JP4323069B2 - Valve guide material - Google Patents
Valve guide material Download PDFInfo
- Publication number
- JP4323069B2 JP4323069B2 JP2000262319A JP2000262319A JP4323069B2 JP 4323069 B2 JP4323069 B2 JP 4323069B2 JP 2000262319 A JP2000262319 A JP 2000262319A JP 2000262319 A JP2000262319 A JP 2000262319A JP 4323069 B2 JP4323069 B2 JP 4323069B2
- Authority
- JP
- Japan
- Prior art keywords
- machinability
- powder
- valve guide
- alloy
- guide material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Landscapes
- Powder Metallurgy (AREA)
Description
【0001】
【発明の属する技術分野】
この発明は内燃機関のバルブガイドに好適な耐摩耗性および被削性,特に後者の優れた焼結合金に関するものである。
【0002】
【従来の技術】
内燃機関のバルブガイドには、ねずみ鋳鉄やボロン鋳鉄などの特殊鋳鉄が用いられることもあるが、鋳鉄の場合は作業環境,量産性,価格面などに問題があるため、焼結合金での代替が進められてきた。しかし一般的な焼結合金では耐摩耗性が不充分であり、一方、合金成分を添加して材質を強化すれば耐摩耗性は使用可能な水準に達するが、その反面多くの場合被削性(切削加工性)が低下する。バルブガイドはエンジンのシリンダーヘッドに組み付け後、リーマ加工によって内径仕上げを施すので、バルブガイド材の被削性が悪いと加工の所要時間が長くなったり、工具の摩耗が早まったりして生産効率が阻害される。
【0003】
【発明が解決しようとする課題】
以前、耐摩耗性と被削性の両立を企図して本出願人が開発したバルブガイド材(特公昭55−34858号参照)は、組成が質量比でC…1.5〜4%,Cu…1〜5%,Sn…0.1〜2%,P…0.1〜0.3%未満およびFe残部の焼結合金であるが、耐摩耗性はボロン鋳鉄より優れ、被削性も鋳鉄材に比べれば削り難いものの従来の焼結材よりは優れているため、自動車メーカー各社に広く用いられてきた。しかるに近年、この分野を取り巻く環境の変化によって品質の向上に併せて生産性向上の必要が従来以上に高まり、バルブガイド材については被削性のより優れた材料が求められるようになった。
【0004】
【課題を解決するための手段】
そこで、上述の先発明に係るバルブガイド材を基礎としつつその改良を図ったところ、リンの含有量を少なくすると焼結により析出するFe−P−C合金相が減少し、同時に遊離黒鉛が増加して被削性を向上させるという結果が得られた。この発明はこの様な知見に基づいてなされたもので、その一つはリンの含有量を0.01〜0.1%未満(質量%;以下、この明細書中の%は、特記しない限り全て質量%である。)の範囲に抑えたことを骨子とし、他の一つはリンの抑制に併せて、頑火輝石( enstatite;MgSiO3 )と硫化マンガン(MnS)とを合計で4%未満添加したことを骨子とするものである。
【0005】
即ち第一の発明に係るバルブガイド材は組成がC…1.5〜4%,Cu…1〜5%,Sn…0.1〜2%,P…0.01〜0.1%未満およびFe残部の焼結合金で、その金属組織は、パーライトを主体とする基地中に遊離黒鉛が分散した状態を呈している。第二の発明に係るものは、合金の組成がC…1.5〜4%,Cu…1〜5%,Sn…0.1〜2%,P…0.01〜0.1%未満,頑火輝石と硫化マンガンとの合計で4%未満およびFe残部で、パーライトを主体とする基地中に遊離黒鉛,頑火輝石および硫化マンガンが分散した組織を呈している。なおこれらの合金の基地中には、リンの含有量に応じてFe−P−C系合金相の生成が、また、銅や錫の含有量が多いものではCu−Sn系合金相の生成が認められる。従って、上述のパーライトを主体とする基地には、この様な場合も包含されている。
【0006】
【発明の実施の形態】
この発明に係る焼結合金において、炭素は黒鉛粉の形で添加され、一部(概ね0.8〜1%)は鉄に固溶して基地を強化したり、リンと結合して比較的硬質な粒子状のFe−P−C系合金相(ステダイト相)を生成して分散し、残りが遊離炭素(黒鉛)の状態で残留して固体潤滑の作用をする。遊離黒鉛の量は、炭素の含有量(全炭素量)が1.5%の場合に約0.3%,全炭素量3%で約1.7%であるが、遊離黒鉛が0.3%より少ない場合にはバルブとの摺動によるバルブガイドの摩耗が大きくなる。このため、炭素の含有量は1.5%を下限とする。一方、過剰の場合は基材の強度が低下する上に、粉末成形時に偏析や流動性阻害などの原因となるため、炭素の含有量は4%を上限とする。
【0007】
銅と錫は、通常は錫の含有量が5〜20%程度の銅−錫合金粉の形で、またはそれに所要量の単味粉を追加した形で添加される。共に焼結の進行を速め、固溶して基地を強化する一方、一部がCu−Sn系合金相として残留して摺動特性や被削性を向上させる。この様な作用は含有量が銅…1%以上,錫…0.1%以上で生じるが、過剰に加えると焼結時の膨脹によって製品の寸法安定性が損われ、また錫の場合は基材の脆化を招くので、それぞれの含有量は銅…1〜5%,錫…0.1〜2%に限定される。
【0008】
リンはFe−P合金粉またはCu−P合金粉の形で添加される。リンの含有量に応じて、生成されるステダイト相が増し、基材の剛性が高まり耐摩耗性が向上するが、その反面被削性は低下する。従って、この発明の目的は先発明材よりも被削性を向上させることにあるので、リンの含有量を先発明材より少なく0.1%未満(但し0.01%〜)に抑制して遊離黒鉛を増加させ、被削性を向上させる。リンの減量に従い耐摩耗性は低下するが、それでも、ねずみ鋳鉄に比べれば遥かに優れた水準にある。
【0009】
第二の発明における頑火輝石はメタ珪酸マグネシウム鉱物で、斜方晶の粒子で劈開性があり、遊離黒鉛と同じく固体潤滑剤として作用すると共に被削性をより改善する。硫化マンガンも同様であるが、更に基材の耐摩耗性を向上させる作用がある。何れも粉末として添加されるが、頑火輝石と硫化マンガン(好ましくは頑火輝石の2〜3割)を混用すると、耐摩耗性と被削性をその均衡を保ちつつ、一層改善することができる。
【0010】
遊離黒鉛も含めこれらの固体潤滑剤は、基地中に分散して固体潤滑効果を示す反面、含有(分散)量の増加に従って材料強度を低下させる。そしてこの発明の場合は含有量が4%を超えるとバルブガイド材として必要な材料強度を保てなくなるので、固体潤滑剤(遊離黒鉛,頑火輝石および硫化マンガン)の総量を4%以下とする。これは、例えば全炭素量が1.5%で遊離黒鉛量が0.7%の場合には、頑火輝石と硫化マンガンを合計で最大3.3%まで含有させられることを意味している。原料粉末の配合、成形および焼結は粉末冶金の通常の方法によるが、焼結雰囲気は還元性または浸炭性の雰囲気が好ましく、焼結温度は高過ぎると遊離黒鉛が消失するので、980〜1100℃程度が適している。
【0011】
(実施例1) 先ず原料粉として、炭素は天然黒鉛粉,錫はCu−10%Sn合金粉,リンはFe−20%P合金粉,鉄は還元鉄粉,それに粉末潤滑剤としてステアリン酸亜鉛を用意した。次にこれらを各所定割合に配合して、全体組成で炭素は一律2%,銅は1%(従って錫は0.11%)と5%(錫は0.55%)の2種類に固定し、リンは0.01〜0.3%まで変化させた混合粉(還元鉄粉残部)を作製した。各混合粉とも、ステアリン酸亜鉛の添加量は一律0.75%である。
【0012】
次に各混合粉それぞれを成形圧力490MPaで所定の形状に成形後、還元性ガス雰囲気中1000℃で60分間焼結して長さ40mm,外径12mm,内径7.4mmの円筒状試料多数を作製した。各試料(焼結材)の合金組織は、基地が密なパーライト組織で、赤味を帯びたCu−Sn系合金粒子が点在している。そして、リンの含有量が多い試料では白味を帯びたFe−P−C系合金相(ステダイト相)が数多く点在しているが、リンの含有量が少ない試料ではそれが減少している。また、リンの含有量が多い(0.3%)試料と少ない(0.03%)試料の遊離黒鉛量を、各試料の切り粉を酸に溶解した不溶解残滓から測定し比較したところ、後者の試料では遊離黒鉛が約0.2〜0.3%多くなっている。
【0013】
次に、かくして得られた各試料について、被削性および耐摩耗性を試験した。被削性は試料の内径にリーマ加工を施して軸方向に10mm切削するまでの所要時間を求め、そのデータを、先発明材に相当する銅…5%,リン…0.3%含有の試料の場合を100とする指数に換算して比較した。従って指数が小さいほど削り易く加工時間が短くて済むことを、即ち被削性が良いことを意味している。また耐摩耗性は、各試料をバルブガイドの所定の形状・寸法に仕上げてエンジン模擬試験装置に装着し、加熱した状態でラジアル荷重を負荷したバルブと所定の時間往復摺動させ、試験の前後における試料の内径寸法差を求めて摩耗量とし、これを比較した。
【0014】
図面はこれらのデータを整理してグラフ化したもので、図1はリンの含有量と被削性との関係を,図2はリンの含有量と耐摩耗性との関係を示している。このグラフから先ず銅の影響については、銅の含有量1〜5%の範囲ではリンの含有量に拘らず、被削性,耐摩耗性ともに銅が多いほど優っていることが分る。次にリンの影響については、リンの含有量を0.3%から減量するにつれて被削性はほぼ直線的に向上し、その傾向は従来の下限である0.1%を切っても継続している。従って被削性向上のためにリンの含有量を0.1%未満に止めることには充分な意義が認められる。また耐摩耗性は、リンの抑制の結果先発明材に比べれば摩耗量が若干増加しているが、それでも例えば銅…1%,リン…0.05%の試料の摩耗量80μmは実用上許容し得る範囲にあり、且つ、同一試験条件でのねずみ鋳鉄バルブガイドの摩耗量170μmに比べても遥かに優っている。
【0015】
(実施例2) 原料粉は実施例1で用意したものを用い、天然黒鉛粉を2%,Cu−10%Sn合金粉を5%,Fe−20%P合金粉を0.25%,頑火輝石粉末0.8%と硫化マンガン粉末0.2%,および残部還元鉄粉にステアリン酸亜鉛を0.75%添加した混合粉を作製した。その全体組成はC…2%,Cu…4.5%,Sn…0.5%,P…0.05%(ほかに頑火輝石,硫化マンガン,および鉄残部)である。また、比較のために上記の配合から頑火輝石粉末と硫化マンガン粉末を省いた混合粉を作製した。
【0016】
次に、この2種類の混合粉について実施例1の場合と同じ条件で成形と焼結を行ない、得られた試料の被削性と耐摩耗性を試験した。その結果は、頑火輝石と硫化マンガンを含有する前者のデータは被削性指数…23,摩耗量…50μmであったのに対して、後者の場合は被削性指数…25,摩耗量…55μmであり、被削性,耐摩耗性ともに前者の方が良くなっている。両試料の組織状態を見ると前者の場合には基地中に潤滑性物質として遊離黒鉛,頑火輝石,硫化マンガンの三者が分散しているのに対して、後者では遊離黒鉛のみであり、この差が特性の違いを生じさせたものと考えられる。
【0017】
【発明の効果】
この発明に係るバルブガイド材は、従来と大差ない耐摩耗性を保ちながら従来以上の被削性を具えている。従ってエンジンの組み立て工程における作業条件,使用する工作機械との相性その他種々の関係からバルブガイド材の被削性が特に重視される場合、この発明は極めて有益なものである。
【図面の簡単な説明】
【図1】試料のリン含有量と被削性との関係を示すグラフである。
【図2】試料のリン含有量と耐摩耗性との関係を示すグラフである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to wear resistance and machinability suitable for a valve guide of an internal combustion engine, in particular, the latter excellent sintered alloy.
[0002]
[Prior art]
Special cast irons such as gray cast iron and boron cast iron are sometimes used as valve guides for internal combustion engines, but in the case of cast iron, there are problems with work environment, mass productivity, price, etc., so replacement with sintered alloy Has been promoted. However, general sintered alloys have inadequate wear resistance. On the other hand, if the material is strengthened by adding alloy components, the wear resistance will reach a usable level. (Machinability) decreases. Since the valve guide is assembled to the cylinder head of the engine and the inner diameter is finished by reaming, if the valve guide material is poor in machinability, the time required for machining will be increased and the wear of the tool will be accelerated, leading to increased production efficiency. Be inhibited.
[0003]
[Problems to be solved by the invention]
Previously, the valve guide material developed by the present applicant in order to achieve both wear resistance and machinability (see Japanese Examined Patent Publication No. 55-34858) has a composition of C ... 1.5-4% by mass, Cu ... Sintered alloy of 1-5%, Sn ... 0.1-2%, P ... 0.1-0.3% and Fe balance, but wear resistance is superior to boron cast iron and machinability Although it is harder to cut than cast iron, it is superior to conventional sintered materials and has been widely used by automobile manufacturers. However, in recent years, due to changes in the environment surrounding this field, it has become more necessary than ever to improve productivity as well as improve quality, and a material with better machinability has been demanded for the valve guide material.
[0004]
[Means for Solving the Problems]
Therefore, when the improvement was attempted while based on the valve guide material according to the above-mentioned prior invention, the Fe-PC alloy phase precipitated by sintering decreased when the phosphorus content was reduced, and at the same time the free graphite increased. As a result, the machinability was improved. This invention has been made based on such findings, and one of them has a phosphorus content of 0.01 to less than 0.1% (mass%; hereinafter,% in this specification is unless otherwise specified). (All are mass%.) The main point is to limit the range to less than 4%, and the other one is less than 4% in total with pyroxene (enstatite; MgSiO 3 ) and manganese sulfide (MnS) in conjunction with phosphorus suppression. The main point is that it has been added.
[0005]
That is, the valve guide material according to the first invention has a composition of C ... 1.5-4%, Cu ... 1-5%, Sn ... 0.1-2%, P ... 0.01-0.1% and It is a sintered alloy of the remainder of Fe, and its metal structure exhibits a state in which free graphite is dispersed in a matrix mainly composed of pearlite. According to the second invention, the alloy composition is C ... 1.5-4%, Cu ... 1-5%, Sn ... 0.1-2%, P ... 0.01-0.1%, A total of less than 4% of pyroxene and manganese sulfide and the balance of Fe exhibit a structure in which free graphite, pyroxene and manganese sulfide are dispersed in a base mainly composed of pearlite. In addition, in the bases of these alloys, the generation of Fe-PC-based alloy phases depending on the content of phosphorus, and the generation of Cu-Sn-based alloy phases in the case where the content of copper or tin is high Is recognized. Therefore, such a case is also included in the above-mentioned base mainly composed of perlite.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
In the sintered alloy according to the present invention, carbon is added in the form of graphite powder, and a part (generally 0.8 to 1%) is solid-solved in iron to strengthen the base, or is bonded to phosphorus and relatively A hard particulate Fe-PC-based alloy phase (steadite phase) is generated and dispersed, and the remainder remains in the state of free carbon (graphite) to act as a solid lubricant. The amount of free graphite is about 0.3% when the carbon content (total carbon content) is 1.5%, and about 1.7% when the total carbon content is 3%. When it is less than%, the wear of the valve guide due to sliding with the valve increases. For this reason, the lower limit of the carbon content is 1.5%. On the other hand, if the amount is excessive, the strength of the base material is reduced and segregation or fluidity inhibition is caused during powder molding. Therefore, the upper limit of the carbon content is 4%.
[0007]
Copper and tin are usually added in the form of copper-tin alloy powder having a tin content of about 5 to 20%, or in the form of adding a necessary amount of simple powder. Both accelerate the progress of sintering and strengthen the base by solid solution, while part remains as a Cu-Sn alloy phase to improve sliding characteristics and machinability. Such an effect occurs when the content of copper is 1% or more and tin is 0.1% or more. However, if added in excess, the dimensional stability of the product is impaired due to expansion during sintering. Since it causes embrittlement of the material, the respective contents are limited to copper ... 1 to 5% and tin ... 0.1 to 2%.
[0008]
Phosphorus is added in the form of Fe-P alloy powder or Cu-P alloy powder. Depending on the phosphorus content, the steadite phase produced increases, the rigidity of the substrate increases and the wear resistance improves, but the machinability decreases. Therefore, since the object of the present invention is to improve machinability as compared with the prior invention material, the phosphorus content is less than the prior invention material and less than 0.1% (however, 0.01%). Increases free graphite and improves machinability. As the amount of phosphorus decreases, wear resistance decreases, but it is still far superior to gray cast iron.
[0009]
The pyroclasticite in the second invention is a magnesium metasilicate mineral, which is orthorhombic and cleaved, and acts as a solid lubricant like free graphite and further improves machinability. The same applies to manganese sulfide, but it also has the effect of improving the wear resistance of the substrate. Although both are added as powders, the use of campsite and manganese sulfide (preferably 20 to 30% of campsite) can further improve the wear resistance and machinability while maintaining the balance.
[0010]
Although these solid lubricants including free graphite are dispersed in the matrix and exhibit a solid lubricating effect, the material strength decreases as the content (dispersion) increases. In the case of the present invention, if the content exceeds 4%, the material strength necessary for the valve guide material cannot be maintained, so the total amount of the solid lubricant (free graphite, pyroxene and manganese sulfide) is made 4% or less. This means that, for example, when the total carbon content is 1.5% and the free graphite content is 0.7%, the pyroxene and manganese sulfide can be incorporated up to a maximum of 3.3%. The mixing, forming, and sintering of the raw material powder are in accordance with the usual method of powder metallurgy, but the sintering atmosphere is preferably a reducing or carburizing atmosphere. If the sintering temperature is too high, free graphite disappears, so 980-1100 A temperature of about ° C is suitable.
[0011]
(Example 1) First, as raw material powder, carbon is natural graphite powder, tin is Cu-10% Sn alloy powder, phosphorus is Fe-20% P alloy powder, iron is reduced iron powder, and zinc stearate as a powder lubricant. Prepared. Next, these are blended in predetermined proportions, and the total composition is fixed at 2%, uniformly 2% for carbon and 1% for copper (thus 0.11% for tin) and 5% (0.55% for tin). And phosphorus produced the mixed powder (reduced iron powder remainder) which was changed to 0.01 to 0.3%. In each mixed powder, the amount of zinc stearate added is uniformly 0.75%.
[0012]
Next, each mixed powder is molded into a predetermined shape at a molding pressure of 490 MPa, and sintered in a reducing gas atmosphere at 1000 ° C. for 60 minutes to obtain a large number of cylindrical samples having a length of 40 mm, an outer diameter of 12 mm, and an inner diameter of 7.4 mm. Produced. The alloy structure of each sample (sintered material) is a pearlite structure with a dense base, and is dotted with reddish Cu-Sn alloy particles. In the sample having a high phosphorus content, many white-white Fe-PC-based alloy phases (steadite phases) are scattered, but in the sample having a low phosphorus content, it is decreased. . In addition, when the amount of free graphite of the sample having a large phosphorus content (0.3%) and the sample having a small amount (0.03%) was measured and compared from the insoluble residue obtained by dissolving the chips of each sample in an acid, In the latter sample, free graphite is increased by about 0.2 to 0.3%.
[0013]
Next, the machinability and wear resistance of each sample thus obtained were tested. Machinability is a sample containing 5% copper and 0.3% phosphorous corresponding to the material of the prior invention. The time required for reaming the inner diameter of the sample and cutting 10 mm in the axial direction is obtained. Comparison was made in terms of an index of 100. Therefore, the smaller the index is, the easier it is to cut and the shorter the processing time, that is, the better the machinability. In addition, the wear resistance is determined by finishing each sample to the specified shape and dimensions of the valve guide and mounting it on the engine simulation test device, and sliding it back and forth for a specified time with a valve loaded with a radial load in the heated state. The difference in the inner diameter of the sample was determined as the amount of wear and compared.
[0014]
The drawing is a graph of these data, FIG. 1 shows the relationship between phosphorus content and machinability, and FIG. 2 shows the relationship between phosphorus content and wear resistance. From this graph, it can be understood that the influence of copper is superior as the amount of copper increases in both machinability and wear resistance regardless of the phosphorus content in the copper content range of 1 to 5%. Next, with regard to the influence of phosphorus, as the phosphorus content is reduced from 0.3%, the machinability improves almost linearly, and this tendency continues even if the conventional lower limit of 0.1% is cut off. ing. Therefore, sufficient significance is recognized for stopping the phosphorus content below 0.1% in order to improve machinability. As for wear resistance, the amount of wear is slightly increased as a result of the suppression of phosphorus compared to the material of the previous invention. It is in a range that is possible, and is far superior to the wear amount of 170 μm of gray cast iron valve guides under the same test conditions.
[0015]
(Example 2) The raw material powder prepared in Example 1 is used, natural graphite powder is 2%, Cu-10% Sn alloy powder is 5%, Fe-20% P alloy powder is 0.25%, and fire-fighting A mixed powder was prepared by adding 0.8% pyroxene powder, 0.2% manganese sulfide powder, and 0.75% zinc stearate to the remaining reduced iron powder. Its total composition is C ... 2%, Cu ... 4.5%, Sn ... 0.5%, P ... 0.05% (in addition to pyrite, manganese sulfide, and iron balance). For comparison, a mixed powder was prepared by omitting the pyroclastic powder and manganese sulfide powder from the above composition.
[0016]
Next, these two types of mixed powders were molded and sintered under the same conditions as in Example 1, and the machinability and wear resistance of the obtained samples were tested. As a result, the former data containing pyroxene and manganese sulfide had a machinability index of 23 and a wear amount of 50 μm, whereas in the latter case, the machinability index of 25 and the wear amount of 55 μm. The former is better in both machinability and wear resistance. Looking at the structure of both samples, in the former case, free graphite, pyroxene and manganese sulfide are dispersed as lubricants in the base, whereas in the latter, only free graphite is present. The difference is considered to have caused the difference in characteristics.
[0017]
【The invention's effect】
The valve guide material according to the present invention has a machinability that is higher than that of the prior art while maintaining wear resistance that is not significantly different from that of the prior art. Therefore, the present invention is extremely useful when the workability of the valve guide material is particularly emphasized in view of working conditions in the assembly process of the engine, compatibility with the machine tool used, and various other relationships.
[Brief description of the drawings]
FIG. 1 is a graph showing the relationship between the phosphorus content of a sample and machinability.
FIG. 2 is a graph showing the relationship between the phosphorus content of a sample and the wear resistance.
Claims (3)
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000262319A JP4323069B2 (en) | 2000-08-31 | 2000-08-31 | Valve guide material |
GB0120946A GB2368348B (en) | 2000-08-31 | 2001-08-29 | Material for valve guides |
US09/943,617 US6616726B2 (en) | 2000-08-31 | 2001-08-30 | Material for valve guides |
KR10-2001-0052900A KR100420264B1 (en) | 2000-08-31 | 2001-08-30 | Material for valve guides |
FR0111302A FR2813317B1 (en) | 2000-08-31 | 2001-08-31 | FRITTE ALLOY MATERIAL FOR VALVE GUIDES |
DE10142645A DE10142645B4 (en) | 2000-08-31 | 2001-08-31 | sintered part |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000262319A JP4323069B2 (en) | 2000-08-31 | 2000-08-31 | Valve guide material |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002069597A JP2002069597A (en) | 2002-03-08 |
JP4323069B2 true JP4323069B2 (en) | 2009-09-02 |
Family
ID=18750016
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000262319A Expired - Lifetime JP4323069B2 (en) | 2000-08-31 | 2000-08-31 | Valve guide material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4323069B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2436463A2 (en) | 2010-09-30 | 2012-04-04 | Hitachi Powdered Metals Co., Ltd. | Sintered materials for valve guides and production methods therefor |
EP2444182A1 (en) | 2010-09-30 | 2012-04-25 | Hitachi Powdered Metals Co., Ltd. | Sintered material for valve guides and production method therefor |
EP2474637A1 (en) | 2010-09-30 | 2012-07-11 | Hitachi Powdered Metals Co., Ltd. | Sintered material for valve guides and production method therefor |
US12060628B2 (en) | 2018-02-23 | 2024-08-13 | Resonac Corporation | Sintered valve guide and method for producing same |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060032328A1 (en) | 2004-07-15 | 2006-02-16 | Katsunao Chikahata | Sintered valve guide and manufacturing method thereof |
JP5208647B2 (en) | 2008-09-29 | 2013-06-12 | 日立粉末冶金株式会社 | Manufacturing method of sintered valve guide |
JP5310074B2 (en) * | 2009-02-20 | 2013-10-09 | Jfeスチール株式会社 | Iron-based powder mixture for high-strength sintered parts of automobiles |
-
2000
- 2000-08-31 JP JP2000262319A patent/JP4323069B2/en not_active Expired - Lifetime
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2436463A2 (en) | 2010-09-30 | 2012-04-04 | Hitachi Powdered Metals Co., Ltd. | Sintered materials for valve guides and production methods therefor |
EP2444182A1 (en) | 2010-09-30 | 2012-04-25 | Hitachi Powdered Metals Co., Ltd. | Sintered material for valve guides and production method therefor |
EP2474637A1 (en) | 2010-09-30 | 2012-07-11 | Hitachi Powdered Metals Co., Ltd. | Sintered material for valve guides and production method therefor |
US8617288B2 (en) | 2010-09-30 | 2013-12-31 | Hitachi Powdered Metals Co., Ltd. | Sintered material for valve guides and production method therefor |
US8876935B2 (en) | 2010-09-30 | 2014-11-04 | Hitachi Powdered Metals Co., Ltd. | Sintered material for valve guides and production method therefor |
US12060628B2 (en) | 2018-02-23 | 2024-08-13 | Resonac Corporation | Sintered valve guide and method for producing same |
Also Published As
Publication number | Publication date |
---|---|
JP2002069597A (en) | 2002-03-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5858921B2 (en) | Ferrous sintered powder metal for wear resistant applications | |
US4021205A (en) | Sintered powdered ferrous alloy article and process for producing the alloy article | |
JP6112473B2 (en) | Iron-based sintered sliding member | |
JP2713658B2 (en) | Sintered wear-resistant sliding member | |
CN107008907B (en) | Iron-based sintered sliding member and method for producing same | |
US6616726B2 (en) | Material for valve guides | |
JPH0453944B2 (en) | ||
JP4193969B2 (en) | Valve guide for internal combustion engine made of iron-based sintered alloy | |
JP4323069B2 (en) | Valve guide material | |
JP2680927B2 (en) | Iron-based sintered sliding member | |
JP4323070B2 (en) | Valve guide material | |
JP4323071B2 (en) | Valve guide material | |
JP3827033B2 (en) | Wear-resistant sintered alloy and method for producing the same | |
JP6384687B2 (en) | Manufacturing method of iron-based sintered sliding member | |
JP3537126B2 (en) | Free-cutting iron-based sintered alloy and method for producing the same | |
JP2680926B2 (en) | Sintered metal part and manufacturing method thereof | |
JP6519955B2 (en) | Iron-based sintered sliding member and method of manufacturing the same | |
JP6341455B2 (en) | Manufacturing method of iron-based sintered sliding member | |
JPH0534412B2 (en) | ||
JPH0121222B2 (en) | ||
JP5358131B2 (en) | Wear-resistant sintered alloy and method for producing the same | |
JPH046786B2 (en) | ||
JP3336949B2 (en) | Synchronizer ring made of iron-based sintered alloy | |
JP3089139B2 (en) | Sintered material with excellent machinability | |
JPH0152463B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070511 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090428 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090512 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090604 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 4323069 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120612 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120612 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130612 Year of fee payment: 4 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
EXPY | Cancellation because of completion of term |