる。
From the results shown in Tables 3 to 7, the valve seats 1 to 16 of the present invention show that the maximum wear of the valve seat itself and the maximum wear of the valve which is the mating material are smaller than those of the conventional valve seat. I understand. However, the comparative valve seats 1 to 6 having a component composition out of the range of the present invention show an unfavorable value in at least one of the maximum wear amount of the valve seat and the maximum wear amount of the valve which is the mating member. You can see that.

【0047】実施例2 いずれも要素粉末であるFe粉末、Cu粉末、Ni粉
末、黒鉛粉末を配合し、混合して表8に示される配合組
成の素地形成混合粉末を作製し、この素地形成混合粉末
に対して硬質粒子相形成のための硬質粉末A〜Fを表8
に示される割合で配合し混合することにより原料混合粉
末を作製し、この原料混合粉末にさらに金型成形時の潤
滑剤であるステアリン酸亜鉛粉末を外掛けで0.8重量
%に当たる量だけ添加して混合し、プレス成形して外
径:34mm、内径:27mm、厚さ:7mmの寸法を
有するバルブシート形状圧粉体を作製した。この圧粉体
をN2−5%H2 の混合雰囲気中、温度:1140℃、
20分保持の条件で焼結し、表9に示される成分組成の
素地および硬質粒子相を有する本発明バルブシート17
〜22を作製した。
Example 2 Fe powder, Cu powder, Ni powder, and graphite powder, all of which are elemental powders, were blended and mixed to produce a ground forming mixed powder having the blending composition shown in Table 8, and this ground forming mixed powder was prepared. Table 8 shows hard powders A to F for forming a hard particle phase with respect to the powders.
A raw material mixed powder is prepared by blending and mixing at the ratio shown in (1), and zinc stearate powder, which is a lubricant at the time of mold molding, is added to the raw material mixed powder in an amount equivalent to 0.8% by weight in an outer case. Then, the mixture was press-formed to prepare a valve-seat-shaped green compact having dimensions of outer diameter: 34 mm, inner diameter: 27 mm, and thickness: 7 mm. This green compact was heated in a mixed atmosphere of N 2 -5% H 2 at a temperature of 1140 ° C.
The valve seat 17 of the present invention which has been sintered under the conditions of holding for 20 minutes and has a base and a hard particle phase having the component compositions shown in Table 9
To 22 were prepared.

【0048】これら本発明バルブシート17〜22を切
断し、研磨し、金属顕微鏡による組織観察を行ったとこ
ろ、実施例1のCu−Ni合金粉末を使用して作製した
組織と近似しており、硬質粒子相は断面花びら状のFe
基合金相により包囲された状態で分散していることが分
かったが、実施例1のCu−Ni合金粉末を使用して作
製した組織と比べて断面花びら状のFe基合金相がやや
少なかった。さらに、前記本発明バルブシート17〜2
2の組織のFe基合金相およびCu基合金相の成分含有
量をEPMAにより測定した結果、前記Fe基合金相は
Ni、CuおよびCを含みかつFeを50重量%以上含
み、前記Cu基合金相はNi、FeおよびCを含みかつ
Cuを50重量%以上含み、さらにFe基合金相に含ま
れるNiおよびCの濃度は、Cu基合金相に含まれるN
iおよびCの濃度よりも大であることを確認した。また
Fe基合金相およびCu基合金相には硬質粒子相の成分
が一部拡散浸透して含まれており、一方、硬質粒子相に
はFe、Cu、NiおよびCが拡散浸透して含まれてい
ることが分かった。
When the valve seats 17 to 22 of the present invention were cut and polished, and the structure was observed with a metallographic microscope, the structure was similar to the structure prepared using the Cu—Ni alloy powder of Example 1. Hard particle phase is Fe-shaped cross section
It was found that the Fe-based alloy phase was dispersed in a state of being surrounded by the base alloy phase, but the Fe-based alloy phase having a petal cross section was slightly less than the structure produced using the Cu—Ni alloy powder of Example 1. . Further, the valve seats 17 to 2 of the present invention are used.
As a result of measuring the component contents of the Fe-based alloy phase and the Cu-based alloy phase having the structure of No. 2 by EPMA, the Fe-based alloy phase contained Ni, Cu and C, and contained 50% by weight or more of Fe. The phase contains Ni, Fe and C and contains Cu in an amount of 50% by weight or more, and the concentration of Ni and C contained in the Fe-based alloy phase depends on the concentration of N contained in the Cu-based alloy phase.
It was confirmed that the concentration was higher than the concentrations of i and C. The Fe-based alloy phase and the Cu-based alloy phase partially contain the components of the hard particle phase by diffusion and infiltration, while the hard particle phase contains Fe, Cu, Ni and C by diffusion and infiltration. I knew it was.

