JPH0770720A - Ferrous sintered alloy for valve seat - Google Patents

Ferrous sintered alloy for valve seat

Info

Publication number
JPH0770720A
JPH0770720A JP21625093A JP21625093A JPH0770720A JP H0770720 A JPH0770720 A JP H0770720A JP 21625093 A JP21625093 A JP 21625093A JP 21625093 A JP21625093 A JP 21625093A JP H0770720 A JPH0770720 A JP H0770720A
Authority
JP
Japan
Prior art keywords
alloy
valve seat
iron
fine powder
infiltrant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21625093A
Other languages
Japanese (ja)
Inventor
Yoshihiko Ito
与志彦 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP21625093A priority Critical patent/JPH0770720A/en
Publication of JPH0770720A publication Critical patent/JPH0770720A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To provide the ferrous sintered alloy for valve seats having improved corrosion resistance by infiltrating the holes of a ferrous sintered compact with a lead metal dispersed with a specific amt. of fine powder particles of an Ni alloy. CONSTITUTION:The holes of the ferrous sintered compact having about 10-20vol.% porosity are infiltrated with an infiltrating material dispersed with 3-35% fine particles (0.4-2.1mu particle diameter) of the Ni alloy in the lead metal when the entire part is assumed to be 100wt.%. The ferrous sintered compact is constituted by dispersing hard particles into a matrix. This matrix consists of 6-11% Ni alloy, 5-1.2% Co and the balance substantially iron when the entire part of the sintered compact is assumed to be 100wt.%. The hard particles are composed of >=1 kinds among FeMo, FeCr and FeW and contain 4 to 16% thereof. The fine particles of the Ni alloy is composed of a high-corrosion resistant alloy contg. 35-65% Ni, 12-27% Mo, 5-30% Cr and 2-10% Fe, etc., when the entire part of the infiltrating material is assumed to be 100wt.%. As a result, the ferrous sintered alloy for valve seats suppressed in abrasion loss is obtd.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はバルブシート用鉄系焼結
合金に関する。本発明合金は内燃機関の動弁系に用いる
ことができる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ferrous sintered alloy for valve seats. The alloy of the present invention can be used in a valve train of an internal combustion engine.

【0002】[0002]

【従来の技術】内燃機関の動弁系のバルブは高温となり
易い。特に高温の燃焼ガスにさらされる排気バルブは高
温となり易い。従って高温のバルブと直接接触したり、
摺動したりするバルブシートの当り面も高温化し、摩耗
が進行し易い。特に有鉛ガソリン燃料を使用する内燃機
関の場合には、バルブ表面に腐食性の強いPbO等の鉛
化合物が生成するため、バルブシートの当り面は腐食が
進行し易く、よってその当り面に過大摩耗が生じるおそ
れがある。
2. Description of the Related Art Valves in a valve train of an internal combustion engine are likely to become hot. In particular, an exhaust valve exposed to high-temperature combustion gas tends to have a high temperature. Therefore, there is a direct contact with the hot valve,
The contact surface of the sliding valve seat also becomes hot, and wear easily progresses. Particularly in the case of an internal combustion engine that uses leaded gasoline fuel, a corrosive lead compound such as PbO is generated on the valve surface, so that the contact surface of the valve seat is likely to be corroded, and therefore the contact surface is excessively large. Wear may occur.

【0003】そこで従来より、このような鉛化合物等に
よる腐食反応を抑制するため、バルブシートを構成する
焼結合金の空孔に伝熱性の優れた銅等を溶浸してバルブ
シートの当り面温度を低下させるバルブシートが知られ
ている(特開昭60ー251258号公報等)。更にバ
ルブシートのうち、当り面側の空孔に鉛を溶浸し、その
反対側に銅を溶浸し、固相状態の鉛による潤滑作用と、
銅による強度増加及び伝熱性向上効果とを組合せたバル
ブシートも知られている(特公昭55ー78118公
報、特開昭61ー104048号公報)。
Therefore, conventionally, in order to suppress the corrosion reaction due to the lead compound or the like, the pores of the sintered alloy forming the valve seat are infiltrated with copper or the like having excellent heat conductivity so that the contact surface temperature of the valve seat is increased. There is known a valve seat that lowers the emission (Japanese Patent Laid-Open No. 60-251258, etc.). Further, in the valve seat, lead holes are infiltrated into the holes on the contact surface side, and copper is infiltrated into the opposite side, and the lubrication action of lead in the solid state is achieved.
There is also known a valve seat that combines the strength increase effect and the heat transfer effect improvement effect of copper (Japanese Patent Publication No. Sho 55-78118, Japanese Patent Laid-Open No. 61-104048).

【0004】また従来より、硬質粒子を分散させたバル
ブシート用鉄系焼結合金として、Cr、Mo、V等の炭
化物を有し平均粒径40〜150μm、硬度Hv300
〜700の硬質粒子をオーステナイト及びパーライトの
混合組織に分散させたものも知られている(特開昭60
ー251258号公報)。
Further, conventionally, as an iron-based sintered alloy for valve seats in which hard particles are dispersed, carbides such as Cr, Mo and V are contained, the average particle size is 40 to 150 μm, and the hardness Hv300.
Also known is one in which hard particles of .about.700 are dispersed in a mixed structure of austenite and pearlite (Japanese Patent Laid-Open No. Sho 60).
-251258).

【0005】[0005]

【発明が解決しようとする課題】ところで鉛溶浸等によ
りバルブシートの伝熱性を向上させたとしても、バルブ
シートの当り面が高温化する場合には、当り面が溶浸材
の融点を越える場合がある。この場合、溶浸材は溶融し
て焼結合金の空孔から外部に徐々に放出され、固相状態
の溶浸材による潤滑効果が低下するおそれがある。
Even if the heat transfer of the valve seat is improved by lead infiltration or the like, when the contact surface of the valve seat becomes hot, the contact surface exceeds the melting point of the infiltrant. There are cases. In this case, the infiltrant may be melted and gradually released from the pores of the sintered alloy to the outside, and the lubricating effect of the infiltrant in the solid state may be reduced.

【0006】例えば、有鉛ガソリン燃料使用で高出力タ
イプあるいは燃費改善のため空燃比をストイキ化(理論
空燃比)したタイプの内燃機関においては、燃焼温度が
高温化するため、バルブシートの当り面が高温化し、鉛
溶浸等により伝熱性を向上させても、当り面の温度が溶
浸材である鉛の融点327℃を越える場合がある。よっ
て溶浸した鉛は溶融し、バルブシートの当り面上に徐々
に放出され、固相状態の鉛による潤滑効果が低下し、こ
れによりバルブシートの当り面は、部分的にバルブ表面
と直接接触する機会が増える。更にこの種の内燃機関で
は、鉛化合物の生成量が多くしかも腐食反応も活発のた
め、鉛化合物による攻撃性が増す問題がある。
[0006] For example, in an internal combustion engine of a high output type using leaded gasoline fuel or a stoichiometric air-fuel ratio (theoretical air-fuel ratio) to improve fuel economy, the combustion temperature rises and the contact surface of the valve seat is increased. However, even if the heat conductivity is improved by infiltration of lead or the like, the temperature of the contact surface may exceed the melting point of 327 ° C. of lead which is the infiltration material. As a result, the infiltrated lead is melted and gradually released onto the contact surface of the valve seat, reducing the lubrication effect of lead in the solid state, and the contact surface of the valve seat partially contacts the valve surface directly. More opportunities to do. Further, in this type of internal combustion engine, a large amount of lead compounds are produced and the corrosion reaction is active, so that there is a problem that the aggressiveness of the lead compounds increases.

【0007】またバルブシートを構成する鉄系焼結合金
は特に要素粉タイプの場合には微視的にみれば組織が必
ずしも均一でなく、基地強化のためのCo、Ni等の合
金元素の拡散量が多い部分と少ない部分が不可避的に混
在する。合金元素の拡散量が多い部分はオーステナイト
相となり、高温耐摩耗性・耐食性に優れる。しかし合金
元素の拡散量が少ない部分は、オーステナイト相よりも
高温耐摩耗性・耐食性に劣るパーライト相あるいはベイ
ナイト相となる。従って鉛化合物による腐食反応が活発
な場合には、このパーライト相やベイナイト相が優先的
に腐食され、この部分から摩耗が進行し、バルブシート
の当り面において過大摩耗を引き起こすおそれがある。
Further, the iron-based sintered alloy forming the valve seat, particularly in the case of element powder type, does not have a microscopically uniform structure, and diffusion of alloy elements such as Co and Ni for strengthening the matrix is observed. Inevitably a large amount and a small amount coexist. The portion where the amount of diffusion of alloying elements is large becomes an austenite phase and has excellent high temperature wear resistance and corrosion resistance. However, the portion where the diffusion amount of the alloy element is small becomes a pearlite phase or bainite phase which is inferior in high temperature wear resistance and corrosion resistance to the austenite phase. Therefore, when the corrosion reaction by the lead compound is active, the pearlite phase and the bainite phase are preferentially corroded, and wear progresses from this part, which may cause excessive wear on the contact surface of the valve seat.

