JPH0347952A - Wear-resistant ferrous sintered alloy and its production - Google Patents

Wear-resistant ferrous sintered alloy and its production

Info

Publication number
JPH0347952A
JPH0347952A JP12883090A JP12883090A JPH0347952A JP H0347952 A JPH0347952 A JP H0347952A JP 12883090 A JP12883090 A JP 12883090A JP 12883090 A JP12883090 A JP 12883090A JP H0347952 A JPH0347952 A JP H0347952A
Authority
JP
Japan
Prior art keywords
alloy
iron
copper
powder
wear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12883090A
Other languages
Japanese (ja)
Other versions
JPH046786B2 (en
Inventor
Yoshiaki Takagi
善昭 高木
Yoshihiro Katsui
勝井 芳博
Hiroyuki Endo
弘之 遠藤
Hiroshi Ikenoue
池ノ上 寛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Resonac Corp
Original Assignee
Honda Motor Co Ltd
Hitachi Powdered Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd, Hitachi Powdered Metals Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP12883090A priority Critical patent/JPH0347952A/en
Publication of JPH0347952A publication Critical patent/JPH0347952A/en
Publication of JPH046786B2 publication Critical patent/JPH046786B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the sintered alloy suitable for a valve gear mechanism member for internal combustion engine and excellent in wear resistance and heat resistance by providing a structure where respectively prescribed amounts of iron-base hard grains having higher Cr content than an iron matrix and copper (alloy) grains are dispersed in the iron matrix having the prescribed composition. CONSTITUTION:A wear-resistant ferrous sintered alloy which has a composition consisting of, by weight ratio, 1.8-4% Cr, 0.1-1% Mn, 0.07-1% Mo, 0.06-1.5% P, 1-10% Cu or Cu alloy, <=0.4% W or <=0.1% V, 0.03-0.9% S, 1.5-4% C, and the balance Fe and also has a structure in which 5-20% of iron-base hard grains having higher Cr content than an iron matrix and 1-10% of copper or copper alloy grains are dispersed in the iron matrix containing Cr, Mn, and Mo is provided. This ferrous sintered alloy has characteristics remarkably superior to those of conventional valve gear mechanism members and has characteristics sufficiently meeting the recent tendency of automobile engines.

Description

【発明の詳細な説明】 この発明は、内燃機関の動弁機構部材1例えばバルブガ
イドに好適な、耐摩耗性および耐熱性の優れた焼結合金
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a sintered alloy having excellent wear resistance and heat resistance and suitable for a valve train member 1 of an internal combustion engine, such as a valve guide.

内燃機関のバルブガイド材料は、普通鋳鉄や合金鋳鉄な
どの溶製材に代わって耐摩耗性、被剛性や価格などに勝
る焼結合金が種々開発され、先に本件出願人もCr0.
4〜2%、Mn0.1〜1%。
As valve guide materials for internal combustion engines, various sintered alloys with superior wear resistance, rigidity, and cost have been developed in place of molten materials such as ordinary cast iron and alloyed cast iron.
4-2%, Mn 0.1-1%.

Mo0.1〜1%を含む鉄基地中にステダイト相と遊離
黒鉛とを分散させた焼結合金(特開昭58177435
号公報参照)を開発し、実用に供してきた。
A sintered alloy in which a steadite phase and free graphite are dispersed in an iron matrix containing 0.1 to 1% Mo (Japanese Patent Application Laid-Open No. 58177435
(see publication) and put it into practical use.

しかし、この材料の開発以降、最近の自動車用エンジン
の高性能指向に伴って高温条件下での耐摩耗性に対する
要求が一段と厳しくなり、従来の合金では満足できない
場合をみるに至った。
However, since the development of this material, the demand for wear resistance under high-temperature conditions has become even stricter with the recent trend toward high performance in automobile engines, and we have come to see cases in which conventional alloys cannot satisfy the requirements.

この発明は上記の事情に鑑みなされたもので、Or −
1yln−1yloを含む鉄基地の中にCrの含有量が
基地よりも多い鉄基の硬質粒子を分散させて耐摩耗性お
よび耐熱性をより強化させると共に、銅または銅合金粒
子を未拡散の状態で鉄基地中に分散させて相手部材との
馴染み性を与えることを骨子とし、さらに、必要に応じ
て硫黄を添加して部材の被削性をより一層高めたもので
ある。
This invention was made in view of the above circumstances, and Or -
Iron-based hard particles having a higher Cr content than the base are dispersed in the iron base containing 1yln-1ylo to further strengthen wear resistance and heat resistance, and copper or copper alloy particles are not diffused. The main idea is to disperse it in the iron base to give it compatibility with the mating part, and if necessary, add sulfur to further improve the machinability of the part.