【0049】得られた本発明バルブシート17〜22に
ついて実施例1と同じ条件の摩耗試験を行い、バルブシ
ートおよびバルブの最大摩耗量を測定し、その結果を表
9に示した。
The obtained valve seats 17 to 22 of the present invention were subjected to a wear test under the same conditions as in Example 1, and the maximum wear of the valve seats and valves was measured. The results are shown in Table 9.

【0050】[0050]

【表8】 [Table 8]

【0051】[0051]

【表9】 [Table 9]

【0052】表8〜表9に示される結果から、本発明バ
ルブシート17〜22と実施例1で用意した従来バルブ
シートを比較すると、本発明バルブシート17〜22は
従来バルブシートと比べて、バルブシート自体の最大摩
耗量および相手材であるバルブの最大摩耗量が少ないこ
とが分かる。
From the results shown in Tables 8 and 9, when comparing the valve seats 17 to 22 of the present invention with the conventional valve seats prepared in Example 1, the valve seats of the present invention 17 to 22 are compared with the conventional valve seats. It can be seen that the maximum wear amount of the valve seat itself and the maximum wear amount of the valve as the mating material are small.

【0053】[0053]

【発明の効果】上述のように、この発明の鉄基焼結合金
製バルブシートは、摩耗量が少なく、さらに相手材であ
るバルブに対する相手攻撃性が少ないところから、エン
ジンなどの自動車産業の発展に大いに貢献し得るもので
ある。
As described above, the valve seat made of an iron-based sintered alloy according to the present invention has a small amount of wear and a small aggressiveness with respect to a valve as a mating material. Can greatly contribute to

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の鉄基焼結合金製バルブシートの組織
の写生図である。
FIG. 1 is a sketch drawing of the structure of a valve seat made of an iron-based sintered alloy of the present invention.

【図2】この発明の鉄基焼結合金製バルブシートの組織
の写生図である。
FIG. 2 is a sketch of a structure of a valve seat made of an iron-based sintered alloy of the present invention.

【符号の説明】[Explanation of symbols]

1 Fe基合金相 1´ 断面花びら状のFe基合金相 2 Cu基合金相 3 硬質粒子相 Reference Signs List 1 Fe-based alloy phase 1 'Fe-based alloy phase with petal cross section 2 Cu-based alloy phase 3 Hard particle phase

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F01L 3/02 F01L 3/02 H B22F 5/00 Z Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat II (Reference) F01L 3/02 F01L 3/02 H B22F 5/00 Z

Claims (17)