【0008】本発明は上記した実情に鑑みなされたもの
であり、その目的は、組織の腐食を引き起こし易い鉛化
合物が生成される場合であっても、燃焼温度が高温化す
る場合であっても、摩耗量を抑制できるバルブシート用
鉄系焼結合金を提供することを目的とする。
The present invention has been made in view of the above circumstances, and an object thereof is whether a lead compound which easily causes corrosion of a tissue is produced or a combustion temperature is high. An object of the present invention is to provide an iron-based sintered alloy for valve seats that can suppress the amount of wear.

【0009】[0009]

【課題を解決するための手段】請求項1のバルブシート
用鉄系焼結合金は、鉄系焼結体と、鉄系焼結体の空孔に
溶浸させた溶浸材とで構成され、溶浸材は、wt%で溶
浸材全体を100%としたとき、Ni系合金からなる微
粉末粒子を3〜35%鉛系金属に分散させて構成されて
いることを特徴とするものである。なお本発明では特に
断らないかぎり、%はwt%を意味する。溶浸材を溶浸
する前の焼結体の空孔率はvol%で例えば10〜20
%にできる。
The iron-based sintered alloy for a valve seat according to claim 1 is composed of an iron-based sintered body and an infiltrant infiltrated into the pores of the iron-based sintered body. The infiltrant is characterized by being composed of fine powder particles made of a Ni-based alloy dispersed in lead-based metal in an amount of 3 to 35% when the entire infiltrant is 100% by weight. Is. In the present invention,% means wt% unless otherwise specified. The porosity of the sintered body before infiltrating the infiltrant is vol% and is, for example, 10 to 20.
Can be%.

【0010】請求項2のバルブシート用鉄系焼結合金で
は、鉄系焼結体はマトリックスとマトリックスに分散し
た硬質粒子とで構成され、マトリックスは、焼結体全体
を100%としたとき、Ni系合金を6〜11%、Cを
0.5〜1.2%、残部実質的に鉄の組成をもち、Ni
系合金は、Ni系合金を100%としたとき、Niを3
5〜65%、Moを12〜27%、Crを5〜30%、
Feを2〜10%含む組成の合金、及び、Niを80〜
90%、Siを2〜20%、Cuを1〜7%を含む組成
の合金の少なくとも1種で構成され、溶浸材は、溶浸材
全体を100%としたとき、微粉末粒子が9〜21%、
残部実質的に鉛の組成であり、微粉末粒子は、微粉末粒
子全体を100%としたとき、Niを35〜65%、M
oを12〜27%、Crを5〜30%、Feを2〜10
%含む高耐食性合金、及び、Niを80〜90%、Si
を2〜20%、Cuを1〜7%含む高耐食性合金の少な
くとも1種で構成され、Ni系の微粉末粒子の粒径は
0.4〜2.1μmであることを特徴とするものであ
る。
In the iron-based sintered alloy for a valve seat according to claim 2, the iron-based sintered body is composed of a matrix and hard particles dispersed in the matrix, and the matrix is 100% of the entire sintered body. Ni-based alloy is 6 to 11%, C is 0.5 to 1.2%, and the balance is substantially iron.
The Ni-based alloy has a Ni content of 3% when the Ni-based alloy is 100%.
5-65%, Mo 12-27%, Cr 5-30%,
An alloy having a composition containing 2 to 10% of Fe and 80 to Ni.
90%, 2 to 20% of Si, and 1 to 7% of Cu, and at least one kind of alloy having a composition. The infiltrant contains 9% of fine powder particles when the entire infiltrant is 100%. ~ 21%,
The balance is substantially a lead composition, and the fine powder particles have a Ni content of 35 to 65% and an M content of 100% based on the entire fine powder particles.
o is 12 to 27%, Cr is 5 to 30%, and Fe is 2 to 10%.
% High corrosion resistant alloy containing 80 to 90% Ni and Si
2 to 20% of Cu and 1 to 7% of Cu, and at least one kind of high corrosion resistant alloy, and the particle size of Ni-based fine powder particles is 0.4 to 2.1 μm. is there.

【0011】請求項3のバルブシート用鉄系焼結合金で
は、硬質粒子はFeMo、FeCr、FeWの少なくと
も1種で構成され、焼結体全体が100%のとき4%〜
16%含有されていることを特徴とするものである。 〔各成分混合率限定理由〕上記したバルブシート用鉄系
焼結合金において各成分の好ましい混合率について、マ
トリックス、溶浸材、硬質粒子に分けて説明する。 1.マトリックス <C量>焼結体にはCが含まれていることが好ましい。
Cは鉄中に固溶して鉄を強化する代表的な元素で、焼結
体で得られる基地(通常、オーステナイト相、パーライ
ト相、ベイナイト相等の少なくとも1つからなる組織)
に固溶して、焼結体の強度と硬度を向上する。しかし、
マトリックスにおけるCの混合率が0.5%未満では焼
結時の加熱で鉄中に拡散するC元素の量が少なく、上記
効果が十分に発揮されず、また1.2%を越えると逆に
拡散量が多くなり過ぎ、セメンタイト(Fe3 C)の析
出量が増え、焼結体のマトリックスが脆化するため、マ
トリックスにおけるC量は0.5〜1.2%が好まし
い。
In the iron-based sintered alloy for a valve seat according to claim 3, the hard particles are composed of at least one of FeMo, FeCr and FeW, and when the whole sintered body is 100%, 4% to 4%.
It is characterized by containing 16%. [Reasons for Limiting Mixing Ratio of Each Component] The preferable mixing ratio of each component in the above-described iron-based sintered alloy for valve seats will be described separately for the matrix, the infiltrant, and the hard particles. 1. Matrix <C content> It is preferable that the sintered body contains C.
C is a typical element that strengthens iron by forming a solid solution in iron, and is a matrix obtained in a sintered body (usually a structure consisting of at least one of austenite phase, pearlite phase, bainite phase, etc.).
To form a solid solution in the sintered body to improve the strength and hardness of the sintered body. But,
If the mixing ratio of C in the matrix is less than 0.5%, the amount of C element diffused into the iron by heating during sintering is small and the above effect is not sufficiently exhibited. The diffusion amount becomes too large, the precipitation amount of cementite (Fe 3 C) increases, and the matrix of the sintered body becomes brittle, so the C amount in the matrix is preferably 0.5 to 1.2%.

【0012】<Ni系合金>焼結体のマトリックスには
Ni系合金が含まれているのが好ましい。このNi系合
金は、高温・腐食雰囲気における耐食性に優れた耐食性
Ni合金であり、ハステロイD、ハステロイCと呼ばれ
るものを採用できる。焼結時の加熱でこのNi系合金か
らNi元素が周囲の鉄系地に拡散し、マトリックスを更
にオーステナイト相に安定させ、高温強度、耐食性の一
層の向上を期待できる。マトリックスは、焼結体全体を
100%としたとき、Ni系合金を6〜11%含むこと
が好ましい。6%未満ではバルブシートの摩耗量が大き
く、11%を越えてもバルブシートの摩耗量はあまり減
少しないからである。
<Ni-based alloy> It is preferable that the matrix of the sintered body contains a Ni-based alloy. This Ni-based alloy is a corrosion resistant Ni alloy having excellent corrosion resistance in a high temperature / corrosive atmosphere, and those called Hastelloy D and Hastelloy C can be adopted. By heating at the time of sintering, Ni element diffuses from this Ni-based alloy to the surrounding iron-based material, further stabilizing the matrix in the austenite phase, and further improvement in high-temperature strength and corrosion resistance can be expected. The matrix preferably contains a Ni-based alloy in an amount of 6 to 11% when the entire sintered body is taken as 100%. If it is less than 6%, the wear amount of the valve seat is large, and if it exceeds 11%, the wear amount of the valve seat does not decrease so much.

【0013】Ni系合金は、Ni系合金を100%とし
たとき、Niを35〜65%、Moを12〜26%、C
rを5〜30%、Feを2〜10%含む組成のNi−M
o−Cr系合金で構成できる。またNi系合金は、Ni
を80〜90%、Siを2〜20%、Cuを1〜7%を
含む組成のNi−Si−Cu系合金で構成できる。この
場合、Mnは3%以下、Alは3%以下が好ましい。
The Ni-based alloy has a Ni content of 35 to 65%, a Mo content of 12 to 26%, and a C content of 100%.
Ni-M having a composition containing 5 to 30% r and 2 to 10% Fe
It can be composed of an o-Cr alloy. Ni-based alloy is Ni
Of 80% to 90%, Si of 2% to 20%, and Cu of 1% to 7%. In this case, Mn is preferably 3% or less and Al is 3% or less.

【0014】次に上記したNi系合金の組成の限定理由
についてNiーMoーCr系合金とNiーSiーCu系
合金とに分けて説明する。 ・NiーMoーCr系合金 Ni:他の合金成分と共に酸化・腐食雰囲気での耐食性
を増加するが、Niが35%未満ではその効果が少ない
(マトリックスに添加の場合は周囲のFe中への拡散量
が不十分で、オーステナイト相に安定させる領域が少な
い)。しかし、Niが65%を越えると他の合金成分の
効果を損なうと共に、耐食性向上効果が飽和するため、
Niは35〜65%添加が好ましい。
Next, the reasons for limiting the composition of the Ni-based alloy will be described separately for the Ni-Mo-Cr-based alloy and the Ni-Si-Cu-based alloy. Ni-Mo-Cr alloy Ni: Increases corrosion resistance in an oxidizing / corrosive atmosphere with other alloy components, but if Ni is less than 35%, its effect is small. The amount of diffusion is insufficient, and there are few regions that stabilize in the austenite phase). However, when Ni exceeds 65%, the effects of other alloy components are impaired and the effect of improving corrosion resistance saturates.
35-65% addition of Ni is preferable.

【0015】Mo:Niに添加すると酸化雰囲気での耐
食性を向上する効果があり、更に母材から拡散する炭素
と結びつき、Mo炭化物を形成し、耐摩耗性も向上させ
るが、12%未満ではいずれの効果も小さく、また、2
7%を越えると、炭化物の形成が多くなりすぎ、Ni系
合金が脆くなるとともに、相手攻撃性も増加するため、
Moは12〜27%添加が好ましい。
When added to Mo: Ni, it has the effect of improving the corrosion resistance in an oxidizing atmosphere, and further combines with the carbon diffused from the base material to form Mo carbide, and also improves the wear resistance. Effect is small, and 2
If it exceeds 7%, the formation of carbides becomes too much, the Ni-based alloy becomes brittle, and the attacking property of the other party also increases.
It is preferable to add 12 to 27% of Mo.

【0016】Cr:酸化雰囲気で不働態化し、Ni系合
金の高温での耐食性を向上させるが5%未満ではその効
果がほとんどなく、また30%を越えるとその効果が飽
和するため、Crは5〜30%が好ましい。 Fe:NiーMo系の合金に添加されると6%前後(2
〜10%)で耐食性が最小となり、MoやNiの量を低
減させる(Feで置き換える)ことが出来るためFeは
2〜10%が好ましい。
Cr: Passivates in an oxidizing atmosphere to improve the corrosion resistance of Ni-based alloys at high temperatures. However, if it is less than 5%, its effect is scarce, and if it exceeds 30%, its effect saturates. -30% is preferable. When it is added to Fe: Ni-Mo alloy, around 6% (2
(10% to 10%), the corrosion resistance becomes minimum and the amount of Mo or Ni can be reduced (replaced by Fe), so that Fe is preferably 2 to 10%.

【0017】・NiーSiーCu系合金 Ni:NiーMoーCr系の場合と同じく80%未満で
は、耐食性向上効果が少なく、90%を越えると他の合
金成分の効果を損なうと共に、耐食性向上効果が飽和す
るため、Niは80〜90%が好ましい。 Si:Niに添加されるとNiのシリサイドの硬質相を
形成し、更に耐食性も向上させるが、2%未満ではその
効果が少なく、20%を越えると硬質相の形成が多くな
りすぎて脆くなり、しかも相手攻撃性が増加するため、
Siは2〜20%が好ましい。
Ni-Si-Cu system alloy Ni: Ni-Mo-Cr system, if less than 80%, the effect of improving corrosion resistance is small, and if more than 90%, the effects of other alloy components are impaired and the corrosion resistance is deteriorated. Since the improvement effect is saturated, Ni is preferably 80 to 90%. When it is added to Si: Ni, it forms a hard phase of Ni silicide and further improves the corrosion resistance, but if it is less than 2%, its effect is small, and if it exceeds 20%, the hard phase is formed too much and becomes brittle. Moreover, since the opponent's aggression increases,
Si is preferably 2 to 20%.

【0018】Cu:Niに添加されると全率固溶して硬
度を上昇させ、更に、酸化雰囲気での耐食性を向上させ
るが、1%未満ではその効果がほとんどなく、7%を越
えるとその効果が飽和するためCuは1〜7%が好まし
い。 Mn:Niに添加されると、Ni系合金をオーステナイ
ト相に安定化させ高温強度を向上させるが3%を越える
と、その効果が飽和するため3%以下が好ましい。
When it is added to Cu: Ni, the solid solution forms a solid solution to increase the hardness, and further improves the corrosion resistance in an oxidizing atmosphere. Since the effect is saturated, Cu is preferably 1 to 7%. Addition to Mn: Ni stabilizes the Ni-based alloy in the austenite phase and improves high-temperature strength, but if it exceeds 3%, the effect is saturated, so 3% or less is preferable.

【0019】Al:Niに添加されると耐食性を向上さ
せるが、その効果は比較的小さくまた3%を越えるとN
i合金を脆くさせるため3%以下が好ましい。 2.溶浸材 溶浸材のベ−スとなるのは鉛、鉛系合金であり、鉛の含
有率は焼結合金の種類に応じて適宜選択できる。この溶
浸材に分散したNi系合金からなる微粉末粒子は、高温
腐食雰囲気中の耐食性に優れる合金である。Ni系合金
からなる微粉末粒子は、焼結体のマトリックス中に混合
するNi系合金と同一成分にできる。即ち、微粉末粒子
は、微粉末粒子を100%としたとき、Niを35〜6
5%、Moを12〜27%、Crを5〜30%、Feを
2〜10%含む組成の合金で構成できる。またこの微粉
末粒子は、Niを80〜90%、Siを2〜20%、C
uを1〜7%を含む組成の合金で構成できる。この場
合、Mnは3%以下、Alは3%以下が好ましい。
When it is added to Al: Ni, the corrosion resistance is improved, but its effect is relatively small, and when it exceeds 3%, it is N.
In order to make the i alloy brittle, 3% or less is preferable. 2. Infiltrant The base of the infiltrant is lead and a lead-based alloy, and the lead content can be appropriately selected according to the type of sintered alloy. The fine powder particles made of a Ni-based alloy dispersed in this infiltrant are alloys having excellent corrosion resistance in a high temperature corrosive atmosphere. The fine powder particles made of a Ni-based alloy can have the same composition as the Ni-based alloy mixed in the matrix of the sintered body. That is, the fine powder particles have a Ni content of 35 to 6 when the fine powder particles are 100%.
It can be composed of an alloy having a composition containing 5%, Mo 12 to 27%, Cr 5 to 30%, and Fe 2 to 10%. The fine powder particles contain 80 to 90% Ni, 2 to 20% Si, and C.
It can be composed of an alloy having a composition containing 1 to 7% of u. In this case, Mn is preferably 3% or less and Al is 3% or less.

【0020】本発明合金では溶浸材全体を100%とし
たとき、微粉末粒子が3〜35%含まれている。耐摩耗
性向上効果及びその飽和を考慮したものである。特に、
9〜21%含まれているのが好ましい。微粉末粒子の添
加に伴い、バルブシート摩耗量は9%あたりまで大きく
減少し、21%を越えるあたりから摩耗量は定常値に達
し、耐摩耗性向上効果は飽和傾向となるからである。微
粉末粒子の粒径は0.4〜2.1μmが好ましい。後述
する様に微粉末粒子の粒径が0.4〜2.1μmの範囲
でバルブシート摩耗量が最小となるため、また溶浸材が
溶浸される焼結体の空孔径が通常5〜15μm程度であ
るため、微粉末粒子が溶浸時に容易に焼結体の空孔内に
入り込める様にするためである。 3.硬質粒子 硬質粒子は、焼結合金の耐摩耗性を大きく向上させる。
硬質粒子としてはFeMo粒子、FeW粒子、FeCr
粒子を採用できる。
In the alloy of the present invention, fine powder particles are contained in an amount of 3 to 35% when the entire infiltration material is taken as 100%. This is because the effect of improving wear resistance and its saturation are taken into consideration. In particular,
It is preferably contained in 9 to 21%. This is because with the addition of the fine powder particles, the valve seat wear amount greatly decreases to around 9%, the wear amount reaches a steady value from around 21%, and the wear resistance improving effect tends to be saturated. The particle size of the fine powder particles is preferably 0.4 to 2.1 μm. As will be described later, since the valve seat wear amount is minimized when the fine powder particles have a particle size in the range of 0.4 to 2.1 μm, the pore size of the sintered body in which the infiltrant is infiltrated is usually 5 to 5. It is about 15 μm, so that the fine powder particles can easily enter the pores of the sintered body during infiltration. 3. Hard particles Hard particles greatly improve the wear resistance of the sintered alloy.
As hard particles, FeMo particles, FeW particles, FeCr
Particles can be adopted.

【0021】ここで、FeMoは硬度Hv1300〜1
400、FeWはHv1100〜1200、FeCrは
Hv1600〜1700といずれも高硬度な金属間化合
物であり、鉄系焼結合金のマトリックスの耐摩耗性を大
きく向上させ得る。硬質粒子の添加量が4%未満では、
この耐摩耗性向上効果が不十分であり、また16%を越
えると相手材(バルブフェース)摩耗量が増加し、許容
レベルを越えるとともに、切削性も悪化するため、前記
のごとく4〜16%が好ましい。ただし、FeCrは硬
度が極めて高く、添加量が10%を越えると相手攻撃性
が大きくなるため、添加量(単独あるいは組合せた場合
とも)の上限を10%とすることが好ましい。
Here, FeMo has a hardness Hv1300 to 1
400, FeW are Hv 1100 to 1200, and FeCr are Hv 1600 to 1700, which are high hardness intermetallic compounds, and can greatly improve the wear resistance of the matrix of the iron-based sintered alloy. If the amount of hard particles added is less than 4%,
The effect of improving the wear resistance is insufficient, and when it exceeds 16%, the amount of wear of the mating material (valve face) increases, exceeds the allowable level, and the machinability deteriorates. Is preferred. However, FeCr has extremely high hardness, and if the addition amount exceeds 10%, the opponent attack property becomes large. Therefore, the upper limit of the addition amount (whether alone or in combination) is preferably 10%.

【0022】[0022]

【作用】バルブシートの当り面の温度が高温となり溶浸
材の融点を越えると、微粉末粒子を混合した溶浸材は溶
融状態となり、焼結合金の空孔から最表層の外部に徐々
に放出される。その際に、溶浸材に混合しておいた微粉
末粒子も外部に放出される。この微粉末粒子はNi系合
金からなるため、融点が溶浸材よりも高温であるため、
固相状態が保持されており、バルブの着座等よってバル
ブシートの当り面を微粉末粒子が移動し、当り面の微細
な凹部に達し、その凹部内に入り込む。よって、その凹
部での腐食反応の進行が抑制され、バルブシートの当り
面の耐腐食性を向上させる。
[Function] When the temperature of the contact surface of the valve seat becomes high and exceeds the melting point of the infiltrant, the infiltrant mixed with the fine powder particles becomes in a molten state, gradually escaping from the pores of the sintered alloy to the outside of the outermost layer. Is released. At that time, the fine powder particles mixed with the infiltrant are also discharged to the outside. Since the fine powder particles are made of a Ni-based alloy, their melting point is higher than that of the infiltrant,
The solid state is maintained, and the fine powder particles move on the contact surface of the valve seat due to the seating of the valve, reach the minute recesses on the contact surface, and enter the recesses. Therefore, the progress of the corrosion reaction in the recess is suppressed, and the corrosion resistance of the contact surface of the valve seat is improved.

【0023】[0023]

【実施例】【Example】

〔実施例の構成〕以下実施例について比較例と共に説明
する。図2はバルブシート100とバルブ200を備え
た要部の動弁系の断面を示す。この例では、バルブシー
ト100を構成する鉄系焼結体を形成するにあたり、1
00メッシュ(粒径150μm)程度に製造した鉄粉
末、黒鉛粉末およびNi系合金粉末を用いる。更に硬質
粒子としてのFeMoの粉末(粒径20〜50μm)も
用いる。これらの粉末を充分に混合して混合粉末を得
る。
[Structure of Examples] Examples will be described below together with comparative examples. FIG. 2 shows a cross section of a valve train of a main part including the valve seat 100 and the valve 200. In this example, in forming the iron-based sintered body that constitutes the valve seat 100, 1
Iron powder, graphite powder, and Ni-based alloy powder manufactured to about 00 mesh (particle size 150 μm) are used. Further, FeMo powder (particle size 20 to 50 μm) as hard particles is also used. These powders are thoroughly mixed to obtain a mixed powder.

【0024】ここで表1に示す様に、前記したNi系合
金粉末として、実施例1、実施例3、実施例5、実施例
7、実施例8ではNiーMoーCr系を採用する。また
前記したNi系合金粉末として、実施例2、実施例4、
実施例6ではNiーSiーCu系を採用する。各成分の
比率は表1に示す通りである。次に製造法を述べる。図
3(A)(B)に示す型2a〜2cからなる焼結用成形
型2を用い、上記した混合粉末1を焼結用成形型2内に
充填し、7ton/cm3 の圧力でパンチ型2eにより
加圧してリング状の圧粉体1Aを成形する。その後、ア
ンモニア分解ガス雰囲気中にて1100〜1150℃に
圧粉体1Aを45分加熱保持し、圧粉体1Aの焼結を行
ない、図3(C)に示す焼結体3を得る。この焼結体3
は密度が6.6〜7.0g/cm3 であり、空孔の比率
は10〜20vol%程度である。
As shown in Table 1, as the above Ni-based alloy powder, Ni-Mo-Cr system is used in Examples 1, 3, 3, 5 and 7. In addition, as the above Ni-based alloy powder, Example 2, Example 4,
In Example 6, a Ni-Si-Cu system is adopted. The ratio of each component is as shown in Table 1. Next, the manufacturing method will be described. Using the sintering mold 2 composed of the molds 2a to 2c shown in FIGS. 3A and 3B, the above-mentioned mixed powder 1 was filled in the sintering mold 2 and punched at a pressure of 7 ton / cm 3. The mold 2e is pressed to mold the ring-shaped green compact 1A. Then, the green compact 1A is heated and held at 1100 to 1150 ° C. for 45 minutes in an ammonia decomposing gas atmosphere to sinter the green compact 1A to obtain a sintered body 3 shown in FIG. 3 (C). This sintered body 3
Has a density of 6.6 to 7.0 g / cm 3 and a void ratio of about 10 to 20 vol%.

【0025】上記した焼結条件について説明する。圧粉
体1Aでは各粉末粒子間は単に機械的な噛み合いによる
結合のみである。そこで更に各粉末を加熱し各粉末粒子
間に原子レベルでの結合を行なわせるのが焼結である
が、通常加熱条件は各成分融点以下であり、各粉末が固
相状態のまま粉末間で原子の拡散が十分行なわれる加熱
温度と加熱時間が生産性を考慮しつつ選ばれる。このこ
とを考慮して焼結条件は下記の様に選択されている。
The above-mentioned sintering conditions will be described. In the green compact 1A, the powder particles are simply connected by mechanical meshing. Therefore, it is sintering that further heats each powder to bond each powder particle at the atomic level, but usually the heating conditions are below the melting point of each component, and each powder remains in the solid state between powders. The heating temperature and heating time at which atoms are sufficiently diffused are selected in consideration of productivity. Considering this, the sintering conditions are selected as follows.

【0026】(焼結加熱温度)上記した実施例ではマト
リックスを構成する主成分は鉄で、この鉄とNi合金間
の焼結反応が重要となる。鉄の融点は1535℃で、N
i合金の融点は51Niー19Moー17Crー6Fe
の場合1350℃であるため、鉄が主成分の場合に通常
設定される加熱温度(1100〜1150℃)を選ん
だ。この加熱温度範囲では、各粉末間の原子拡散が飽和
する時間(1〜2時間)保持した場合に、焼結体の密度
が6.6〜7.0g/cm3 となり、狙いの空孔率約1
0〜20vol%が得られる。
(Sintering heating temperature) In the above-mentioned embodiments, the main component of the matrix is iron, and the sintering reaction between the iron and the Ni alloy is important. The melting point of iron is 1535 ℃, N
The melting point of i alloy is 51Ni-19Mo-17Cr-6Fe
In this case, since the temperature is 1350 ° C., the heating temperature (1100 to 1150 ° C.) usually set when iron is the main component was selected. In this heating temperature range, the density of the sintered body becomes 6.6 to 7.0 g / cm 3 when it is held for a time (1 to 2 hours) where the atomic diffusion between the powders is saturated, and the desired porosity is obtained. About 1
0-20 vol% is obtained.

【0027】(焼結加熱時間)鉄とNiは互いに合金化
し合う元素で、焼結反応の初期には、まずNi合金粉末
からNi原子が表面拡散により鉄粉末の表面を包み、そ
の後、鉄粉末の内部にNi原子が拡散していき合金化が
行なわれる。このNi原子の拡散量は加熱温度が一定の
場合加熱時間とともに増加し、ある時間以上で飽和値に
達する。図4には焼結加熱温度を1100℃および11
50℃とした場合の加熱保持時間とNi拡散率(焼結体
の任意の断面内でNi元素が拡散した面積の割合…EP
MA分析機により元素分析)の関係を示す。図4の特性
線に示す様に、Ni拡散率の変化は焼結加熱温度により
異なり、即ち、より高温(1150℃)である程、Ni
拡散率が高く拡散が早く行なわれるが、最終的にはNi
拡散率は、温度差によらず同レベルの飽和値に達する。
そこで焼結加熱温度1100℃で拡散率が飽和状態に達
する45分を焼結加熱保持時間とした。
(Sintering heating time) Iron and Ni are elements which are alloyed with each other. At the initial stage of the sintering reaction, Ni atoms wrap the surface of the iron powder by surface diffusion, and then the iron powder. Ni atoms diffuse into the interior of the alloy to form an alloy. The diffusion amount of Ni atoms increases with heating time when the heating temperature is constant, and reaches a saturation value after a certain time. In FIG. 4, sintering heating temperatures of 1100 ° C. and 11
Heat retention time and Ni diffusivity at 50 ° C. (ratio of area where Ni element diffused in arbitrary cross section of sintered body ... EP
The relationship of elemental analysis by a MA analyzer is shown. As shown in the characteristic line of FIG. 4, the change in Ni diffusivity depends on the sintering heating temperature, that is, the higher the temperature (1150 ° C.), the more Ni
The diffusion rate is high and diffusion is quick, but in the end Ni
The diffusivity reaches the same saturation level regardless of the temperature difference.
Therefore, 45 minutes at which the diffusivity reaches a saturated state at a sintering heating temperature of 1100 ° C. was set as the sintering heating holding time.

【0028】次に実施例で用いる溶浸材ついて説明す
る。即ち本例では粒径0.5〜2μm程度のNi系合金
の微粉末粒子を用いる。各例における微粉末粒子の組
成、粒径を表1に示す。
Next, the infiltrant used in the examples will be described. That is, in this example, fine powder particles of Ni-based alloy having a particle size of about 0.5 to 2 μm are used. Table 1 shows the composition and particle size of the fine powder particles in each example.

【0029】[0029]

【表1】 [Table 1]

【0030】そして、溶浸材全体を100%としたとき
表1に示す様な割合で微粉末粒子10〜20重量%、鉛
の融液中に混入し、攪拌する。その後、アトマイズ処理
により鉛の融液を粒径1mm程度の粒状に凝固させて、
これにより微粉末粒子を含む粒状の溶浸材を得る。そし
て図3(D)に示す様にこの粒状の溶浸材4を黒鉛トレ
ー5上に敷きつめ、その上に焼結体3を載せる。その状
態でアンモニア分解ガス雰囲気中で鉛の融点以上400
〜420℃に焼結体3を溶浸材4と共に加熱し、溶浸材
4の融液を毛細管現象により焼結体3の空孔に溶浸さ
せ、これによりNi系合金からなる微粉末粒子を焼結体
3の空孔に進入させる。
Then, 10% by weight to 20% by weight of fine powder particles are mixed in a lead melt at a ratio shown in Table 1 when the total amount of the infiltration material is 100%, and the mixture is stirred. After that, the lead melt is solidified into particles with a particle size of about 1 mm by atomization,
As a result, a granular infiltrant containing fine powder particles is obtained. Then, as shown in FIG. 3D, the granular infiltration material 4 is spread on a graphite tray 5, and the sintered body 3 is placed thereon. In that state, above the melting point of lead in the ammonia decomposition gas atmosphere 400
The sintered body 3 is heated together with the infiltrant 4 to ˜420 ° C., and the melt of the infiltrant 4 is infiltrated into the pores of the sintered body 3 by a capillary phenomenon, whereby fine powder particles made of a Ni-based alloy. Into the pores of the sintered body 3.

【0031】最後に、溶浸処理した焼結体3を適宜機械
加工してバルブシートに仕上げる。図5は焼結合金のバ
ルブシートの当り面の最表層付近の断面構造を模式的に
示す拡大図である。図5に示す様に、マトリックスで
は、Cが固溶したパーライト相またはベイナイト相から
なる鉄系地102中にNi系合金103が分散してお
り、そのNi系合金103の周囲に、Ni元素が拡散し
たオーステナイト相104が形成されている。更にその
マトリックスの連続状の空孔には溶浸材8が溶浸され、
溶浸材8にはNi系合金からなる微粉末粒子11が含ま
れている。更にマトリックスに硬質粒子が分散してい
る。
Finally, the infiltrated sintered body 3 is appropriately machined to form a valve seat. FIG. 5 is an enlarged view schematically showing a cross-sectional structure near the outermost layer of the contact surface of the sintered alloy valve seat. As shown in FIG. 5, in the matrix, the Ni-based alloy 103 is dispersed in the iron-based material 102 composed of the pearlite phase or bainite phase in which C is solid-solved, and the Ni element is surrounded by the Ni element 103. A diffused austenite phase 104 is formed. Further, the infiltrant 8 is infiltrated into the continuous pores of the matrix,
The infiltrant 8 contains fine powder particles 11 made of a Ni-based alloy. Further, hard particles are dispersed in the matrix.

【0032】ところで、有鉛ガソリン燃料を使用した内
燃機関では、排気側バルブ上で腐食性の強いPbOやP
bSO4 が生成され、バルブに直接接触するバルブシー
トの当り面はPbOやPbSO4 により強く腐食され
る。このようなバルブシートの当り面を電子顕微鏡(S
EM)で観察すると、オーステナイト相では比較的腐食
が少ない。しかしNi拡散量の少ないパーライト相、ベ
イナイト相は強く腐食され、表面に多数の微細な凹部が
形成されており、その微細な凹部の底部では腐食が更に
進行している様子が見られる。 〔実施例の効果〕上記した本発明に係る各実施例によれ
ば、バルブシート摩耗量が減少する効果が得られる。こ
の様な摩耗量の減少効果は次の様なメカニズムによると
推察されている。即ち、バルブシートの当り面の温度が
鉛の融点(327℃)を越えると、微粉末粒子を混合し
た鉛の溶浸材8は溶融状態となり、図6(A)に示す様
に焼結合金の最表層の空孔から外部に徐々に放出され、
当り面101に放出され、放出部9となる。その際に、
溶浸材8に混合されている微粉末粒子11も同時に当り
面101に運び出される。このNi系合金からなる微粉
末粒子11は融点が1230℃あるいは1350℃と高
温であるため、固相状態が保持されており、バルブの矢
印Y1方向(図6(B))への着座、矢印Y2方向(図
6(C))への回転に伴なってバルブシートの当り面1
01上の腐食進行領域K1に微粉末粒子11が移動し、
上に述べた腐食進行領域K1の微細な凹部13に達し、
図6(C)に示す様に微粉末粒子11は凹部13内に入
り込む。更にバルブの着座力や燃焼圧によりこの微粉末
粒子11は凹部13中に埋没される。よって、その凹部
13での腐食反応の進行が抑制され、バルブシートの当
り面101の耐腐食性を向上させる。従って、摩耗を誘
発し易い有鉛ガソリン燃料を使用し燃焼温度が高くなる
内燃機関においても、排気側バルブシートの耐摩耗性が
保持され、大幅な摩耗増加が効果的に回避される。
By the way, in an internal combustion engine using leaded gasoline fuel, PbO and P which are highly corrosive on the exhaust side valve are used.
bSO 4 is generated, and the contact surface of the valve seat that is in direct contact with the valve is strongly corroded by PbO or PbSO 4 . The contact surface of such a valve seat is taken with an electron microscope (S
When observed by EM), there is relatively little corrosion in the austenite phase. However, the pearlite phase and bainite phase having a small amount of Ni diffusion are strongly corroded, and many fine recesses are formed on the surface, and it can be seen that the corrosion further progresses at the bottom of the fine recesses. [Effects of Embodiments] According to the embodiments of the present invention described above, the effect of reducing the amount of wear of the valve seat is obtained. It is speculated that such an effect of reducing the amount of wear is due to the following mechanism. That is, when the temperature of the contact surface of the valve seat exceeds the melting point of lead (327 ° C.), the lead infiltrant 8 mixed with fine powder particles becomes in a molten state, and the sintered alloy as shown in FIG. Is gradually released to the outside from the pores in the outermost layer of
The light is emitted to the contact surface 101 and becomes the emission portion 9. At that time,
The fine powder particles 11 mixed with the infiltration material 8 are also carried out to the contact surface 101 at the same time. Since the fine powder particles 11 made of this Ni-based alloy have a high melting point of 1230 ° C. or 1350 ° C., the solid state is maintained, and the valve is seated in the Y1 direction (FIG. 6 (B)). With the rotation in the Y2 direction (Fig. 6 (C)), the contact surface 1 of the valve seat 1
Fine powder particles 11 move to the corrosion progressing region K1 on 01,
Reaching the minute recesses 13 in the above-described corrosion progressing region K1,
As shown in FIG. 6C, the fine powder particles 11 enter the recess 13. Further, the fine powder particles 11 are buried in the recess 13 due to the seating force of the valve and the combustion pressure. Therefore, the progress of the corrosion reaction in the recess 13 is suppressed, and the corrosion resistance of the contact surface 101 of the valve seat is improved. Therefore, even in an internal combustion engine that uses leaded gasoline fuel that easily induces wear and has a high combustion temperature, the wear resistance of the exhaust side valve seat is maintained, and a large increase in wear is effectively avoided.

【0033】バルブシート摩耗量が減少する効果を確認
すべく実施例の焼結合金及び比較例による焼結合金によ
りバルブシートを試作し、4気筒2200cc(1気筒
当りバルブ数4つ)の有鉛ガソリン燃料使用内燃機関の
シリンダヘッドの排気側に組み込み、6000rpmに
おいて全負荷×200時間(空燃比=13〜14)の運
転条件で耐久性を試験した。その試験結果を図1に示
す。図1の縦軸の上部はバルブシート摩耗量を示し、縦
軸の下部はバルブフェース摩耗量を示す。
In order to confirm the effect of reducing the amount of wear of the valve seat, valve seats were made by trial using the sintered alloys of the examples and the comparative example, and lead cylinders of 2200 cc (4 valves per cylinder) with 4 cylinders. It was incorporated into the exhaust side of a cylinder head of an internal combustion engine using gasoline fuel, and the durability was tested under the operating conditions of full load × 200 hours (air-fuel ratio = 13 to 14) at 6000 rpm. The test results are shown in FIG. The upper part of the vertical axis of FIG. 1 represents the valve seat wear amount, and the lower part of the vertical axis represents the valve face wear amount.

【0034】図1に示す様に、各実施例はいずれも比較
例よりもバルブシート摩耗量が半分以下と良好であっ
た。従ってNi系合金からなる微粉末粒子を鉛の溶浸材
に混合したことによる耐摩耗性改善効果が確認され、ま
た鉛化合物腐食進行抑制の改善効果が確認された。 〔試験例〕 (試験例1)上記の様に製造した焼結合金を用い、焼結
体のマトリックスのNi系合金の混合率と腐食状態にお
けるバルブシート摩耗量との関係を試験した。試験は次
の様にして行った。即ち、図7に示す様にこの試験片3
00をPbO粉末303中に入れ、600℃において炉
305の中で1時間加熱する。この加熱によりPbO粉
末303は溶融しない(PbOの融点880℃)が、試
験片300とPbO粉末303との接触部で腐食反応が
進行し、試験片300のバルブシートの当り面は腐食を
うけた状態となる。次に図8に示す様にこのバルブシー
ト状の試験片300とバルブ400(SUE50製)と
をバルブ単体摩耗試験機に組み込み、バルブ400をバ
ーナ500で加熱しつつ、実際の内燃機関の動弁系と同
じ条件で相対運動させる。試験条件はバルブシート当り
温度:350℃、バルブ摺動速度:エンジン回転数で4
000rpm相当、バルブスプリング荷重:4kgf、
試験時間:10時間とした。
As shown in FIG. 1, in each of the examples, the valve seat wear amount was less than half that of the comparative example. Therefore, the effect of improving the wear resistance by mixing the fine powder particles of the Ni-based alloy with the lead infiltration material was confirmed, and the effect of suppressing the progress of lead compound corrosion was also confirmed. [Test Example] (Test Example 1) Using the sintered alloy manufactured as described above, the relationship between the mixing ratio of the Ni-based alloy in the matrix of the sintered body and the valve seat wear amount in a corroded state was tested. The test was conducted as follows. That is, as shown in FIG.
00 in PbO powder 303 and heated in furnace 305 at 600 ° C. for 1 hour. By this heating, the PbO powder 303 does not melt (melting point of PbO is 880 ° C.), but the corrosion reaction proceeds at the contact portion between the test piece 300 and the PbO powder 303, and the contact surface of the valve sheet of the test piece 300 is corroded. It becomes a state. Next, as shown in FIG. 8, the valve sheet-shaped test piece 300 and the valve 400 (manufactured by SUE50) were assembled into a valve unit abrasion tester, and the valve 400 was heated by the burner 500 while actually operating the valve of the internal combustion engine. Relative motion is performed under the same conditions as the system. The test conditions are as follows: temperature per valve seat: 350 ° C, valve sliding speed: engine speed 4
000 rpm equivalent, valve spring load: 4 kgf,
Test time: 10 hours.

【0035】そして図9に示す様に、試験前のシート当
り幅をα1とし、試験後のシート当り幅をα2としたと
き、バルブシート摩耗量は、バルブシートの当り面幅増
加量つまり(α2−α1)を測定して得た。バルブフェ
ース摩耗量はバルブのβを測定して得た。試験結果を図
10に示す。図10の特選線P1から理解できる様にN
i系合金の混合率を増加させると、バルブシート摩耗量
が減少していくが、Ni系合金が5%を超えたあたりで
摩耗量は定常値に近づき、15wt%を超えたあたりか
ら摩耗量は若干増加する傾向が見られる。このNi系合
金は混合率が高くなる程切削性が悪化し、しかも材料費
が高くなる。そのためNi系合金の混合率範囲は6〜1
1wt%、つまり図10に示す領域M1付近が好ましい
ことがわかる。
As shown in FIG. 9, when the seat contact width before the test is α1 and the seat contact width after the test is α2, the valve seat wear amount is the contact surface width increase amount of the valve seat, that is, (α2 -Α1) was measured and obtained. The valve face wear amount was obtained by measuring β of the valve. The test results are shown in FIG. As you can see from the special line P1 in Fig. 10, N
The wear amount of the valve seat decreases as the mixing ratio of the i-based alloy increases, but the wear amount approaches a steady value when the Ni-based alloy exceeds 5%, and the wear amount starts when it exceeds 15 wt%. Is slightly increasing. The higher the mixing ratio of this Ni-based alloy, the worse the machinability and the higher the material cost. Therefore, the mixing ratio range of the Ni-based alloy is 6 to 1
It can be seen that 1 wt%, that is, the vicinity of the region M1 shown in FIG. 10 is preferable.

【0036】(試験例2)硬質粒子としてFeMo、F
eW、FeCrの各粒子を用い、焼結体における硬質粒
子の添加量と腐食状態におけるバルブシート摩耗量との
関係を試験した。試験条件は試験例1と同様にした。F
eMoは硬度がHv1300〜1400、FeWは硬度
がHv1100〜1200、FeCrは硬度がHv16
00〜1700と高く、鉄系焼結体のマトリックスの耐
摩耗性を大きく向上させる。試験結果を図11に示す。
図11の特性線P2に示す様に、硬質粒子は4%未満の
添加率ではこの効果が不十分で、また16%を越えると
相手材であるバルブフェースの摩耗量が増加して許容レ
ベルを越えるとともに、自身の切削性も悪化するため、
硬質粒子の混合範囲は4〜16wt%、つまり図11に
示す領域M2付近が好ましい。なお、FeCrを用いた
場合の試験結果を図11の特性線P5、P6に示すが、
この場合には領域M3付近が好ましい。
Test Example 2 FeMo, F as hard particles
Using each particle of eW and FeCr, the relationship between the amount of hard particles added to the sintered body and the valve seat wear amount in a corroded state was tested. The test conditions were the same as in Test Example 1. F
eMo has a hardness of Hv1300 to 1400, FeW has a hardness of Hv1100 to 1200, and FeCr has a hardness of Hv16.
It is as high as 00 to 1700 and greatly improves the wear resistance of the matrix of the iron-based sintered body. The test results are shown in FIG.
As shown by the characteristic line P2 in FIG. 11, if the addition rate of hard particles is less than 4%, this effect is insufficient, and if it exceeds 16%, the wear amount of the valve face, which is the mating material, increases and the allowable level is increased. As it exceeds, the cutting property of itself deteriorates,
The mixing range of the hard particles is preferably 4 to 16 wt%, that is, near the region M2 shown in FIG. The test results when FeCr is used are shown by characteristic lines P5 and P6 in FIG.
In this case, the vicinity of the area M3 is preferable.

【0037】(試験例3)溶浸材に含まれるNi系合金
からなる微粉末粒子の混合率と腐食後のバルブシートの
耐摩耗性との関係を試験した。試験条件は試験例1と同
様にした。試験結果を図12に示す。図12の特性線P
4から理解できる様にNi系合金からなる微粉末粒子の
混合率を増加させると、9%あたりまでバルブシート摩
耗量は大きく減少し、21wt%を越えるあたりからバ
ルブシート摩耗量は定常値に達し、耐摩耗性向上効果は
飽和傾向となる。そのため微粉末粒子の混合率は9〜2
1%、つまり図12に示す領域M4付近が好ましい。
Test Example 3 The relationship between the mixing ratio of fine powder particles made of a Ni-based alloy contained in the infiltrant and the wear resistance of the valve seat after corrosion was tested. The test conditions were the same as in Test Example 1. The test results are shown in FIG. Characteristic line P of FIG.
As can be understood from 4, when the mixing ratio of the fine powder particles made of the Ni-based alloy is increased, the valve seat wear amount greatly decreases up to around 9%, and the valve seat wear amount reaches a steady value from around 21 wt%. However, the effect of improving wear resistance tends to be saturated. Therefore, the mixing ratio of fine powder particles is 9 to 2
It is preferably 1%, that is, near the region M4 shown in FIG.

【0038】次に、微粉末粒子の粒径とバルブシート摩
耗量との関係を試験した。試験条件は試験例1と同様に
した。試験結果を図13に示す。図13に示す様に粒径
が0.5〜2μmの範囲でバルブシート摩耗量が最小と
なるので、図13に示す領域M5付近が好ましい。
Next, the relationship between the particle size of the fine powder particles and the wear amount of the valve seat was tested. The test conditions were the same as in Test Example 1. The test results are shown in FIG. As shown in FIG. 13, the wear amount of the valve seat becomes the minimum in the range of the particle size of 0.5 to 2 μm, so that the vicinity of the region M5 shown in FIG. 13 is preferable.

【0039】[0039]

【発明の効果】本発明にかかるバルブシート様焼結合金
によれば、バルブシートの当り面の耐腐食性を向上させ
得る。その理由は以下の様に推察されている。即ち、バ
ルブシートの当り面温度が高温となり溶浸材の融点を越
えると、溶浸材は溶融状態となり、微粉末粒子と共に焼
結合金の最表層の空孔から外部に徐々に放出される。こ
の微粉末粒子はNi系合金からなるため融点が溶浸材よ
りも高温であり、固相状態が保持されており、バルブの
着座等よってバルブシートの当り面を微粉末粒子が移動
し、当り面の微細な凹部に達し、その凹部内に入り込
み、その凹部での腐食反応の進行が抑制され、バルブシ
ートの当り面の耐腐食性を向上させる。
According to the valve seat-like sintered alloy of the present invention, the corrosion resistance of the contact surface of the valve seat can be improved. The reason is speculated as follows. That is, when the contact surface temperature of the valve seat becomes high and exceeds the melting point of the infiltrant, the infiltrant enters a molten state and is gradually discharged together with the fine powder particles from the pores in the outermost layer of the sintered alloy to the outside. Since the fine powder particles are made of a Ni-based alloy, their melting point is higher than that of the infiltrant, and the solid state is maintained, and the fine powder particles move on the contact surface of the valve seat due to the seating of the valve and the like. It reaches the fine recesses on the surface and enters into the recesses, the progress of the corrosion reaction in the recesses is suppressed, and the corrosion resistance of the contact surface of the valve seat is improved.

【0040】従って本発明にかかるバルブシート様焼結
合金によれば、腐食を誘発し易い有鉛ガソリン燃料を使
用する内燃機関、空燃比等の関係で燃焼温度が高くなる
内燃機関においても、バルブシートの耐摩耗性が保持さ
れ、摩耗量を減少させ得る。よってバルブシート摩耗に
起因する燃焼ガス抜け、燃焼ガス抜けによるバルブの溶
損の防止に有利である。更にバルブーシートの円周方向
の温度分布に起因したバルブシートの偏摩耗の抑制に有
利である。
Therefore, according to the valve seat-like sintered alloy of the present invention, the valve can be used even in an internal combustion engine that uses a leaded gasoline fuel that easily induces corrosion, or an internal combustion engine that has a high combustion temperature due to the air-fuel ratio. The abrasion resistance of the sheet is retained, and the amount of abrasion can be reduced. Therefore, it is advantageous to prevent combustion gas loss due to wear of the valve seat and melting damage of the valve due to combustion gas loss. Further, it is advantageous for suppressing uneven wear of the valve seat due to the circumferential temperature distribution of the valve seat.

【図面の簡単な説明】[Brief description of drawings]

【図1】試験結果を示すグラフである。FIG. 1 is a graph showing test results.

【図2】動弁機構の要部を示す断面図である。FIG. 2 is a sectional view showing a main part of a valve mechanism.

【図3】圧粉体を生成し、その圧粉体を溶浸する過程を
示す工程図である。
FIG. 3 is a process diagram showing a process of producing a green compact and infiltrating the green compact.

【図4】焼結における加熱保持時間とNi拡散率との関
係を示すグラフである。
FIG. 4 is a graph showing the relationship between the heating and holding time in sintering and the Ni diffusivity.

【図5】バルブフェースの当り面付近の組織を模式的に
示す断面図である。
FIG. 5 is a cross-sectional view schematically showing the structure near the contact surface of the valve face.

【図6】溶浸材に含まれている微小粉末がバルブフェー
スの当り面に排出される過程を模式的に示す断面図であ
る。
FIG. 6 is a cross-sectional view schematically showing a process in which fine powder contained in the infiltrant is discharged to the contact surface of the valve face.

【図7】PbO粉末中で試験片を加熱保持している状態
の断面図である。
FIG. 7 is a cross-sectional view showing a state where a test piece is heated and held in PbO powder.

【図8】試験している状態を模式的に示す構成図であ
る。
FIG. 8 is a configuration diagram schematically showing a state under test.

【図9】シート当たり幅増加量を示す構成図である。FIG. 9 is a configuration diagram showing a width increase amount per sheet.

【図10】Ni系合金混合率とバルブシート摩耗量との
関係を示すグラフである。
FIG. 10 is a graph showing the relationship between the Ni-based alloy mixing ratio and the valve seat wear amount.

【図11】硬質粒子添加量とバルブシート摩耗量及びバ
ルブフェース摩耗量との関係を示すグラフである。
FIG. 11 is a graph showing the relationship between the amount of hard particles added and the amount of valve seat wear and the amount of valve face wear.

【図12】溶浸材中における微粉末粒子の混合率とバル
ブシート摩耗量との関係を示すグラフである。
FIG. 12 is a graph showing the relationship between the mixing ratio of fine powder particles in the infiltrant and the valve seat wear amount.

【図13】溶浸材中における微粉末粒子の粒径とバルブ
シート摩耗量との関係を示すグラフである。
FIG. 13 is a graph showing the relationship between the particle size of fine powder particles in the infiltrant and the valve seat wear amount.

【符号の説明】[Explanation of symbols]

図中、3は焼結体、8は溶浸材、11は微粉末粒子、1
01は当り面、102は鉄基地、104はオーステナイ
ト相、303はPbO粉末を示す。
In the figure, 3 is a sintered body, 8 is an infiltrant, 11 is fine powder particles, 1
01 is a contact surface, 102 is an iron base, 104 is an austenite phase, and 303 is a PbO powder.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】鉄系焼結体と、該鉄系焼結体の空孔に溶浸
させた溶浸材とで構成され、 該溶浸材は、wt%で溶浸材全体を100%としたと
き、Ni系合金からなる微粉末粒子を3〜35%鉛系金
属に分散させて構成されていることを特徴とするバルブ
シート用鉄系焼結合金。
1. An iron-based sintered body and an infiltrant infiltrated into the pores of the iron-based sintered body, wherein the infiltrant is 100% by weight of the entire infiltrant. In this case, the iron-based sintered alloy for a valve seat, characterized in that fine powder particles made of a Ni-based alloy are dispersed in 3 to 35% of a lead-based metal.
【請求項2】鉄系焼結体はマトリックスと該マトリック
スに分散した硬質粒子とで構成され、 該マトリックスは、焼結体全体を100%としたとき、
Ni系合金を6〜11%、Cを0.5〜1.2%、残部
実質的に鉄の組成をもち、 該Ni系合金は、該Ni系合金を100%としたとき、
Niを35〜65%、Moを12〜27%、Crを5〜
30%、Feを2〜10%含む組成のNi−Mo−Cr
系合金、及び、Niを80〜90%、Siを2〜20
%、Cuを1〜7%を含む組成のNi−Si−Cu系合
金の少なくとも1種で構成され、 該溶浸材は、溶浸材全体を100%としたとき、該微粉
末粒子が9〜21%、残部実質的に鉛の組成であり、 該微粉末粒子は、該微粉末粒子全体を100%としたと
き、Niを35〜65%、Moを12〜27%、Crを
5〜30%、Feを2〜10%含む高耐食性合金、及
び、Niを80〜90%、Siを2〜20%、Cuを1
〜7%含む組成の高耐食性合金の少なくとも1種で構成
され、 該微粉末粒子の粒径は0.4〜2.1μmであることを
特徴とする請求項1に記載のバルブシート用鉄系焼結合
金。
2. An iron-based sintered body is composed of a matrix and hard particles dispersed in the matrix, and the matrix has 100% of the whole sintered body.
The Ni-based alloy has a composition of 6 to 11%, C of 0.5 to 1.2%, and the balance substantially iron. When the Ni-based alloy is 100%,
Ni 35-65%, Mo 12-27%, Cr 5-5
Ni-Mo-Cr having a composition containing 30% and 2 to 10% Fe
80-90% of Ni-based alloy and 2-20 of Si
%, And at least one Ni-Si-Cu alloy having a composition containing Cu of 1 to 7%. The infiltrant contains 9% of the fine powder particles when the entire infiltrant is taken as 100%. .About.21%, the balance being substantially lead. The fine powder particles have a Ni content of 35 to 65%, a Mo content of 12 to 27%, and a Cr content of 5 to 5 when the whole of the fine powder particles is 100%. High corrosion resistance alloy containing 30%, Fe 2 to 10%, Ni 80 to 90%, Si 2 to 20%, Cu 1
2. The iron system for a valve seat according to claim 1, wherein the iron powder is a high corrosion resistant alloy having a composition of ˜7%, and the fine powder particles have a particle size of 0.4 to 2.1 μm. Sintered alloy.
【請求項3】該硬質粒子はFeMo、FeCr、FeW
の少なくとも1種で構成され、該焼結体全体が100%
のとき4%〜16%含有されていることを特徴とする請
求項2に記載のバルブシート用鉄系焼結合金。
3. The hard particles are FeMo, FeCr, FeW.
Of at least one of the
The iron-based sintered alloy for valve seats according to claim 2, wherein the content is 4% to 16%.
JP21625093A 1993-08-31 1993-08-31 Ferrous sintered alloy for valve seat Pending JPH0770720A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21625093A JPH0770720A (en) 1993-08-31 1993-08-31 Ferrous sintered alloy for valve seat

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21625093A JPH0770720A (en) 1993-08-31 1993-08-31 Ferrous sintered alloy for valve seat

Publications (1)

Publication Number Publication Date
JPH0770720A true JPH0770720A (en) 1995-03-14

Family

ID=16685628

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21625093A Pending JPH0770720A (en) 1993-08-31 1993-08-31 Ferrous sintered alloy for valve seat

Country Status (1)

Country Link
JP (1) JPH0770720A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000144351A (en) * 1998-11-18 2000-05-26 Mitsubishi Materials Corp Valve seat made of iron-base sintered alloy and its manufacture
JP2000226644A (en) * 1999-02-04 2000-08-15 Mitsubishi Materials Corp HIGH STRENGTH Fe BASE SINTERED VALVE SEAT AND ITS PRODUCTION
JP2007113101A (en) * 2005-10-24 2007-05-10 Hitachi Powdered Metals Co Ltd Sintered valve seat and method for producing the same
US7892481B2 (en) 2005-10-12 2011-02-22 Hitachi Powdered Metals Co., Ltd. Manufacturing method for wear resistant sintered member, sintered valve seat, and manufacturing method therefor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000144351A (en) * 1998-11-18 2000-05-26 Mitsubishi Materials Corp Valve seat made of iron-base sintered alloy and its manufacture
JP2000226644A (en) * 1999-02-04 2000-08-15 Mitsubishi Materials Corp HIGH STRENGTH Fe BASE SINTERED VALVE SEAT AND ITS PRODUCTION
US7892481B2 (en) 2005-10-12 2011-02-22 Hitachi Powdered Metals Co., Ltd. Manufacturing method for wear resistant sintered member, sintered valve seat, and manufacturing method therefor
JP2007113101A (en) * 2005-10-24 2007-05-10 Hitachi Powdered Metals Co Ltd Sintered valve seat and method for producing the same

Similar Documents

Publication Publication Date Title
JP3596751B2 (en) Hard particle for blending sintered alloy, wear-resistant iron-based sintered alloy, method for producing wear-resistant iron-based sintered alloy, and valve seat
US6599345B2 (en) Powder metal valve guide
JP4127021B2 (en) Hard particles, wear-resistant iron-based sintered alloy, method for producing wear-resistant iron-based sintered alloy, and valve seat
JP2004124162A (en) Manufacturing method of iron-based sintered alloy valve seat exhibiting wear resistance under high surface pressure applied condition
JPH1112697A (en) Valve seat for internal combustion engine
JPH0453944B2 (en)
US5498483A (en) Wear-resistant sintered ferrous alloy for valve seat
JP3614237B2 (en) Valve seat for internal combustion engine
JP2000297356A (en) High temperature wear resistant sintered alloy
JP6392796B2 (en) Method for producing wear-resistant iron-based sintered alloy, compact for sintered alloy, and wear-resistant iron-based sintered alloy
JPH0770720A (en) Ferrous sintered alloy for valve seat
US6251157B1 (en) Sintered alloy having superb wear resistance and process for producing the same
JP3569166B2 (en) Wear-resistant sintered alloy and method for producing the same
JP3257349B2 (en) Iron-based sintered alloy with excellent strength and wear resistance
KR890001657B1 (en) Sintering alloy for valve seat and making method of sintering valve seat
JPH0347952A (en) Wear-resistant ferrous sintered alloy and its production
JPH06172942A (en) Wear resistant iron base sintered alloy
JP3068127B2 (en) Wear-resistant iron-based sintered alloy and method for producing the same
JP3264092B2 (en) Wear-resistant iron-based sintered alloy and method for producing the same
KR960015220B1 (en) Making method of pb infiltration sintered alloy with valve seat
JPH07116489B2 (en) Manufacturing method of infiltration valve seat ring
JP3331963B2 (en) Sintered valve seat and method for manufacturing the same
JP3346292B2 (en) High strength Fe-based sintered valve seat
JPH11323512A (en) Valve guide made of ferrous sintered alloy and its production
JPH0561346B2 (en)