即ち、この発明は前記先発明を基礎として改良したもの
で、その改良点は先発明に比べて基地のOrを1.8〜
3.5%とやや多くし、ステダイト相をCr4〜10%
と基地より高Orの硬質相で。
That is, this invention is an improvement based on the previous invention, and the improvement point is that the Or of the base is 1.8 to 1.8 compared to the previous invention.
Slightly more than 3.5%, and steadite phase with Cr4~10%
and a hard phase with higher Or than the base.

遊離黒鉛を銅(またはCu −8n 、Cu −N+ 
)の軟質相で置換し強化したことに相当する。なおこの
明細書では、銅合金は錫含有量8〜11%のCu−3%
合金と、ニッケル含有量5〜30%のCu−Ni合金と
を意味する。この組成範囲は、市販の合金粉の規格範囲
に基づくものである。
Free graphite is converted into copper (or Cu-8n, Cu-N+
) is replaced with a soft phase and strengthened. In this specification, the copper alloy is Cu-3% with a tin content of 8 to 11%.
and Cu-Ni alloys with a nickel content of 5 to 30%. This composition range is based on the standard range of commercially available alloy powders.

また、この発明に係る合金は分散硬化型の合金であるた
め、その製造に際し基地、硬質相および軟質相(銅また
は銅合金)は、それぞれの組成の合金粉の形で配合され
る。即ち製造方法としての骨子は、基地はCr1.8〜
3.5%、Mn0.1〜1%、Mo0.1〜1%および
鉄残部:またはこれに80、05〜1%を追加した合金
鉄粉として、硬質相はCr4〜10%、Mo0.05〜
1%、Po、2〜0.7%および鉄残部;またはこれに
W2%以下またはV 0.5%以下を追加した硬質合金
粉として配合し、その成形体を必要な強度が得られ且つ
軟質相が拡散しない温度(980〜1130℃)で焼結
することにある。
Further, since the alloy according to the present invention is a dispersion hardening type alloy, the base, hard phase and soft phase (copper or copper alloy) are blended in the form of alloy powders having respective compositions during production. That is, the gist of the manufacturing method is that the base is Cr1.8~
3.5%, Mn0.1-1%, Mo0.1-1% and iron balance: or as alloyed iron powder with 80.05-1% added to this, the hard phase is Cr4-10%, Mo0.05 ~
1%, Po, 2 to 0.7% and the balance of iron; or a hard alloy powder containing 2% or less of W or 0.5% or less of V is added, and the molded product is made to have the necessary strength and softness. The purpose is to sinter at a temperature (980 to 1130°C) at which the phase does not diffuse.

以下この発明をその実施例について説明する。This invention will be described below with reference to its embodiments.

先ず、原料粉として粒度200メツシユ以下の銅粉、青
銅粉(10%Sn >、 Fe −20P合金粉および
天然黒鉛粉、それに下記組成の基材合金粉末(42口)
および硬質合金粉末(ハ、二)を準備した。また上記先
願の合金を従来材料とし、そのための基材合金粉末(チ
)を準備した。
First, as raw material powders, copper powder, bronze powder (10%Sn>, Fe-20P alloy powder, and natural graphite powder with a particle size of 200 mesh or less), and base alloy powder with the following composition (42 pieces) were used.
and hard alloy powder (c, ii) were prepared. Further, the alloy of the prior application was used as a conventional material, and a base alloy powder (H) therefor was prepared.

イ:Cr2%、Mn0.7%、Mo0.2%およびFe
残部。
A: Cr2%, Mn0.7%, Mo0.2% and Fe
The rest.

口:Cr2%、Mn0.7%、、Mo0.2%。Mouth: Cr2%, Mn0.7%, Mo0.2%.

80、2%およびFe残部。80, 2% and balance Fe.

チ:Cr0.8%、Mn0.7%、Mo0.2%および
Fe残部。
H: 0.8% Cr, 0.7% Mn, 0.2% Mo and balance Fe.

ハ:Cr5%、MO0,45%、P0.45%およびl
”e残部。
C: 5% Cr, 0.45% MO, 0.45% P and l
“e remainder.

二:C「5%、Mo0.45%、Po、45%。2: C "5%, Mo0.45%, Po, 45%.

Wl、7%、Vo、1%およびFe残部。Wl, 7%, Vo, 1% and balance Fe.

次に試料の作成であるが、順序として上記先願に係る従
来材料を先に述べる。基材合金粉(チ)に銅粉を5%、
Fe−P粉を1.25%、黒鉛粉を2%配合し、これに
潤滑剤としてステアリン酸亜鉛を1%添加して充分に混
合した。次にこの混合粉を成形圧力6t/cWiで試験
片所定の形状に成形し、分解アンモニアガス雰囲気炉中
1060℃で30分間の焼結を行ない、従来例の試料N
o、18を作製した。この試料の焼結密度は6.70 
(J/ cT/lであった。
Next, regarding the preparation of samples, the conventional materials related to the above-mentioned prior application will be described first. 5% copper powder to base alloy powder (chi),
1.25% of Fe--P powder and 2% of graphite powder were blended, and 1% of zinc stearate was added thereto as a lubricant and mixed thoroughly. Next, this mixed powder was molded into a predetermined shape for a test piece at a molding pressure of 6t/cWi, and sintered for 30 minutes at 1060°C in a decomposed ammonia gas atmosphere furnace.
o, 18 was produced. The sintered density of this sample is 6.70
(J/cT/l.

また同様にして、第1表に示した原料粉の配合割合に従
い、試料N011〜17を作成した。表の備考欄に記し
た記号■、■は、それぞれ特許請求の範囲の欄で各発明
に付した番号1.2に合わせてあり、例えば試料No、
17は製造法としては第2項の発明の1合金としては第
1項の発明の実施例に該当することを示している。
Similarly, samples Nos. 011 to 17 were prepared according to the blending ratios of the raw material powders shown in Table 1. The symbols ■ and ■ written in the remarks column of the table correspond to the numbers 1.2 assigned to each invention in the claims column, for example, sample No.
No. 17 indicates that the production method for one alloy of the invention in item 2 corresponds to an embodiment of the invention in item 1.

かくして得られた試料N001〜18の化学成分を第2
表に示す。なお、組成または条件が所定の範囲外の試料
には、8表の備考欄に比較例と表示しである。
The chemical components of samples N001 to 18 thus obtained were
Shown in the table. Note that samples whose compositions or conditions are outside the predetermined range are indicated as comparative examples in the remarks column of Table 8.

次に、各試料について耐摩耗性および被剛性の試験を行
なった。
Next, each sample was tested for wear resistance and stiffness.

耐摩耗性は大越式摩擦摩耗試験機を用い、温度4. O
0℃の大気中9周速3.6m10で回転する直径30m
m、幅3mmのローター〈材質S U l−1−3)に
荷重12.6kgで試料を押し付け、無潤滑で距離40
0m摺動後の各試料の摩耗量を求め、その数値を試料N
o、18(従来材)を100とする指数で表示した。従
って指数が小さいほど耐摩耗性が良いことを意味する訳
である。
Wear resistance was measured using an Okoshi type friction and wear tester at a temperature of 4. O
A diameter of 30 m rotating at a circumferential speed of 3.6 m10 in the atmosphere at 0°C.
The sample was pressed against a rotor (material S U l-1-3) with a width of 3 mm and a load of 12.6 kg, and the distance was 40 without lubrication.
Determine the wear amount of each sample after sliding 0m, and apply that value to sample N.
It is expressed as an index with 18 (conventional material) as 100. Therefore, the smaller the index, the better the wear resistance.

被剛性は、耐摩耗性と本質的に両立し難い特性ではある
が、部材の焼結後の加工工程やエンジンへの組み付(ブ
工程での作業能率に影響するため、工場サイドから特に
重視される特性である。その試験方法は長さ40n+m
内径7.4mmの円筒状試料について、その内径を81
11111までリーマ加工する所要時間を求め、それを
耐摩耗性の場合と同じく試料No、18を100とする
指数で表示した。従って指数が小さいほど加工時間が短
い、即ち被剛性が良いことを示している。
Rigidity is a property that is essentially incompatible with wear resistance, but it is particularly important from the factory side because it affects work efficiency in the processing process after sintering the component and in the assembly process into the engine. The test method uses a length of 40n+m.
For a cylindrical sample with an inner diameter of 7.4 mm, the inner diameter is 81 mm.
The time required for reaming up to 11111 was determined and expressed as an index with Sample No. 18 as 100, as in the case of wear resistance. Therefore, the smaller the index, the shorter the processing time, ie, the better the stiffness.

試験の結果は第1表の右欄に示す通りで、試料全体を通
じ、N063およびN096が最良の特性を持っている
The test results are shown in the right column of Table 1, with N063 and N096 having the best properties across the samples.

以下、この表に基づいて結果の考察を行ない、併せて個
々の要件について説明する。先ず従来例のNo、18と
No、1とは、鉄基地を形成する基材合金粉の違いを除
き、それ以外の原料配合は同である。しかるにN001
の方がやや良好な特性を示すのは、N081の基材合金
粉にはOrが多く。
Below, we will discuss the results based on this table and also explain the individual requirements. First, conventional examples No. 18 and No. 1 have the same raw material composition except for the difference in the base alloy powder forming the iron matrix. However, N001
The reason why N081 shows slightly better properties is that the base alloy powder of N081 contains a lot of Or.

また硫黄を含むためである。しかし、この程度の耐摩耗
性では、最近の要求水準には及ばない。
This is also because it contains sulfur. However, this level of abrasion resistance does not reach the recently required level.

試料No、1〜N004は、基地中に分散させる高Or
の硬質合金粉の影響を示し、その5%以上の添加によっ
て被剛性はやや劣化するが耐摩耗性は著しく向上し、配
合量10%前後で摩耗が最少になる。但し、さらに増量
すると被削性、耐摩耗性ともに劣化するので、20%を
上限とする。
Samples No. 1 to No. 004 are high Or
The effect of hard alloy powder is shown, and by adding 5% or more of it, the rigidity deteriorates slightly, but the wear resistance improves markedly, and wear is minimized at around 10%. However, if the amount is further increased, both machinability and wear resistance deteriorate, so the upper limit is set at 20%.

また試料No、16は硫黄を含まない基材合金粉を用い
た例で、試料N013と比較して耐摩耗性はほぼ等しい
が被剛性は劣って゛いる。この傾向は、種類が異なる硬
質合金粉を配合した試料No、15とNo、17の場合
も同様である。
Sample No. 16 is an example using a base alloy powder that does not contain sulfur, and has almost the same wear resistance as sample No. 13, but is inferior in stiffness. This tendency is also the same in the case of samples No. 15 and No. 17, in which different types of hard alloy powders were mixed.

基材の被削性に及ぼす硫黄の効果は、極微量の0.05
%から有意であるが、0.2%前後の含有量が好ましい
。但し過剰になると基材の強度低下を招くため、基材合
金中に1%を上限とする。
The effect of sulfur on the machinability of the base material is as small as 0.05
%, but a content of around 0.2% is preferable. However, if it is excessive, it will cause a decrease in the strength of the base material, so the upper limit is set at 1% in the base alloy.

試料NO,5,N0.3およびN006は鉄基地中に未
拡散の状態で分散する銅の影響を見たもので、無添加の
No、5に比べ、摩耗が少なくなる。その効果は配合量
1%から有意で、10%までは殆ど同程度の効果を示す
。但し、銅の配合量が増すにつれて焼結時の膨張量が大
きくなるので、製品の寸法安定性の面から10%を上限
とする。
Samples No. 5, No. 3, and No. 006 were used to examine the influence of copper dispersed in an undiffused state in the iron base, and the wear was reduced compared to No. 5, which had no additives. The effect is significant from a blending amount of 1%, and shows almost the same effect up to 10%. However, as the content of copper increases, the amount of expansion during sintering increases, so the upper limit is set at 10% from the viewpoint of dimensional stability of the product.

また、試料NO37はN093の銅粉の代りに青銅粉(
錫10%)を配合した例で、耐摩耗性はほぼ等しい。被
削性がやや低いのは、錫の影響で銅の拡散が進行したた
めと考えられる。同じ条件で、15Ni−Cuの場合は
摩耗量はNo、3よりやや少なく、被剛性はN017と
ほぼ等しい。このように8〜11%Sn −Cu 、5
〜3ONi−Cuの銅合金は、この発明の目的において
は銅と均等と見ることができる。なお、この発明におい
ては銅を未拡散の状態で残すことが要点で、焼結は温度
980℃〜1130℃の範囲で行なわれる。これ以上に
なると軟質相が拡散し、一方これ以下では焼結が不充分
で、必要な強度が得られない。
In addition, sample No. 37 had bronze powder (instead of copper powder in No. 093).
The abrasion resistance is almost the same in the example in which 10% tin is added. The slightly low machinability is thought to be due to the progress of copper diffusion due to the influence of tin. Under the same conditions, in the case of 15Ni-Cu, the amount of wear is slightly less than No. 3, and the stiffness is almost equal to No. 3. Thus 8-11% Sn-Cu, 5
The ~3ONi-Cu copper alloy can be considered equivalent to copper for the purposes of this invention. In this invention, it is important to leave copper in an undiffused state, and sintering is carried out at a temperature in the range of 980°C to 1130°C. If it is more than this, the soft phase will diffuse, while if it is less than this, sintering will be insufficient and the necessary strength will not be obtained.

試料N0.8〜N0.11はFe−P合金粉の形で配合
されたリンの影響を見たもので、市販されているFe−
P合金粉のリン含有量は通常10%〜30%である。こ
の合金粉を配合すると、焼結の過程でFe −P−C化
合物となって液相を生じ、焼結を促進するとともに、一
部はステダイト相を生成して基地を強化する。その結果
被剛性はやや低下するが、耐摩耗性は配合量015%以
上で明らかに向上して1〜1.5%で最高となり、以後
再び低下する。そして5%を越えると基材を脆くし、試
料No、11が示すように被削性、耐摩耗性ともに劣化
する。従って、Fe−Pの配合量は0.5〜5%が適当
である。
Samples No. 8 to No. 11 were used to examine the effects of phosphorus blended in the form of Fe-P alloy powder, and commercially available Fe-
The phosphorus content of P alloy powder is usually 10% to 30%. When this alloy powder is blended, it becomes a Fe-P-C compound during the sintering process to generate a liquid phase, which promotes sintering and partially forms a steadite phase to strengthen the base. As a result, the stiffness decreases slightly, but the abrasion resistance clearly improves at a blending amount of 015% or more, reaches a maximum at 1 to 1.5%, and then decreases again. If it exceeds 5%, the base material becomes brittle, and as shown in sample No. 11, both machinability and wear resistance deteriorate. Therefore, the appropriate amount of Fe-P is 0.5 to 5%.

試料No、12〜N0.14は黒鉛粉の形で配合された
炭素の影響を見たもので、配合ffi 0.3%では被
削性は良いが肝心の耐摩耗性が不足し、3.3%1 〇
− では被剛性はやや低くなるが、耐摩耗性は良好な水準を
保っている。
Samples No. 12 to No. 14 were used to examine the effects of carbon blended in the form of graphite powder. With a blend ffi of 0.3%, machinability was good, but the important wear resistance was insufficient. 3. At 3%1 〇-, the stiffness is slightly lower, but the wear resistance remains at a good level.

合金中に配合された炭素の挙動はかなり複雑で鉄基地の
固溶強化、添加元素との炭化物の生成。
The behavior of carbon mixed in alloys is quite complex, solid solution strengthening of the iron base and formation of carbides with added elements.

Fe−Pとの反応による焼結の促進、遊離黒鉛の形での
固体潤滑など、多くの作用効果を現わす。
It exhibits many effects such as promotion of sintering through reaction with Fe-P and solid lubrication in the form of free graphite.

そのための最低必要量は土5%で、試料No、3が示す
ように、2%程度が最適と判断される。過剰に配合する
と粉末の偏析や成形性の低下を来たすため、4%以下に
留めるべきである。
The minimum amount required for this is 5% soil, and as sample No. 3 shows, about 2% is judged to be optimal. Excessive blending may cause powder segregation and deterioration of moldability, so the content should be kept at 4% or less.

試料No、15はWおよびVを含まない硬質合金粉を用
いた例で、その特性は実用可能なレベルにあるが、試料
N003との比較から、硬質合金粉中のWおよびVが耐
摩耗性を一段と向上させることが分る。このことは、試
料N0.17とNo、16についても同様である。これ
はW、■ともに炭素と反応して硬い炭化物を作り、硬質
合金相の硬さを高めるためであるが、含有量が過剰にな
ると相手部材を傷付は易くなる。従って、硬質合金粉中
の含有量はWは2%以下、■は0.5%以下に留めるべ
きである。
Sample No. 15 is an example using hard alloy powder that does not contain W and V, and its properties are at a practical level, but from comparison with sample No. 003, W and V in the hard alloy powder have good wear resistance. It can be seen that this further improves the This also applies to samples No. 17 and No. 16. This is because both W and (2) react with carbon to form hard carbides and increase the hardness of the hard alloy phase, but if their content is excessive, they tend to damage the mating member. Therefore, the content of W in the hard alloy powder should be kept at 2% or less, and the content of ■ should be kept at 0.5% or less.

以上で実施例を含む実験結果についての説明を終了し、
次に、主要原料の基材合金粉および硬質合金粉の組成に
ついて述べる。
This concludes the explanation of the experimental results including the examples,
Next, the compositions of the base alloy powder and hard alloy powder, which are the main raw materials, will be described.

Cr:基材合金粉および硬質合金粉に共通する成分で、
炭化物を形成して耐摩耗性および耐酸化性を向上させる
。しかし合金全体に−様な濃度で分布しては特性が劣る
。基材中の含有量は土8〜3.5%と低めにして靭性を
持たせ、4〜10%と多量のOrを含む硬質合金相をこ
の基地中に分散させた点に、この発明の特徴がある。合
金粉中の含有量は1.8%未満ではその効果が乏しく、
一方10%を越えると粉末が硬くなり、成形性が阻害さ
れる。なお基材中の上限を3.5%、硬質粉中の下限を
4%として間を離したのは、基地と硬質相とにCrの充
分な濃度差を保つためである。
Cr: A component common to base alloy powder and hard alloy powder,
Forms carbides to improve wear resistance and oxidation resistance. However, if the concentration is distributed throughout the alloy in a negative manner, the properties will be poor. The advantage of this invention is that the content of soil in the base material is low at 8 to 3.5% to provide toughness, and the hard alloy phase containing a large amount of Or at 4 to 10% is dispersed in this base. It has characteristics. If the content in the alloy powder is less than 1.8%, the effect is poor;
On the other hand, if it exceeds 10%, the powder becomes hard and moldability is inhibited. The reason why the upper limit in the base material is 3.5% and the lower limit in the hard powder is 4% is to maintain a sufficient difference in Cr concentration between the base and the hard phase.

MO=この元素も基材合金粉および硬質合金粉に共通す
る成分で、Crと類似の作用の外、特に高温における強
度と耐摩耗性を向上させる。その効果はCr含有量の少
ない基材合金粉では01%から、 Orの多い硬質合金
粉では005%の微量から有意であり、一方、1%を越
えて添加しても添加量に見合う効果が得られない上に、
粉末の成形性が阻害される。
MO = This element is also a component common to base alloy powder and hard alloy powder, and in addition to having similar effects to Cr, it improves strength and wear resistance, especially at high temperatures. The effect is significant from as low as 0.01% for base alloy powder with low Cr content, and as low as 0.05% for hard alloy powder with high Or content.On the other hand, even when added in excess of 1%, the effect is commensurate with the amount added. In addition to not being able to obtain
The moldability of the powder is inhibited.

Mn:Crの少ない基材合金粉に添加されて鉄基地を強
化させる成分であるが、0.1%未満ではその効果がな
く、また、1%を越えると焼結時の酸化が問題になる。
Mn: A component added to base alloy powder with low Cr content to strengthen the iron base, but if it is less than 0.1%, it has no effect, and if it exceeds 1%, oxidation during sintering becomes a problem. .

リン二基地中に分散させる硬質合金相の硬さを一層高め
るために、硬質合金粉に添加する。その効果は02%以
上で有意であり、一方、0.7%を超えて添加すると合
金粉が脆くなり、圧縮性を悪化させる。
It is added to hard alloy powder in order to further increase the hardness of the hard alloy phase dispersed in the phosphorus dibase. The effect is significant at 0.02% or more, but on the other hand, when added in excess of 0.7%, the alloy powder becomes brittle and the compressibility deteriorates.

W、■およびS:これらについては、各試料に関する考
察で既に述べた通りである。
W, ■, and S: These are as already described in the discussion regarding each sample.

本願における合金の発明■の全体組成は上述した製造法
の発明■の内容、即ち基材合金粉、硬質合金粉等の組成
と配合割合から帰納されるものである。なお硬質合金粉
の中にも微量のMnが含まれることがあり、また、合金
粉の製造に際し溶湯の湯流れを良くするために少量の3
iが添加されることがあるが、いずれも、この発明にと
っては不純分と見て差支えない。
The overall composition of invention (2) of the alloy in this application is derived from the content of invention (2) of the manufacturing method described above, that is, the composition and blending ratio of the base alloy powder, hard alloy powder, etc. Note that hard alloy powder may also contain a small amount of Mn, and when manufacturing alloy powder, a small amount of Mn is added to improve the flow of the molten metal.
Although i may be added, any of them can be regarded as an impurity for the present invention.

以上詳述した通り、この発明に係る焼結合金は従来の動
弁機構部材よりも著しく優れ、自動車用エンジンの最近
の傾向にも充分対応できる特性を具えている。この4種
の合金は耐摩耗性、被削性ならびにコストの而でそれぞ
れ得失を持っているので、エンジンの性格に応じて適切
に選択すればよい。なお以上はバルブガイドへの適用例
で説明したが、この材料は動弁機構の他の部材1例えば
バルブシートにも適用可能である。
As described in detail above, the sintered alloy according to the present invention is significantly superior to conventional valve train members, and has characteristics that can fully meet recent trends in automobile engines. These four types of alloys each have advantages and disadvantages in terms of wear resistance, machinability, and cost, so they should be appropriately selected depending on the characteristics of the engine. Although the above description has been made using an example of application to a valve guide, this material can also be applied to other members 1 of a valve mechanism, such as a valve seat.

Claims (1)

【特許請求の範囲】 1 全体組成が重量比で Cr・・・1.8〜4%Mn・・・0.1〜1%Mo・
・・0.07〜1%P・・・0.06〜1.5%Cuま
たはCu合金・・・1〜10% W・・・0.4%以下およびV・・・0.1%以下の少
なくとも一方、 S・・・0.03〜0.9%C・・・1.5〜4%Fe
・・・残部 で、且つCr・Mn・Moを含む鉄基地中に基地よりも
Cr量が多い鉄基硬質粒子5〜20%と、銅または銅合
金粒子1〜10%が分散した組織を呈することを特徴と
する被削性の良好な耐摩耗性鉄系焼結合金。 2 下記ロ、ニ、ホ〜トの粉末を所定の重量比に配合し
て加圧成形し、温度980〜1130℃で焼結すること
を特徴とする、Cr・Mn・Moを含む鉄基地中に基地
よりもCr量が多い鉄基硬質粒子と、銅または銅合金粒
子とが分散した組織を呈する耐摩耗性鉄系焼結合金の製
造方法。 ロ Cr1.8〜3.5%、Mn0.1〜1%、Mo0
.1〜1%、S0.05〜1%およびFe残部の合金粉 ニ Cr4〜10%、Mo0.05〜1%、W2%以下
およびV0.5%以下の少なくとも一方、P0.2〜0
.7%およびFe残部の硬質合金粉:5〜20% ホ 銅粉または銅合金粉;1〜10% ヘ Fe−10〜30%P合金粉;0.5〜5%ト 黒
鉛粉;1.5〜4%。
[Claims] 1. Overall composition is Cr...1.8-4% Mn...0.1-1% Mo.
...0.07-1% P...0.06-1.5% Cu or Cu alloy...1-10% W...0.4% or less and V...0.1% or less At least one of S...0.03-0.9%C...1.5-4%Fe
...The remainder exhibits a structure in which 5 to 20% of iron-based hard particles, which have a higher Cr content than the base, and 1 to 10% of copper or copper alloy particles are dispersed in the iron base containing Cr, Mn, and Mo. A wear-resistant iron-based sintered alloy with good machinability. 2 An iron matrix containing Cr, Mn, and Mo, characterized by blending the following powders B, D, and H to a predetermined weight ratio, press-molding, and sintering at a temperature of 980 to 1130°C. A method for producing a wear-resistant iron-based sintered alloy having a structure in which iron-based hard particles having a higher Cr content than the matrix and copper or copper alloy particles are dispersed. B Cr1.8-3.5%, Mn0.1-1%, Mo0
.. Alloy powder of 1-1%, S0.05-1% and balance of Fe, Cr4-10%, Mo0.05-1%, at least one of W2% or less and V0.5% or less, P0.2-0
.. 7% and the remainder of Fe hard alloy powder: 5-20% E Copper powder or copper alloy powder; 1-10% F Fe-10-30% P alloy powder; 0.5-5% G graphite powder; 1.5 ~4%.
JP12883090A 1990-05-18 1990-05-18 Wear-resistant ferrous sintered alloy and its production Granted JPH0347952A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12883090A JPH0347952A (en) 1990-05-18 1990-05-18 Wear-resistant ferrous sintered alloy and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12883090A JPH0347952A (en) 1990-05-18 1990-05-18 Wear-resistant ferrous sintered alloy and its production

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP60082035A Division JPS61243156A (en) 1985-04-17 1985-04-17 Wear resistant iron series sintered alloy and its production

Publications (2)

Publication Number Publication Date
JPH0347952A true JPH0347952A (en) 1991-02-28
JPH046786B2 JPH046786B2 (en) 1992-02-06

Family

ID=14994462

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12883090A Granted JPH0347952A (en) 1990-05-18 1990-05-18 Wear-resistant ferrous sintered alloy and its production

Country Status (1)

Country Link
JP (1) JPH0347952A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0621347A1 (en) * 1993-04-22 1994-10-26 Mitsubishi Materials Corporation Valve guide member formed of Fe-based sintered alloy having excellent wear and abrasion resistance
JPH06306409A (en) * 1993-04-22 1994-11-01 Mitsubishi Materials Corp Valve guide member made of iron-base sintered alloy excellent in wear resistance
US7485599B2 (en) 2003-03-17 2009-02-03 Umicore Ag & Co. Kg Oxygen storage material, process for its preparation and its application in a catalyst
CN105149596A (en) * 2015-08-31 2015-12-16 苏州莱特复合材料有限公司 Powder metallurgy valve gas pipe and preparation method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0621347A1 (en) * 1993-04-22 1994-10-26 Mitsubishi Materials Corporation Valve guide member formed of Fe-based sintered alloy having excellent wear and abrasion resistance
JPH06306409A (en) * 1993-04-22 1994-11-01 Mitsubishi Materials Corp Valve guide member made of iron-base sintered alloy excellent in wear resistance
US5507257A (en) * 1993-04-22 1996-04-16 Mitsubishi Materials Corporation Value guide member formed of Fe-based sintered alloy having excellent wear and abrasion resistance
US7485599B2 (en) 2003-03-17 2009-02-03 Umicore Ag & Co. Kg Oxygen storage material, process for its preparation and its application in a catalyst
CN105149596A (en) * 2015-08-31 2015-12-16 苏州莱特复合材料有限公司 Powder metallurgy valve gas pipe and preparation method thereof

Also Published As

Publication number Publication date
JPH046786B2 (en) 1992-02-06

Similar Documents

Publication Publication Date Title
JPH0453944B2 (en)
KR920007937B1 (en) Fe-sintered alloy for valve seat
JP2000297356A (en) High temperature wear resistant sintered alloy
JP6392796B2 (en) Method for producing wear-resistant iron-based sintered alloy, compact for sintered alloy, and wear-resistant iron-based sintered alloy
JPH0347952A (en) Wear-resistant ferrous sintered alloy and its production
JPS62271913A (en) Builtup cam shaft
JPS6119750A (en) Cupreous sintered body
JPS61291954A (en) Sintering material having wear resistance and corrosion resistance at high temperature and its manufacture
JP4323070B2 (en) Valve guide material
JP3569166B2 (en) Wear-resistant sintered alloy and method for producing the same
JPH0534412B2 (en)
JPS60258449A (en) Sintered iron alloy for valve seat
JPH0313546A (en) Ferrous sintered alloy for valve seat
US3758281A (en) Msintered alloy and wear resisting sliding parts manufactured therefro
JP4323071B2 (en) Valve guide material
JPS58224154A (en) Sintered fe alloy for valve seat of internal combustion engine
JPS62207847A (en) Ferrous sintered alloy for valve seat
JP3068127B2 (en) Wear-resistant iron-based sintered alloy and method for producing the same
JPS6140027B2 (en)
JP3331963B2 (en) Sintered valve seat and method for manufacturing the same
JP3068128B2 (en) Wear-resistant iron-based sintered alloy and method for producing the same
JPS62271914A (en) Sintered cam shaft
JP3077865B2 (en) Iron-based alloy powder for sintering and wear-resistant iron-based sintered alloy
JPH0152463B2 (en)
JPH08291376A (en) Combination of ferrous sintered alloy valve seat material with heat resistant and wear resistant alloy valve face material

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees