JP4323071B2 - Valve guide material - Google Patents

Valve guide material Download PDF

Info

Publication number
JP4323071B2
JP4323071B2 JP2000262321A JP2000262321A JP4323071B2 JP 4323071 B2 JP4323071 B2 JP 4323071B2 JP 2000262321 A JP2000262321 A JP 2000262321A JP 2000262321 A JP2000262321 A JP 2000262321A JP 4323071 B2 JP4323071 B2 JP 4323071B2
Authority
JP
Japan
Prior art keywords
copper
content
powder
machinability
valve guide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000262321A
Other languages
Japanese (ja)
Other versions
JP2002069599A (en
Inventor
克直 近畑
幸一郎 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Powdered Metals Co Ltd
Original Assignee
Hitachi Powdered Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Powdered Metals Co Ltd filed Critical Hitachi Powdered Metals Co Ltd
Priority to JP2000262321A priority Critical patent/JP4323071B2/en
Priority to GB0120946A priority patent/GB2368348B/en
Priority to KR10-2001-0052900A priority patent/KR100420264B1/en
Priority to US09/943,617 priority patent/US6616726B2/en
Priority to FR0111302A priority patent/FR2813317B1/en
Priority to DE10142645A priority patent/DE10142645B4/en
Publication of JP2002069599A publication Critical patent/JP2002069599A/en
Application granted granted Critical
Publication of JP4323071B2 publication Critical patent/JP4323071B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Powder Metallurgy (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は内燃機関のバルブガイドに好適な耐摩耗性および被削性,特に後者の優れた焼結合金に関するものである。
【0002】
【従来の技術】
内燃機関のバルブガイドには、ねずみ鋳鉄やボロン鋳鉄などの特殊鋳鉄が用いられることもあるが、鋳鉄の場合は作業環境,量産性,価格面などに問題があるため、焼結合金での代替が進められてきた。しかし一般的な焼結合金では耐摩耗性が不充分であり、一方、合金成分を添加して材質を強化すれば耐摩耗性は使用可能な水準に達するが、その反面多くの場合被削性(切削加工性)が低下する。バルブガイドはエンジンのシリンダーヘッドに組み付け後、リーマ加工によって内径仕上げを施すので、バルブガイド材の被削性が悪いと加工の所要時間が長くなったり、工具の摩耗が早まったりして生産効率が阻害される。
【0003】
【発明が解決しようとする課題】
以前、耐摩耗性と被削性の両立を企図して本出願人が開発したバルブガイド材(特公昭55−34858号参照)は、組成が質量比でC…1.5〜4%,Cu…1〜5%,Sn…0.1〜2%,P…0.1〜0.3%未満およびFe残部の焼結合金であるが、耐摩耗性はボロン鋳鉄より優れ、被削性も鋳鉄材に比べれば削り難いものの従来の焼結材よりは優れているため、自動車メーカー各社に広く用いられてきた。しかるに近年、この分野を取り巻く環境の変化によって品質の向上に併せて生産性向上の必要が従来以上に高まり、バルブガイド材については被削性のより優れた材料が求められるようになった。
【0004】
【課題を解決するための手段】
そこで、上述の先発明に係るバルブガイド材を基礎としつつその改良を図ったところ、銅の含有量を多くし、併せてリンの含有量を少なくすると被削性が顕著に向上するという結果が得られた。この発明はこの様な知見に基づいてなされたもので、その一つは銅の含有量を6〜20%(質量%;以下、この明細書中の%は、特記しない限り全て質量%である。)の範囲に増加させると共にリンの含有量を0.01〜0.1%未満の範囲に抑えたことを骨子とするものであり、他の一つは、この様な銅の増量およびリンの抑制に併せて、頑火輝石( enstatite;MgSiO3 )と硫化マンガン(MnS)を合計で4%未満添加したことを骨子とするものである。
【0005】
即ち第一の発明に係るバルブガイド材は組成がC…1.5〜4%,Cu…6〜20%,Sn…0.1〜2%,P…0.01〜0.1%未満,およびFe残部の焼結合金で、その金属組織は、パーライトを主体とする基地中に銅または銅錫系合金相(この「または」は銅および銅錫系…も含む。);および遊離黒鉛が分散している。また第二の発明に係るものは合金の組成がC…1.5〜4%,Cu…6〜20%,Sn…0.1〜2%,P…0.01〜0.1%未満,頑火輝石と硫化マンガンの合計で4%未満,およびFe残部の焼結合金で、パーライトを主体とする基地中に銅または銅錫系合金相;遊離黒鉛,頑火輝石および硫化マンガンが分散した組織を呈している。なおこれらの合金の基地中には、リンの含有量に応じてFe−P−C系合金相の生成が認められる。従って、上述のパーライトを主体とする基地には、この様な場合も包含されている。
【0006】
【発明の実施の形態】
この発明に係る焼結合金において、炭素は黒鉛粉の形で添加され、一部(概ね0.8〜1%)は鉄に固溶して基地を強化したり、リンと結合して比較的硬質な粒子状のFe−P−C系合金相(ステダイト相)を生成して分散し、残りが遊離炭素(黒鉛)の状態で残留して固体潤滑の作用をする。遊離黒鉛の量は、炭素の含有量(全炭素量)が1.5%の場合に約0.3%,全炭素量3%で約1.7%であるが、遊離黒鉛が0.3%より少ない場合にはバルブとの摺動によるバルブガイドの摩耗が大きくなる。このため、炭素の含有量は1.5%を下限とする。一方、過剰の場合は基材の強度が低下する上に、粉末成形時に偏析や流動性阻害などの原因となるため、炭素の含有量は4%を上限とする。
【0007】
銅と錫は、通常は錫の含有量が5〜20%程度の銅−錫合金粉の形で、およびそれに所要量の銅粉を追加した形で添加される。共に焼結の進行を促進し、固溶して基地を強化する一方、一部がCu−Sn系合金相として残留して摺動特性や被削性を向上させる。そしてこの際、Cu−Sn系合金相と共に銅相が分散するとこの作用が一層強化されるが、その効果は銅の含有量6%以上で顕著になる。但し、20%を超えると耐摩耗性が悪化するので、銅の含有量の適正範囲を6〜20%とする。一方、錫の存在による上記の作用効果は含有量が0.1%以上で生じるが、2%を超えると基材の脆化を招くので、錫の含有量は0.1〜2%を適正範囲とする。
【0008】
リンはFe−P合金粉またはCu−P合金粉の形で添加される。リンの含有量に応じて、生成されるステダイト相が増し、基材の剛性が高まり耐摩耗性が向上するが、その反面被削性は低下する。従って、この発明の目的は先発明材よりも被削性を向上させることにあるので、リンの含有量を先発明材より少なく0.1%未満(但し0.01%〜)に抑制して遊離黒鉛を増加させ、被削性を向上させる。リンの減量に従い耐摩耗性は低下するが、それでも、ねずみ鋳鉄に比べれば摩耗量は1/3以下で、遥かに優れた水準にある。
【0009】
第二の発明における頑火輝石はメタ珪酸マグネシウム鉱物で、斜方晶の粒子で劈開性があり、遊離黒鉛と同じく固体潤滑剤として作用すると共に被削性をより改善する。硫化マンガンも同様であるが、更に基材の耐摩耗性を向上させる作用がある。何れも粉末として添加されるが、頑火輝石と硫化マンガン(好ましくは頑火輝石の2〜3割)を混用すると、耐摩耗性と被削性をその均衡を保ちつつ、一層改善することができる。
【0010】
遊離黒鉛も含めこれらの固体潤滑剤は、基地中に分散して固体潤滑効果を示す反面、含有(分散)量の増加に従って材料強度を低下させる。そしてこの発明の場合は含有量が4%を超えるとバルブガイド材として必要な材料強度を保てなくなるので、固体潤滑剤(遊離黒鉛,頑火輝石および硫化マンガン)の総量を4%以下とする。これは、例えば全炭素量が1.5%で遊離黒鉛量が0.7%の場合には、頑火輝石と硫化マンガンを合計で最大3.3%まで含有させられることを意味している。原料粉末の配合、成形および焼結は粉末冶金の通常の方法によるが、焼結雰囲気は還元性または浸炭性の雰囲気が好ましく、焼結温度は高過ぎると遊離黒鉛が消失するので、980〜1100℃程度が適している。
【0011】
(実施例1) 先ず原料粉として、炭素は天然黒鉛粉,リンはFe−20%P合金粉,銅と錫は銅粉とCu−10%Sn合金粉,鉄は還元鉄粉,それに粉末潤滑剤としてステアリン酸亜鉛を用意した。次にこれらを各所定割合に配合して、全体組成で炭素は一律2%,リンは0.01%,0.03%,0.1%,0.3%の4種類に固定し、銅は2〜30%,錫は0.1〜2%まで変化させた混合粉(還元鉄粉残部)を作製した。各混合粉とも、ステアリン酸亜鉛の添加量は一律0.75%である。
【0012】
次に各混合粉それぞれを成形圧力490MPaで所定の形状に成形後、還元性ガス雰囲気中1000℃で60分間焼結して長さ40mm,外径12mm,内径7.4mmの円筒状試料多数を作製した。各試料(焼結材)の合金組織は、基地が密なパーライト組織で、赤味を帯びたCu−Sn系合金相,それに銅の含有量の多い試料では銅相が点在している。また、リンの含有量が多い試料では白味を帯びたFe−P−C系合金相(ステダイト相)が数多く点在しているが、リンの含有量が少ない試料では、それが減少している。ちなみに、リンの含有量が多い(0.3%)試料と少ない(0.03%)試料の遊離黒鉛量を各試料の切り粉を酸に溶解した不溶解残滓から測定し比較したところ、後者の試料では遊離黒鉛が約0.2〜0.3%多くなっている。
【0013】
次に、かくして得られた各試料について、被削性および耐摩耗性を試験した。被削性は試料の内径にリーマ加工を施して軸方向に10mm切削するまでの所要時間を求め、そのデータを、先発明材に相当する銅…5%,リン…0.3%含有の試料の場合を100とする指数に換算して比較した。従って指数が小さいほど削り易く加工時間が短くて済むことを、即ち被削性が良いことを意味している。また耐摩耗性は、各試料をバルブガイドの所定の形状・寸法に仕上げてエンジン模擬試験装置に装着し、加熱した状態でラジアル荷重を負荷したバルブと所定の時間往復摺動させ、試験の前後における試料の内径寸法差を求めて摩耗量とし、これを比較した。
【0014】
図面はこれらのデータをリン含有量別に整理してグラフ化したもので、図1は銅の含有量と被削性との関係を,図2は銅の含有量と耐摩耗性との関係を示している。このグラフから、先ずリンの影響については、リンの含有量が0.01〜0.3%の範囲では銅の含有量に拘らず被削性はリンが少ないほど,耐摩耗性はリンが多いほど優っていることが分る。次に銅の影響については、被削性は銅の含有量が約5%を過ぎる頃から急激な向上を示し、10%以上でも緩慢にはなるが、含有量30%まで終始向上を続けている。
【0015】
一方、耐摩耗性は銅含有量が約6〜20%の範囲では摩耗量が一様に少なく、優れた耐摩耗性を示しているが、その前後では摩耗量が多くなる。即ち銅の含有量が20%を越える頃からリンの含有量に拘らず耐摩耗性が急激に劣化し、また銅の含有量6%未満でも、リンが少ないほど耐摩耗性の劣化が著しい。ちなみにこの発明の範囲内でも、リンの抑制の結果先発明材に比べれば摩耗量が若干多くなるが、それでも例えば銅…6%,リン…0.01%の試料の摩耗量56μmは実用上許容し得る範囲にあり、且つ、同一試験条件でのねずみ鋳鉄バルブガイドの摩耗量170μmに比べても遥かに優っている。
【0016】
(実施例2) 原料粉は実施例1で用意したものを用い、天然黒鉛粉を2%,銅粉5.5%,Cu−10%Sn合金粉5%,Fe−20%P合金粉を0.15%,頑火輝石粉末0.8%と硫化マンガン粉末0.2%,および残部還元鉄粉にステアリン酸亜鉛を0.75%添加した混合粉を作製した。その全体組成はC…2%,Cu…10%,Sn…0.5%,P…0.03%(ほかに頑火輝石,硫化マンガン,および鉄残部)である。また比較のために、上記の配合から頑火輝石粉末と硫化マンガン粉末を省いた混合粉を作製した。
【0017】
次に、この2種類の混合粉について実施例1の場合と同じ条件で成形と焼結を行ない、得られた試料の被削性と耐摩耗性を試験した。その結果は、頑火輝石と硫化マンガンを含有する前者のデータは被削性指数…17,摩耗量…35μmであったのに対して、後者の場合は被削性指数…19,摩耗量…38μmであり、被削性,耐摩耗性ともに前者の方が良くなっている。両試料の組織状態を見ると後者の場合には基地中に潤滑性物質として遊離黒鉛,頑火輝石,硫化マンガンの三者が分散しているのに対して、後者では遊離黒鉛のみであり、この差が特性の違いを生じさせたものと考えられる。
【0018】
【発明の効果】
この発明に係るバルブガイド材は、従来材と大差ない耐摩耗性を保ちながら、従来材に比べて被削性が4倍程度に向上している。従って、エンジンの組み立て工程における作業条件,使用する工作機械との相性その他種々の関係からバルブガイド材の被削性が特に重視される場合、この発明は極めて有益なものである。
【図面の簡単な説明】
【図1】試料の銅含有量と被削性との関係を示すグラフである。
【図2】試料の銅含有量と耐摩耗性との関係を示すグラフである。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to wear resistance and machinability suitable for a valve guide of an internal combustion engine, in particular, the latter excellent sintered alloy.
[0002]
[Prior art]
Special cast irons such as gray cast iron and boron cast iron are sometimes used as valve guides for internal combustion engines, but in the case of cast iron, there are problems with work environment, mass productivity, price, etc., so replacement with sintered alloy Has been promoted. However, general sintered alloys have inadequate wear resistance. On the other hand, if the material is strengthened by adding alloy components, the wear resistance will reach a usable level. (Machinability) decreases. Since the valve guide is assembled to the cylinder head of the engine and the inner diameter is finished by reaming, if the valve guide material is poor in machinability, the time required for machining will be longer and the wear of the tool will be accelerated, resulting in increased production efficiency Be inhibited.
[0003]
[Problems to be solved by the invention]
Previously, the valve guide material developed by the present applicant in order to achieve both wear resistance and machinability (see Japanese Examined Patent Publication No. 55-34858) has a composition of C ... 1.5-4% by mass, Cu ... Sintered alloy of 1-5%, Sn ... 0.1-2%, P ... 0.1-0.3% and Fe balance, but wear resistance is superior to boron cast iron and machinability Although it is harder to cut than cast iron, it is superior to conventional sintered materials and has been widely used by automobile manufacturers. However, in recent years, due to changes in the environment surrounding this field, it has become more necessary than ever to improve productivity as well as improve quality, and a material with better machinability has been demanded for the valve guide material.
[0004]
[Means for Solving the Problems]
Therefore, when the improvement was attempted while based on the valve guide material according to the above-mentioned prior invention, the result that the machinability is significantly improved by increasing the copper content and reducing the phosphorus content together. Obtained. The present invention has been made based on such findings, and one of them is a copper content of 6 to 20% (mass%; hereinafter,% in this specification is mass% unless otherwise specified). And the phosphorus content within the range of 0.01 to less than 0.1%, and the other is to increase the amount of copper and phosphorus. In addition to the suppression of the above, the main point is that less than 4% in total is added of enstatite (MgSiO 3 ) and manganese sulfide (MnS).
[0005]
That is, the valve guide material according to the first invention has a composition of C ... 1.5-4%, Cu ... 6-20%, Sn ... 0.1-2%, P ... 0.01-0.1%, A sintered alloy of the balance of Fe and Fe, the metal structure of which is based on pearlite in a copper or copper tin-based alloy phase (this “or” also includes copper and copper-tin based ...); and free graphite Is distributed. Further, according to the second invention, the alloy composition is C ... 1.5-4%, Cu ... 6-20%, Sn ... 0.1-2%, P ... 0.01-0.1%, A total of less than 4% of pyroxene and manganese sulfide, and a remaining Fe alloy, and a structure in which copper or copper-tin alloy phase is dispersed in a base mainly composed of pearlite; free graphite, pyroxene and manganese sulfide are dispersed. Presented. In addition, in the base of these alloys, the production | generation of a Fe-PC system alloy phase is recognized according to phosphorus content. Therefore, such a case is also included in the above-mentioned base mainly composed of perlite.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
In the sintered alloy according to the present invention, carbon is added in the form of graphite powder, and a part (generally 0.8 to 1%) is solid-solved in iron to strengthen the base, or is bonded to phosphorus and relatively A hard particulate Fe-PC-based alloy phase (steadite phase) is generated and dispersed, and the remainder remains in the state of free carbon (graphite) to act as a solid lubricant. The amount of free graphite is about 0.3% when the carbon content (total carbon content) is 1.5%, and about 1.7% when the total carbon content is 3%. When it is less than%, the wear of the valve guide due to sliding with the valve increases. For this reason, the lower limit of the carbon content is 1.5%. On the other hand, if the amount is excessive, the strength of the base material is reduced and segregation or fluidity inhibition is caused during powder molding. Therefore, the upper limit of the carbon content is 4%.
[0007]
Copper and tin are usually added in the form of a copper-tin alloy powder having a tin content of about 5 to 20%, and with a required amount of copper powder added thereto. Both promote the progress of sintering and strengthen the base by solid solution, while part remains as a Cu-Sn alloy phase to improve the sliding characteristics and machinability. At this time, when the copper phase is dispersed together with the Cu—Sn alloy phase, this action is further strengthened, but the effect becomes remarkable when the copper content is 6% or more. However, if it exceeds 20%, the wear resistance deteriorates, so the appropriate range of the copper content is 6 to 20%. On the other hand, the above-mentioned action and effect due to the presence of tin occurs when the content is 0.1% or more, but if it exceeds 2%, the base material becomes brittle, so the tin content is suitably 0.1-2%. Range.
[0008]
Phosphorus is added in the form of Fe-P alloy powder or Cu-P alloy powder. Depending on the phosphorus content, the steadite phase produced increases, the rigidity of the substrate increases and the wear resistance improves, but the machinability decreases. Therefore, since the object of the present invention is to improve machinability as compared with the prior invention material, the phosphorus content is less than the prior invention material and less than 0.1% (however, 0.01%). Increases free graphite and improves machinability. Although the wear resistance decreases as the amount of phosphorus decreases, the wear amount is still 1/3 or less compared to gray cast iron, which is far superior.
[0009]
The pyroclasticite in the second invention is a magnesium metasilicate mineral, which is orthorhombic and cleaved, and acts as a solid lubricant like free graphite and further improves machinability. The same applies to manganese sulfide, but it also has the effect of improving the wear resistance of the substrate. Although both are added as powders, the use of campsite and manganese sulfide (preferably 20 to 30% of campsite) can further improve the wear resistance and machinability while maintaining the balance.
[0010]
Although these solid lubricants including free graphite are dispersed in the matrix and exhibit a solid lubricating effect, the material strength decreases as the content (dispersion) increases. In the case of the present invention, if the content exceeds 4%, the material strength necessary for the valve guide material cannot be maintained, so the total amount of the solid lubricant (free graphite, pyroxene and manganese sulfide) is made 4% or less. This means that, for example, when the total carbon content is 1.5% and the free graphite content is 0.7%, the pyroxene and manganese sulfide can be incorporated up to a maximum of 3.3%. The mixing, forming, and sintering of the raw material powder are in accordance with the usual method of powder metallurgy, but the sintering atmosphere is preferably a reducing or carburizing atmosphere. If the sintering temperature is too high, free graphite disappears, so 980-1100 A temperature of about ° C is suitable.
[0011]
(Example 1) First, as raw material powder, carbon is natural graphite powder, phosphorus is Fe-20% P alloy powder, copper and tin are copper powder and Cu-10% Sn alloy powder, iron is reduced iron powder, and powder lubrication. Zinc stearate was prepared as an agent. Next, these are blended in predetermined proportions, and the total composition is fixed to 4 types of carbon: 2% uniformly, phosphorus: 0.01%, 0.03%, 0.1%, 0.3%. Was mixed powder (reduced iron powder balance) with 2-30% and tin 0.1-2%. In each mixed powder, the amount of zinc stearate added is uniformly 0.75%.
[0012]
Next, each mixed powder is molded into a predetermined shape at a molding pressure of 490 MPa, and sintered in a reducing gas atmosphere at 1000 ° C. for 60 minutes to obtain a large number of cylindrical samples having a length of 40 mm, an outer diameter of 12 mm, and an inner diameter of 7.4 mm. Produced. The alloy structure of each sample (sintered material) is a pearlite structure having a dense base, and a reddish Cu-Sn alloy phase and a sample having a high copper content are dotted with a copper phase. In addition, a sample with a high phosphorus content is dotted with a lot of white Fe-PC-based alloy phases (steadite phases), but a sample with a low phosphorus content has a decrease in it. Yes. By the way, when the amount of free graphite of the sample with high phosphorus content (0.3%) and the sample with low content (0.03%) was measured from the insoluble residue obtained by dissolving the chips of each sample in acid, the latter was compared. In this sample, free graphite is increased by about 0.2 to 0.3%.
[0013]
Next, the machinability and wear resistance of each sample thus obtained were tested. Machinability is a sample containing 5% copper and 0.3% phosphorous corresponding to the material of the prior invention. The time required for reaming the inner diameter of the sample and cutting 10 mm in the axial direction is obtained. Comparison was made in terms of an index of 100. Therefore, the smaller the index is, the easier it is to cut and the shorter the processing time, that is, the better the machinability. In addition, the wear resistance is determined by finishing each sample to the specified shape and dimensions of the valve guide and mounting it on the engine simulation test device, and sliding it back and forth for a specified time with a valve loaded with a radial load in the heated state. The difference in the inner diameter of the sample was determined as the amount of wear and compared.
[0014]
The drawing is a graph of these data organized by phosphorus content. Fig. 1 shows the relationship between copper content and machinability, and Fig. 2 shows the relationship between copper content and wear resistance. Show. From this graph, first, regarding the influence of phosphorus, when the phosphorus content is in the range of 0.01 to 0.3%, the machinability is less and the wear resistance is more phosphorus regardless of the copper content. You can see that it is superior. Next, with regard to the influence of copper, machinability shows a rapid improvement from the time when the copper content exceeds about 5%, and it is slow even at 10% or more, but continues to improve to a content of 30%. Yes.
[0015]
On the other hand, the wear resistance is uniformly small in the range of about 6 to 20% of copper, and shows excellent wear resistance, but the wear amount increases before and after that. That is, the wear resistance deteriorates rapidly regardless of the phosphorus content from the time when the copper content exceeds 20%, and even if the copper content is less than 6%, the wear resistance deteriorates more markedly with less phosphorus. By the way, even within the scope of the present invention, the amount of wear is slightly increased as a result of the suppression of phosphorus as compared with the material of the prior invention, but for example, the wear amount of 56 μm of copper ... 6%, phosphorus ... 0.01% is practically acceptable. It is in a range that is possible, and is far superior to the wear amount of 170 μm of gray cast iron valve guides under the same test conditions.
[0016]
(Example 2) The raw material powder prepared in Example 1 was used, natural graphite powder 2%, copper powder 5.5%, Cu-10% Sn alloy powder 5%, Fe-20% P alloy powder. A mixed powder in which 0.15%, pyroxene pyroxene powder 0.8%, manganese sulfide powder 0.2%, and the balance reduced iron powder with 0.75% zinc stearate was prepared. Its total composition is C ... 2%, Cu ... 10%, Sn ... 0.5%, P ... 0.03% (along with pyroclastic pyroxene, manganese sulfide, and iron balance). For comparison, a mixed powder was prepared by omitting the pyroclastic powder and manganese sulfide powder from the above composition.
[0017]
Next, these two types of mixed powders were molded and sintered under the same conditions as in Example 1, and the machinability and wear resistance of the obtained samples were tested. As a result, the former data containing pyroxene and manganese sulfide had a machinability index of 17 and a wear amount of 35 μm, whereas in the latter case, the machinability index of 19 and the wear amount of 38 μm. The former is better in both machinability and wear resistance. Looking at the structure of both samples, in the latter case, free graphite, pyroxene and manganese sulfide are dispersed as lubricants in the base, whereas in the latter, only free graphite is present. The difference is considered to have caused the difference in characteristics.
[0018]
【The invention's effect】
The valve guide material according to the present invention has improved machinability by about 4 times compared to the conventional material while maintaining the wear resistance which is not much different from the conventional material. Therefore, the present invention is extremely useful when the workability of the valve guide material is particularly emphasized from the working conditions in the assembly process of the engine, compatibility with the machine tool to be used, and various other relationships.
[Brief description of the drawings]
FIG. 1 is a graph showing the relationship between the copper content and machinability of a sample.
FIG. 2 is a graph showing the relationship between copper content and wear resistance of a sample.

Claims (3)

合金組成が質量比でC…1.5〜4%,Cu…6〜20%,Sn…0.1〜2%,P…0.01〜0.1%未満,およびFe…残部で、パーライトを主体とする基地中に銅または銅錫系合金相;および遊離黒鉛が分散した組織を呈することを特徴とする焼結バルブガイド材。The alloy composition is C ... 1.5-4% by mass, Cu ... 6-20%, Sn ... 0.1-2%, P ... 0.01-less than 0.1%, and Fe ... remainder, pearlite A sintered valve guide material characterized by exhibiting a structure in which a copper or copper-tin alloy phase; and free graphite are dispersed in a base mainly composed of. 合金組成が質量比でC…1.5〜4%,Cu…6〜20%,Sn…0.1〜2%,P…0.01〜0.1%未満,頑火輝石と硫化マンガンを合計4%未満,およびFe…残部で、パーライトを主体とする基地中に銅または銅錫系合金相;遊離黒鉛,頑火輝石および硫化マンガンが分散した組織を呈することを特徴とする焼結バルブガイド材。Alloy composition by mass ratio: C ... 1.5-4%, Cu ... 6-20%, Sn ... 0.1-2%, P ... 0.01-less than 0.1%, Sum of pyroxene and manganese sulfide Sintered valve guide material characterized by exhibiting a structure in which copper or copper-tin alloy phase; free graphite, pyroxene and manganese sulfide are dispersed in a base mainly composed of pearlite, with less than 4%, and Fe ... balance . 基地中に分散する遊離黒鉛,頑火輝石および硫化マンガンの量が合計4%以下である、請求項2に記載の焼結バルブガイド材。The sintered valve guide material according to claim 2, wherein a total amount of free graphite, pyroxene and manganese sulfide dispersed in the base is 4% or less.
JP2000262321A 2000-08-31 2000-08-31 Valve guide material Expired - Lifetime JP4323071B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2000262321A JP4323071B2 (en) 2000-08-31 2000-08-31 Valve guide material
GB0120946A GB2368348B (en) 2000-08-31 2001-08-29 Material for valve guides
KR10-2001-0052900A KR100420264B1 (en) 2000-08-31 2001-08-30 Material for valve guides
US09/943,617 US6616726B2 (en) 2000-08-31 2001-08-30 Material for valve guides
FR0111302A FR2813317B1 (en) 2000-08-31 2001-08-31 FRITTE ALLOY MATERIAL FOR VALVE GUIDES
DE10142645A DE10142645B4 (en) 2000-08-31 2001-08-31 sintered part

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000262321A JP4323071B2 (en) 2000-08-31 2000-08-31 Valve guide material

Publications (2)

Publication Number Publication Date
JP2002069599A JP2002069599A (en) 2002-03-08
JP4323071B2 true JP4323071B2 (en) 2009-09-02

Family

ID=18750018

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000262321A Expired - Lifetime JP4323071B2 (en) 2000-08-31 2000-08-31 Valve guide material

Country Status (1)

Country Link
JP (1) JP4323071B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5310074B2 (en) * 2009-02-20 2013-10-09 Jfeスチール株式会社 Iron-based powder mixture for high-strength sintered parts of automobiles
US8876935B2 (en) * 2010-09-30 2014-11-04 Hitachi Powdered Metals Co., Ltd. Sintered material for valve guides and production method therefor
MX2020002256A (en) * 2017-10-30 2020-07-13 Tpr Co Ltd Iron-based sintered alloy valve guide and method for manufacturing same.

Also Published As

Publication number Publication date
JP2002069599A (en) 2002-03-08

Similar Documents

Publication Publication Date Title
JP5351022B2 (en) Powder metallurgy mixtures, articles, sintered articles, and valve seat inserts
JP6112473B2 (en) Iron-based sintered sliding member
CN107008907B (en) Iron-based sintered sliding member and method for producing same
US4021205A (en) Sintered powdered ferrous alloy article and process for producing the alloy article
JP2013508540A (en) Ferrous sintered powder metal for wear resistant applications
JP6194613B2 (en) Iron-based sintered alloy for sliding member and manufacturing method thereof
JP2713658B2 (en) Sintered wear-resistant sliding member
US6616726B2 (en) Material for valve guides
JP4193969B2 (en) Valve guide for internal combustion engine made of iron-based sintered alloy
JPH0453944B2 (en)
JP4323069B2 (en) Valve guide material
JP2003505595A (en) Sintered steel
JP4323070B2 (en) Valve guide material
JP4323071B2 (en) Valve guide material
JP2680927B2 (en) Iron-based sintered sliding member
JP3827033B2 (en) Wear-resistant sintered alloy and method for producing the same
JP6519955B2 (en) Iron-based sintered sliding member and method of manufacturing the same
JP6384687B2 (en) Manufacturing method of iron-based sintered sliding member
JP6341455B2 (en) Manufacturing method of iron-based sintered sliding member
JPH0277552A (en) Production of wear-resistant ferrous sintered alloy
JP2010144238A (en) Wear-resistant sintered alloy and method for producing the same
JPH0121222B2 (en)
JP3336949B2 (en) Synchronizer ring made of iron-based sintered alloy
JPH046786B2 (en)
JP2000064003A (en) Wear resistant sintered alloy and its production

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070511

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090512

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090604

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4323071

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120612

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120612

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130612

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term