【特許請求の範囲】[Claims] 【請求項1】 Cu:15〜40重量%、Ni:0.3
〜12重量%、C:0.8〜3.0重量%を含有し、残
りがFeおよび不可避不純物からなる組成を有しかつF
eを主成分とするFe基合金相をCuを主成分とするC
u基合金相により結合してなる素地中に、 マイクロビッカース硬さ(以下、MHVという):50
0〜1700の硬質粒子相が5〜30容量%の割合で前
記Fe基合金相により包囲された状態で分散している組
織を有することを特徴とする鉄基焼結合金製バルブシー
ト。
1. Cu: 15 to 40% by weight, Ni: 0.3
-12% by weight, C: 0.8-3.0% by weight, the balance being composed of Fe and unavoidable impurities, and
e-based Fe-based alloy phase to Cu-based
Micro Vickers hardness (hereinafter referred to as MHV): 50 in the base material bonded by the u-base alloy phase
A valve seat made of an iron-based sintered alloy, having a structure in which hard particle phases of 0 to 1700 are dispersed in a state of being surrounded by the Fe-based alloy phase at a ratio of 5 to 30% by volume.
【請求項2】 Cu:15〜40重量%、Ni:0.3
〜12重量%、C:0.8〜3.0重量%を含有し、残
りがFeおよび不可避不純物からなる組成を有しかつF
eを主成分とするFe基合金相をCuを主成分とするC
u基合金相により結合してなる素地中に、 MHV:500〜1700の硬質粒子相が5〜30容量
%の割合で前記Fe基合金相により断面花びら状に包囲
された状態で分散している組織を有することを特徴とす
る鉄基焼結合金製バルブシート。
2. Cu: 15 to 40% by weight, Ni: 0.3
-12% by weight, C: 0.8-3.0% by weight, the balance being composed of Fe and unavoidable impurities, and
e-based Fe-based alloy phase to Cu-based
A hard particle phase having an MHV of 500 to 1700 is dispersed in a matrix formed by the u-based alloy phase at a ratio of 5 to 30% by volume in a state of being surrounded by the Fe-based alloy phase in a petal cross section. An iron-based sintered alloy valve seat having a structure.
【請求項3】 Cu:15〜40重量%、Ni:0.3
〜12重量%、C:0.8〜3.0重量%、Co:0.
1〜10重量%を含有し、残りがFeおよび不可避不純
物からなる組成を有しかつFeを主成分とするFe基合
金相をCuを主成分とするCu基合金相により結合して
なる素地中に、 MHV:500〜1700の硬質粒子相が5〜30容量
%の割合で前記Fe基合金相により包囲された状態で分
散している組織を有することを特徴とする鉄基焼結合金
製バルブシート。
3. Cu: 15 to 40% by weight, Ni: 0.3
-12% by weight, C: 0.8-3.0% by weight, Co: 0.
A substrate containing 1 to 10% by weight, the balance being Fe and unavoidable impurities, and having an Fe-based alloy phase mainly composed of Fe combined with a Cu-based alloy phase mainly composed of Cu. A valve made of an iron-based sintered alloy having a structure in which a hard particle phase of MHV: 500 to 1700 is dispersed in a state of being surrounded by the Fe-based alloy phase at a ratio of 5 to 30% by volume. Sheet.
【請求項4】 Cu:15〜40重量%、Ni:0.3
〜12重量%、C:0.8〜3.0重量%、Co:0.
1〜10重量%を含有し、残りがFeおよび不可避不純
物からなる組成を有しかつFeを主成分とするFe基合
金相をCuを主成分とするCu基合金相により結合して
なる素地中に、 MHV:500〜1700の硬質粒子相が5〜30容量
%の割合で前記Fe基合金相により断面花びら状に包囲
された状態で分散している組織を有することを特徴とす
る鉄基焼結合金製バルブシート。
4. Cu: 15 to 40% by weight, Ni: 0.3
-12% by weight, C: 0.8-3.0% by weight, Co: 0.
A substrate containing 1 to 10% by weight, the balance being Fe and unavoidable impurities, and having an Fe-based alloy phase mainly composed of Fe combined with a Cu-based alloy phase mainly composed of Cu. An iron-based sintering method characterized by having a structure in which a hard particle phase of MHV: 500 to 1700 is dispersed in a petal-like cross section by the Fe-based alloy phase at a ratio of 5 to 30% by volume. Bonded gold valve seat.
【請求項5】 Cu:15〜40重量%、Ni:0.3
〜12重量%、C:0.8〜3.0重量%、Cr:0.
1〜10重量%を含有し、残りがFeおよび不可避不純
物からなる組成を有しかつFeを主成分とするFe基合
金相をCuを主成分とするCu基合金相により結合して
なる素地中に、 MHV:500〜1700の硬質粒子相が5〜30容量
%の割合で前記Fe基合金相により包囲された状態で分
散している組織を有することを特徴とする鉄基焼結合金
製バルブシート。
5. Cu: 15 to 40% by weight, Ni: 0.3
-12% by weight, C: 0.8-3.0% by weight, Cr: 0.
A substrate containing 1 to 10% by weight, the balance being Fe and unavoidable impurities, and having an Fe-based alloy phase mainly composed of Fe combined with a Cu-based alloy phase mainly composed of Cu. A valve made of an iron-based sintered alloy having a structure in which a hard particle phase of MHV: 500 to 1700 is dispersed in a state of being surrounded by the Fe-based alloy phase at a ratio of 5 to 30% by volume. Sheet.
【請求項6】 Cu:15〜40重量%、Ni:0.3
〜12重量%、C:0.8〜3.0重量%、Cr:0.
1〜10重量%を含有し、残りがFeおよび不可避不純
物からなる組成を有しかつFeを主成分とするFe基合
金相をCuを主成分とするCu基合金相により結合して
なる素地中に、 MHV:500〜1700の硬質粒子相が5〜30容量
%の割合で前記Fe基合金相により断面花びら状に包囲
された状態で分散している組織を有することを特徴とす
る鉄基焼結合金製バルブシート。
6. Cu: 15 to 40% by weight, Ni: 0.3
-12% by weight, C: 0.8-3.0% by weight, Cr: 0.
A substrate containing 1 to 10% by weight, the balance being Fe and unavoidable impurities, and having an Fe-based alloy phase mainly composed of Fe combined with a Cu-based alloy phase mainly composed of Cu. An iron-based sintering method characterized by having a structure in which a hard particle phase of MHV: 500 to 1700 is dispersed in a petal-like cross section by the Fe-based alloy phase at a ratio of 5 to 30% by volume. Bonded gold valve seat.
【請求項7】 Cu:15〜40重量%、Ni:0.3
〜12重量%、C:0.8〜3.0重量%、Co:0.
1〜10重量%、Cr:0.1〜10重量%を含有し、
残りがFeおよび不可避不純物からなる組成を有しかつ
Feを主成分とするFe基合金相をCuを主成分とする
Cu基合金相により結合してなる素地中に、 MHV:500〜1700の硬質粒子相が5〜30容量
%の割合で前記Fe基合金相により包囲された状態で分
散している組織を有することを特徴とする鉄基焼結合金
製バルブシート。
7. Cu: 15 to 40% by weight, Ni: 0.3
-12% by weight, C: 0.8-3.0% by weight, Co: 0.
1 to 10% by weight, Cr: 0.1 to 10% by weight,
The base having a composition of Fe and unavoidable impurities and having a Fe-based alloy phase containing Fe as a main component bonded by a Cu-base alloy phase containing Cu as a main component has a hardness of MHV: 500 to 1700. A valve seat made of an iron-based sintered alloy having a structure in which a particle phase is dispersed in a state of being surrounded by the Fe-based alloy phase at a ratio of 5 to 30% by volume.
【請求項8】 Cu:15〜40重量%、Ni:0.3
〜12重量%、C:0.8〜3.0重量%、Co:0.
1〜10重量%、Cr:0.1〜10重量%を含有し、
残りがFeおよび不可避不純物からなる組成を有しかつ
Feを主成分とするFe基合金相をCuを主成分とする
Cu基合金相により結合してなる素地中に、 MHV:500〜1700の硬質粒子相が5〜30容量
%の割合で前記Fe基合金相により断面花びら状に包囲
された状態で分散している組織を有することを特徴とす
る鉄基焼結合金製バルブシート。
8. Cu: 15 to 40% by weight, Ni: 0.3
-12% by weight, C: 0.8-3.0% by weight, Co: 0.
1 to 10% by weight, Cr: 0.1 to 10% by weight,
The base having a composition of Fe and unavoidable impurities and having a Fe-based alloy phase containing Fe as a main component bonded by a Cu-base alloy phase containing Cu as a main component has a hardness of MHV: 500 to 1700. A valve seat made of an iron-based sintered alloy having a structure in which a particle phase is dispersed at a ratio of 5 to 30% by volume in a state of being surrounded by the Fe-based alloy phase in a petal cross section.
【請求項9】 前記MHV:500〜1700の硬質粒
子相は、MoおよびFeを主成分とするMo−Fe系合
金からなることを特徴とする請求項1または2記載の鉄
基焼結合金製バルブシート。
9. The iron-based sintered alloy according to claim 1, wherein the hard particle phase having MHV: 500 to 1700 is made of a Mo—Fe alloy containing Mo and Fe as main components. Valve seat.
【請求項10】 前記MHV:500〜1700の硬質
粒子相は、CoおよびFeを主成分とするCo−Fe系
合金からなることを特徴とする請求項3または4記載の
鉄基焼結合金製バルブシート。
10. The iron-based sintered alloy according to claim 3, wherein the hard particle phase of MHV: 500 to 1700 is made of a Co—Fe alloy containing Co and Fe as main components. Valve seat.
【請求項11】 前記MHV:500〜1700の硬質
粒子相は、Ni、CrおよびMoを主成分とするNi−
Cr−Mo系合金からなることを特徴とする請求項5ま
たは6記載の鉄基焼結合金製バルブシート。
11. The hard particle phase having an MHV of 500 to 1700 is a Ni-based alloy containing Ni, Cr and Mo as main components.
The valve seat made of an iron-based sintered alloy according to claim 5 or 6, wherein the valve seat is made of a Cr-Mo alloy.
【請求項12】 前記MHV:500〜1700の硬質
粒子相は、Co、Mo、CrおよびSiを主成分とする
Co−Mo−Cr−Si系合金からなることを特徴とす
る請求項7または8記載の鉄基焼結合金製バルブシー
ト。
12. The hard particle phase having an MHV of 500 to 1700 is made of a Co—Mo—Cr—Si alloy containing Co, Mo, Cr and Si as main components. A valve seat made of the iron-based sintered alloy described in the above.
【請求項13】 前記MHV:500〜1700の硬質
粒子相は、Fe、Cr、W、Co、C、Si、Nbを主
成分とするFe−Cr−W−Co−C−Si−Nb系合
金からなることを特徴とする請求項7または8記載の鉄
基焼結合金製バルブシート。
13. The hard particle phase having an MHV of 500 to 1700 is a Fe—Cr—W—Co—C—Si—Nb alloy containing Fe, Cr, W, Co, C, Si, and Nb as main components. The valve seat made of an iron-based sintered alloy according to claim 7 or 8, wherein the valve seat is made of:
【請求項14】 前記MHV:500〜1700の硬質
粒子相は、Fe、Cr、Mo、Co、C、Si、Nbを
主成分とするFe−Cr−Mo−Co−C−Si−Nb
系合金からなることを特徴とする請求項7または8記載
の鉄基焼結合金製バルブシート。
14. The hard particle phase of MHV: 500 to 1700 is Fe—Cr—Mo—Co—C—Si—Nb containing Fe, Cr, Mo, Co, C, Si and Nb as main components.
The valve seat made of an iron-based sintered alloy according to claim 7 or 8, wherein the valve seat is made of a base alloy.
【請求項15】 MHV:500〜1700の硬質粒子
相は、請求項9、10、11、12、13および14記
載の合金からなる硬質粒子相の全部または一部が混在し
ていることを特徴とする請求項3、4、5、6、7また
は8記載の鉄基焼結合金製バルブシート。
15. The hard particle phase of MHV: 500 to 1700 is characterized in that all or a part of the hard particle phase composed of the alloy according to claim 9, 10, 11, 12, 13 or 14 is mixed. The valve seat made of an iron-based sintered alloy according to claim 3, 4, 5, 6, 7, or 8.
【請求項16】 原料粉末として、Fe粉末、C粉末、
Ni−Cu合金粉末および硬質粉末を用意し、これら原
料粉末を混合し、成形し、焼結することを特徴とする鉄
基焼結合金製バルブシートの製造方法。
16. Raw material powders such as Fe powder, C powder,
A method for producing a valve seat made of an iron-based sintered alloy, comprising preparing a Ni-Cu alloy powder and a hard powder, mixing these raw material powders, molding and sintering.
【請求項17】 原料粉末として、Fe粉末、C粉末、
Ni粉末、Cu粉末および硬質粉末を用意し、これら原
料粉末を混合し、成形し、焼結することを特徴とする鉄
基焼結合金製バルブシートの製造方法。
17. Raw material powders such as Fe powder, C powder,
A method for producing a valve seat made of an iron-based sintered alloy, comprising preparing a Ni powder, a Cu powder and a hard powder, mixing these raw powders, molding and sintering.
JP32786898A 1998-11-18 1998-11-18 Valve seat made of iron-based sintered alloy Expired - Fee Related JP3346306B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32786898A JP3346306B2 (en) 1998-11-18 1998-11-18 Valve seat made of iron-based sintered alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32786898A JP3346306B2 (en) 1998-11-18 1998-11-18 Valve seat made of iron-based sintered alloy

Publications (2)

Publication Number Publication Date
JP2000144351A true JP2000144351A (en) 2000-05-26
JP3346306B2 JP3346306B2 (en) 2002-11-18

Family

ID=18203882

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32786898A Expired - Fee Related JP3346306B2 (en) 1998-11-18 1998-11-18 Valve seat made of iron-based sintered alloy

Country Status (1)

Country Link
JP (1) JP3346306B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011149088A (en) * 2009-12-21 2011-08-04 Hitachi Powdered Metals Co Ltd Sintered valve guide and production method therefor

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03158444A (en) * 1989-11-16 1991-07-08 Mitsubishi Materials Corp Valve seat made of fe-base sintered alloy excellent in wear resistance
JPH03158445A (en) * 1989-11-16 1991-07-08 Mitsubishi Materials Corp Valve seat made of fe-base sintered alloy excellent in wear resistance
JPH03225008A (en) * 1990-01-31 1991-10-04 Mitsubishi Materials Corp Valve seat made of fe-based sintered alloy having superior abrasion resistance
JPH05179390A (en) * 1991-12-27 1993-07-20 Teikoku Piston Ring Co Ltd Sintered alloy for valve seat
JPH05202451A (en) * 1992-01-28 1993-08-10 Teikoku Piston Ring Co Ltd Sintered alloy for valve seat
JPH0666117A (en) * 1992-08-10 1994-03-08 Toyota Motor Corp Valve guide of internal combustion engine
JPH0770720A (en) * 1993-08-31 1995-03-14 Toyota Motor Corp Ferrous sintered alloy for valve seat
JPH09143638A (en) * 1995-11-20 1997-06-03 Hitachi Powdered Metals Co Ltd Ferrous sintered oil retaining bearing and its production
JPH09329007A (en) * 1996-06-13 1997-12-22 Nippon Piston Ring Co Ltd Sinered alloy-made joint type valve seat and method for manufacturing joint type valve seat material

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03158444A (en) * 1989-11-16 1991-07-08 Mitsubishi Materials Corp Valve seat made of fe-base sintered alloy excellent in wear resistance
JPH03158445A (en) * 1989-11-16 1991-07-08 Mitsubishi Materials Corp Valve seat made of fe-base sintered alloy excellent in wear resistance
JPH03225008A (en) * 1990-01-31 1991-10-04 Mitsubishi Materials Corp Valve seat made of fe-based sintered alloy having superior abrasion resistance
JPH05179390A (en) * 1991-12-27 1993-07-20 Teikoku Piston Ring Co Ltd Sintered alloy for valve seat
JPH05202451A (en) * 1992-01-28 1993-08-10 Teikoku Piston Ring Co Ltd Sintered alloy for valve seat
JPH0666117A (en) * 1992-08-10 1994-03-08 Toyota Motor Corp Valve guide of internal combustion engine
JPH0770720A (en) * 1993-08-31 1995-03-14 Toyota Motor Corp Ferrous sintered alloy for valve seat
JPH09143638A (en) * 1995-11-20 1997-06-03 Hitachi Powdered Metals Co Ltd Ferrous sintered oil retaining bearing and its production
JPH09329007A (en) * 1996-06-13 1997-12-22 Nippon Piston Ring Co Ltd Sinered alloy-made joint type valve seat and method for manufacturing joint type valve seat material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011149088A (en) * 2009-12-21 2011-08-04 Hitachi Powdered Metals Co Ltd Sintered valve guide and production method therefor

Also Published As

Publication number Publication date
JP3346306B2 (en) 2002-11-18

Similar Documents

Publication Publication Date Title
JP3346321B2 (en) High strength Fe-based sintered valve seat
JP4948636B2 (en) Hard particles for blending sintered alloys, wear-resistant iron-based sintered alloys, and valve seats
JP2957180B2 (en) Wear-resistant iron-based sintered alloy and method for producing the same
JP3596751B2 (en) Hard particle for blending sintered alloy, wear-resistant iron-based sintered alloy, method for producing wear-resistant iron-based sintered alloy, and valve seat
JP4127021B2 (en) Hard particles, wear-resistant iron-based sintered alloy, method for producing wear-resistant iron-based sintered alloy, and valve seat
JP2004124162A (en) Manufacturing method of iron-based sintered alloy valve seat exhibiting wear resistance under high surface pressure applied condition
JP2002363681A (en) Sintered alloy, production method therefor and valve seat
JP5637201B2 (en) Hard particles for blending sintered alloy, wear-resistant iron-based sintered alloy, and method for producing the same
JP2004307950A (en) Iron-based sintered alloy, valve seat ring, raw material powder for producing iron-based sintered alloy and method of producing iron-based sintered alloy
JP6392796B2 (en) Method for producing wear-resistant iron-based sintered alloy, compact for sintered alloy, and wear-resistant iron-based sintered alloy
JP6352959B2 (en) Method for producing wear-resistant iron-based sintered alloy, compact for sintered alloy, and wear-resistant iron-based sintered alloy
JP6077499B2 (en) Sintered alloy molded body, wear-resistant iron-based sintered alloy, and method for producing the same
JP3346306B2 (en) Valve seat made of iron-based sintered alloy
CN108690931B (en) Method for producing wear-resistant iron-based sintered alloy
JP3942136B2 (en) Iron-based sintered alloy
JP3331963B2 (en) Sintered valve seat and method for manufacturing the same
JP2001295004A (en) Iron base sintered alloy
JP2716575B2 (en) Manufacturing method of wear resistant iron-based sintered alloy
JPH09256120A (en) Powder metallurgy material excellent in wear resistance
JPS60251258A (en) Iron system sintered alloy for valve sheet
JPS63109142A (en) Ferrous sintered alloy combining heat resistance with wear resistance
JP4020857B2 (en) Alloy powder for forming hard phase, iron-based mixed powder using the same, method for producing wear-resistant sintered alloy, and wear-resistant sintered alloy
JP3346292B2 (en) High strength Fe-based sintered valve seat
JP2006274359A (en) Alloy powder for forming hard phase and ferrous powder mixture using the same
JP2002220645A (en) Iron-based sintered alloy of hard-particle dispersion type

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020806

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees