JPH0313546A - Ferrous sintered alloy for valve seat - Google Patents
Ferrous sintered alloy for valve seatInfo
- Publication number
- JPH0313546A JPH0313546A JP14717289A JP14717289A JPH0313546A JP H0313546 A JPH0313546 A JP H0313546A JP 14717289 A JP14717289 A JP 14717289A JP 14717289 A JP14717289 A JP 14717289A JP H0313546 A JPH0313546 A JP H0313546A
- Authority
- JP
- Japan
- Prior art keywords
- alloy
- valve seat
- valve
- weight ratio
- less
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910045601 alloy Inorganic materials 0.000 title claims abstract description 38
- 239000000956 alloy Substances 0.000 title claims abstract description 38
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 title abstract 3
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 14
- 229910000881 Cu alloy Inorganic materials 0.000 claims abstract description 9
- 229910000978 Pb alloy Inorganic materials 0.000 claims abstract description 9
- 229910052750 molybdenum Inorganic materials 0.000 claims abstract description 8
- 229910052720 vanadium Inorganic materials 0.000 claims abstract description 7
- 229910052745 lead Inorganic materials 0.000 claims abstract description 6
- 229910001128 Sn alloy Inorganic materials 0.000 claims abstract description 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 35
- 239000002245 particle Substances 0.000 claims description 29
- 229910052742 iron Inorganic materials 0.000 claims description 13
- 150000001247 metal acetylides Chemical class 0.000 claims description 8
- 229910001562 pearlite Inorganic materials 0.000 claims description 7
- 229910001566 austenite Inorganic materials 0.000 claims description 4
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims 1
- 229910052737 gold Inorganic materials 0.000 claims 1
- 239000010931 gold Substances 0.000 claims 1
- 239000000463 material Substances 0.000 abstract description 30
- 230000013011 mating Effects 0.000 abstract description 8
- 239000011159 matrix material Substances 0.000 abstract description 8
- 239000000203 mixture Substances 0.000 abstract description 8
- 230000008595 infiltration Effects 0.000 abstract description 7
- 238000001764 infiltration Methods 0.000 abstract description 7
- 229910017060 Fe Cr Inorganic materials 0.000 abstract description 6
- 229910002544 Fe-Cr Inorganic materials 0.000 abstract description 6
- UPHIPHFJVNKLMR-UHFFFAOYSA-N chromium iron Chemical compound [Cr].[Fe] UPHIPHFJVNKLMR-UHFFFAOYSA-N 0.000 abstract description 6
- 229910052799 carbon Inorganic materials 0.000 abstract description 2
- 230000000694 effects Effects 0.000 description 9
- 230000000052 comparative effect Effects 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- 239000000843 powder Substances 0.000 description 6
- 229910001309 Ferromolybdenum Inorganic materials 0.000 description 5
- 239000000945 filler Substances 0.000 description 4
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 238000005245 sintering Methods 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- 229910001020 Au alloy Inorganic materials 0.000 description 2
- 229910000604 Ferrochrome Inorganic materials 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- 239000003353 gold alloy Substances 0.000 description 2
- 238000005552 hardfacing Methods 0.000 description 2
- 230000001050 lubricating effect Effects 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910017112 Fe—C Inorganic materials 0.000 description 1
- 229910000756 V alloy Inorganic materials 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 229910000765 intermetallic Inorganic materials 0.000 description 1
- KSOKAHYVTMZFBJ-UHFFFAOYSA-N iron;methane Chemical group C.[Fe].[Fe].[Fe] KSOKAHYVTMZFBJ-UHFFFAOYSA-N 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229910001092 metal group alloy Inorganic materials 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000011812 mixed powder Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- XOOUIPVCVHRTMJ-UHFFFAOYSA-L zinc stearate Chemical compound [Zn+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O XOOUIPVCVHRTMJ-UHFFFAOYSA-L 0.000 description 1
Landscapes
- Powder Metallurgy (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は自動車内燃機関のバルブシート用鉄系焼結合金
に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an iron-based sintered alloy for valve seats of automobile internal combustion engines.
[従来の技術]
自動車エンジンの動弁系の断面図は第1図に示す通りで
あって、インテークバルブ7のフェース部16は、パル
プの上下運動によってバルブシート9と接触する。この
インテークバルブの作動温度は100〜400℃であり
、従来から作動温度での軟化抵抗が大で耐食性、疲労強
度と併せて高温強度の大きい5UH1,3,4,11が
使用されている。[Prior Art] A cross-sectional view of a valve train of an automobile engine is shown in FIG. 1, and the face portion 16 of the intake valve 7 comes into contact with the valve seat 9 due to the vertical movement of the pulp. The operating temperature of this intake valve is 100 to 400°C, and conventionally, 5UH1, 3, 4, and 11 have been used, which have high softening resistance at the operating temperature, corrosion resistance, fatigue strength, and high temperature strength.
最近、自動車エンジンにおいて、高出力、高回転化、排
出ガス浄化対策、あるいは燃費向上対策に対する改善要
求が一段と高まっている。このため、自動車エンジンに
おけるエンジンバルブ、バルブシートに対しては、従来
にも増して厳しい使用環境条件に耐えることが不可避と
なってきている。Recently, there has been an increasing demand for improvements in automobile engines, such as higher output, higher rotation speed, measures to purify exhaust gas, and measures to improve fuel efficiency. For this reason, it has become inevitable for engine valves and valve seats in automobile engines to withstand harsher usage environmental conditions than ever before.
かかる厳しい使用環境に対応するため、耐摩耗性に優れ
高温における硬さと高温腐食に対する抵抗の高いCo基
またはNi基の盛金合金を弁フエース部に溶着するハー
ドフェーシングが採用されてきた。しかし、このハード
フェーシングは高価な盛金を使用するため、高価であり
、そのためコトスダウンの要請からフェース部の盛金を
廃止したインテークバルブが使われることも多くなって
きた。In order to cope with such severe usage environments, hard facing has been adopted in which Co-based or Ni-based metal alloys, which have excellent wear resistance, high hardness at high temperatures, and high resistance to high-temperature corrosion, are welded to the valve face. However, this hard facing is expensive because it uses expensive metal fittings, and for this reason, intake valves that do not have metal metal fittings on the face are increasingly being used in order to reduce costs.
また、従来のバルブシート材料としては、Fe−C−C
o−Ni基材料、Fe−C基材料に耐摩耗性の向上を狙
ってフェロモリブデン(Fe−Mo)、フェロクロム(
Fe−Cr)等の金属間化合物またはFe−C−Cr−
Mo −V合金等を添加したものが使用されている(特
開昭56−154110号公報)。In addition, conventional valve seat materials include Fe-C-C
Ferromolybdenum (Fe-Mo) and ferrochrome (
Intermetallic compounds such as Fe-Cr) or Fe-C-Cr-
A material to which Mo-V alloy or the like is added is used (Japanese Patent Application Laid-Open No. 154110/1983).
[発明が解決しようとする課題]
本来、エンジンバルブ、バルブシート等においては、そ
れ自身の耐摩耗性の改善とともに、摺動する相手材に対
する損傷性が少ないことが要求される。然るに、盛金を
廃止したインテークバルブ(SUHI、3.4.11)
を使用し、Fe−C基材料にフェロモリブデンまたはフ
ェロクロムを添加したバルブシートと組み合わせた場合
、バルブフェースのみが摩耗するという問題が発生する
場合があった。[Problems to be Solved by the Invention] Essentially, engine valves, valve seats, etc. are required to have improved wear resistance and less damage to mating materials on which they slide. However, the intake valve that abolished the filler (SUHI, 3.4.11)
When using a valve seat in which ferromolybdenum or ferrochrome is added to an Fe-C base material, a problem may arise in which only the valve face wears.
このための対策として、特開昭60−224762号公
報では、Fe−0,5〜2.O%C−0,25〜4.0
%Cr−0,1〜0.6%Mo−0.05〜0.2%V
からなる組成であって、F e −Cr系合金の硬質粒
子を2〜20%の範囲で分散させたFe系焼結合金が提
案されている。しかし、この材料では潤滑成分であるp
bの溶浸がなく、基地強化および耐熱性向上のためのC
oが添加されていない、そのため、インテークバルブに
おける厳しい摺動条件では耐熱性、潤滑性が不十分とな
り、パルプおよびバルブシートでの摩耗の発生を完全に
防止することができない。As a countermeasure for this, Japanese Patent Laid-Open No. 60-224762 discloses Fe-0.5 to 2. O%C-0.25~4.0
%Cr-0.1-0.6%Mo-0.05-0.2%V
An Fe-based sintered alloy has been proposed, which has a composition consisting of 2 to 20% of hard particles of an Fe-Cr-based alloy dispersed therein. However, in this material, p, which is a lubricating component,
C for strengthening the base and improving heat resistance without infiltration of B
o is not added. Therefore, heat resistance and lubricity are insufficient under severe sliding conditions in the intake valve, and it is not possible to completely prevent wear on the pulp and valve seat.
また、特開昭60−251258号公報では、Fe−0
,5〜2.0%C−0,25〜4.0%Cr−0,1〜
0.6%Mo−0,05〜0.2%V 3〜15Ni
またはCoからなる組成であって、pb金合金たはSn
合金を溶浸するとともに、Fe−Cr系合金からなる硬
質粒子を5〜20%の範囲で分散させたFe系焼結合金
が提案されている。しかし、この材料ではCo含有量が
多く、基地が強化され耐熱性に優れるものの、酸化しに
くくなる欠点がある。そのため、インテークバルブシー
トに使用した場合の低温雰囲気時(シート温度が100
℃程度のとき)には、シート表面が酸化されず、凝着が
発生し、パルプおよびバルブシートの摩耗が発生するこ
とがある。Furthermore, in JP-A-60-251258, Fe-0
,5~2.0%C-0,25~4.0%Cr-0,1~
0.6%Mo-0.05~0.2%V 3~15Ni
or Co, with a pb gold alloy or Sn
An Fe-based sintered alloy has been proposed in which an alloy is infiltrated and hard particles made of an Fe-Cr-based alloy are dispersed in a range of 5 to 20%. However, although this material has a high Co content, strengthens the base, and has excellent heat resistance, it has the disadvantage of being difficult to oxidize. Therefore, when used as an intake valve seat in a low temperature atmosphere (seat temperature is 100
℃), the seat surface is not oxidized and adhesion occurs, which may cause wear of the pulp and valve seat.
本発明は盛会を使用したい5UH1,3,4,11製の
インテークバルブと、鉄系焼結合金製インテークバルブ
シートを組み合わせた場合における前記のごとき問題点
を解決すべくなされたものであって、盛金を廃止したし
たインテークバルブとの組み合わせにおいても、インテ
ークバルブおよびバルブシートの耐摩耗性を確保できる
バルブシート用焼結合金を提供することを目的とする。The present invention was made to solve the above-mentioned problems when combining an intake valve made of 5UH1, 3, 4, 11, which is desired to be used, with an intake valve seat made of iron-based sintered alloy. It is an object of the present invention to provide a sintered alloy for a valve seat that can ensure the wear resistance of the intake valve and the valve seat even when combined with an intake valve that does not require a metal filler.
[課題を解決するための手段]
本発明のバルブシート用焼結合金は第1発明として、a
i比率rc ;O、/16〜2.0 %、Co;1〜3
%未満、Cr;1.2〜3.、、Mo;0.06〜0.
40%、V;0.003〜0.100%を含有し、残部
実質的にFeからなり、Pb、Pb合金Cu合金または
Sn合金を5〜25%含浸させたバルブシート用鉄系焼
結合金であって、
前記含浸合金により含浸され重量比率でC;0゜5〜2
.0%、Co;1.0〜3.0%未満を含有し残部実質
的にFeからなり、オーステナイト組織とパーライト組
織の混合組織からなるFe−C−Co基地組織中に、重
量比率でc ;0.8〜2.0%、Cr;4〜18%、
Mo;0.2〜2%、■;0.1〜0.5%を含有し残
部がFeからなり、その内部に10μ鋼以下の析出した
Cr、 Mo、■の炭化物を含み、粒径40〜150μ
m、硬さHv300〜850の硬質粒子を重量比で3〜
20%の割合で分散したことを要旨とする。[Means for Solving the Problems] The sintered alloy for valve seats of the present invention has, as a first invention, a
i ratio rc; O, /16~2.0%, Co; 1~3
%, Cr; 1.2-3. ,, Mo; 0.06-0.
An iron-based sintered alloy for valve seats containing 40%, V: 0.003 to 0.100%, the remainder substantially consisting of Fe, and impregnated with 5 to 25% of Pb, Pb alloy, Cu alloy, or Sn alloy. impregnated with the impregnating alloy and having a weight ratio of C; 0°5 to 2
.. 0%, Co; contains less than 1.0 to 3.0%, the remainder substantially consists of Fe, and in the Fe-C-Co base structure consisting of a mixed structure of austenite structure and pearlite structure, c in weight ratio; 0.8-2.0%, Cr; 4-18%,
Contains Mo: 0.2 to 2%, ■: 0.1 to 0.5%, the balance is Fe, and contains precipitated carbides of Cr, Mo, and ■ below 10μ steel, and has a grain size of 40 ~150μ
m, hard particles with hardness Hv300-850 in weight ratio of 3-3
The gist is that it was distributed at a rate of 20%.
また、第2発明は重量比率でC;o 、46〜2゜0%
、Co;1〜3%未満、Cr;0.3〜5.0%を含有
し、残部実質的にFeからなり、Pb、Pb合金Cu合
金またはSn合金を5〜25%含浸させたバルブシート
用鉄系焼結合金であって、前記含浸合金により含浸され
重量比率でC:0゜5〜2.0%、Co;1.0〜3.
0%未満を含有し残部実質的にFeからなり、オーステ
ナイト組織とパーライト組織の混合組織からなるFe−
C−Co基地組織中に、重量比率でc ;0.8〜2.
0%、Cr;10〜25%を含有し残部がFeからなり
、その内部に10μm以下の析出したCr、Mo、■の
炭化物を含み、粒径40〜150μ肩、硬さHv300
〜850の硬質粒子を重量比で3〜20%の割合で分散
したことを要旨とする。In addition, the second invention has a weight ratio of C;o, 46 to 2°0%.
, Co: less than 1 to 3%, Cr: 0.3 to 5.0%, the remainder substantially consists of Fe, and the valve seat is impregnated with 5 to 25% of Pb, a Pb alloy, a Cu alloy, or a Sn alloy. A steel-based sintered alloy impregnated with the impregnating alloy and having a weight ratio of C: 0°5 to 2.0%, Co: 1.0 to 3.
Fe-
In the C-Co matrix structure, the weight ratio of c; 0.8 to 2.
0%, Cr: 10-25%, the balance is Fe, and contains precipitated carbides of Cr, Mo, and ■ of 10 μm or less inside, grain size 40-150 μm, hardness Hv300.
-850 hard particles are dispersed at a weight ratio of 3 to 20%.
[作用]
以下、本発明の作用について説明する。なお、以下の説
明において、合金元素の含有量は総て重量比率(%)に
て説明する。[Function] Hereinafter, the function of the present invention will be explained. In the following description, the contents of alloying elements are all expressed in terms of weight ratio (%).
まず、本発明のバルブシート鉄系焼結合金に使用する硬
質粒子を構成する各成分の範囲限定理由について説明す
る。First, the reason for limiting the range of each component constituting the hard particles used in the valve seat iron-based sintered alloy of the present invention will be explained.
本発明材に分散させる硬質粒子におけるCは、Fe、C
r、MO1■と反応して炭化物を形成して耐摩耗性を改
善することから有効であるが、0゜8%未満では炭化物
量が少ないことから上述の耐摩耗性改善効果が十分でな
く、一方2.0%を越えると炭化物量が過多となること
から0.8〜2゜0%とした。C in the hard particles dispersed in the material of the present invention is Fe, C
It is effective because it reacts with r, MO1■ to form carbides and improve wear resistance, but if it is less than 0°8%, the amount of carbides is small, so the above-mentioned effect of improving wear resistance is not sufficient. On the other hand, if it exceeds 2.0%, the amount of carbide becomes excessive, so it is set at 0.8 to 2.0%.
また、Cr、Mo、■はCと反応し炭化物を形成するこ
とから耐摩耗性を改善に有効であるが、C「は4%未満
、MOは0.2%未満、■は0.1%未満では、形成さ
れる炭化物量が少ないため上述の耐摩耗性改善効果が十
分でなく、一方Crは18%、Moは2.0%、■は0
.5%を越えると、形成される炭化物量が過多となり、
とりわけ■は硬質のVC炭化物を多く形成して摺動する
相手材(エンジンバルブ)に対する損傷性を増大するこ
とから、C「;4〜18%、Mo;0.2〜2.0%、
■;0.1〜0.5%とした。In addition, Cr, Mo, and ■ are effective in improving wear resistance because they react with C to form carbides, but C'' is less than 4%, MO is less than 0.2%, and ■ is 0.1%. If the amount is less than 1, the amount of carbide formed is small and the above-mentioned wear resistance improvement effect is not sufficient, while Cr is 18%, Mo is 2.0%, and ■ is 0.
.. If it exceeds 5%, the amount of carbide formed will be excessive,
In particular, ■ forms a large amount of hard VC carbide and increases the damage to the sliding mating material (engine valve).
■: 0.1 to 0.5%.
なお、第2発明においては、硬質粒子をFe−Cr −
C系としたので、Cr量を10〜25%とした。第2発
明では硬質粒子にMOおよび■を含有したいので、Cr
量が10%未満では炭化物量が少なく、また25%を越
えると、炭化物量が過多となり、相手材を摩耗させるた
めである。そのため、Cr量は10〜25%とした。In addition, in the second invention, the hard particles are Fe-Cr −
Since it was C-based, the Cr content was set to 10 to 25%. In the second invention, since it is desired to contain MO and ■ in the hard particles, Cr
This is because if the amount is less than 10%, the amount of carbide is small, and if it exceeds 25%, the amount of carbide is excessive, causing wear of the mating material. Therefore, the Cr amount was set to 10 to 25%.
次に、本発明材における硬質粒子のオーステナイト組織
とパーライト組織の混合組織からなる基地組織中への分
散量を重量比率で3〜20%とした理由については、硬
質粒子の分散量が3%未満では、硬質粒子量が少ないた
め耐摩耗性改善効果が十分でないからであり、一方硬質
粒子の分散量が20%を越えると、摺動する相手材(エ
ンジンバルブ)に対する損傷性を増大するからである。Next, the reason why the amount of hard particles dispersed in the matrix structure consisting of a mixed structure of austenite structure and pearlite structure in the present invention material was set at 3 to 20% by weight is that the amount of hard particles dispersed is less than 3%. This is because the amount of hard particles is small, so the wear resistance improvement effect is not sufficient, and on the other hand, if the amount of hard particles dispersed exceeds 20%, the damage to the sliding mating material (engine valve) increases. be.
よって硬質粒子の分散量は3〜20%とした。Therefore, the amount of hard particles dispersed was set to 3 to 20%.
また、硬質粒子の硬さをHv300〜850としたのは
、Hv300未満では硬質粒子としての耐摩耗性改善効
果が十分でないからであり、一方Hv850を越えると
硬質粒子が硬すぎて、摺動する相手材(エンジンバルブ
)に対する損傷性を増大するからである。In addition, the hardness of the hard particles is set to Hv300 to 850 because if the hardness is less than Hv300, the wear resistance improvement effect of the hard particles is not sufficient, whereas if it exceeds Hv850, the hard particles are too hard and may not slide. This is because damage to the mating material (engine valve) increases.
次に、本発明材におけるバルブシート用鉄系焼結合金の
基地組織を形成するために使用する基地組織用原料粉末
の成分の範囲限定理由について説明する。Next, the reason for limiting the range of components of the base structure raw material powder used to form the base structure of the iron-based sintered alloy for valve seats in the material of the present invention will be explained.
CはFeと反応してオースイナイト組織とパーライト組
織の混合組織からなる基地組織中に固溶して焼結反応を
促進させるので有効な成分であるが、0.5%未満では
上述の効果が十分でなく、一方2.0%を越えて添加す
るとセメンタイト組織が多量に析出して焼結体を脆化す
ることから05〜2.0%とした。C is an effective component because it reacts with Fe and dissolves in the matrix structure consisting of a mixed structure of ausinite structure and pearlite structure to promote the sintering reaction, but if it is less than 0.5%, the above effect is not sufficient. On the other hand, if it is added in excess of 2.0%, a large amount of cementite structure will precipitate and the sintered body will become brittle, so it is set at 05 to 2.0%.
また、Coは基地組織中に固溶して基地組織を強化する
とともに耐酸化性および耐熱性を改善するので有効であ
るが、インテークバルブの場合バルブシート温度が約1
00〜400℃と低いため、3%以上含有するとシート
表面の酸化が進まず、バルブフェースとの間に凝着が発
生することがあった。また、逆にCo含有量が1%未満
では耐熱性が不足するので、Co含有量は1.0〜3.
0%とした、 本発明において、Pb、Pb合金Cu合
金またはSn合金等の溶浸合金は、焼結処理時において
焼結体に溶浸されて、その潤滑作用により耐摩耗性を向
上するとともに、封孔作用によって被削性をも改善する
ことができることから有効であるが、5%未満ではその
改善効果が十分でなく、25%を越えると強度低下が著
しいことがらその溶浸型を5〜25%とした。In addition, Co is effective because it solid-solves in the base structure and strengthens the base structure and improves oxidation resistance and heat resistance, but in the case of intake valves, the valve seat temperature is approximately 1
Since the temperature is as low as 00 to 400°C, if the content exceeds 3%, the oxidation of the seat surface will not progress and adhesion may occur between the seat surface and the valve face. Conversely, if the Co content is less than 1%, the heat resistance will be insufficient, so the Co content should be 1.0 to 3.
In the present invention, an infiltration alloy such as Pb, Pb alloy Cu alloy, or Sn alloy is infiltrated into the sintered body during the sintering process, and its lubricating action improves wear resistance. , is effective because it can also improve machinability through the sealing effect, but if it is less than 5%, the improvement effect is not sufficient, and if it exceeds 25%, the strength decreases significantly, so the infiltration type is ~25%.
なお、溶浸合金としてCu合金を使用する場合において
は、Pb;20〜40%、残部Cuからなる、いわゆる
ゲルメット合金とすることが望ましい。In addition, when using a Cu alloy as an infiltration alloy, it is desirable to use a so-called gelmet alloy consisting of 20 to 40% Pb and the balance Cu.
次に、硬質粒子内に析出させる微細な炭化物の粒径を1
0μ以下としているのは、炭化物粒径が10μを越える
と摺動する相手材(エンジンバルブ)に対する損傷性を
増大するがらである。Next, the particle size of fine carbides to be precipitated within the hard particles was adjusted to 1
The reason why the carbide particle size is 0μ or less is that if the carbide particle size exceeds 10μ, damage to the sliding mating material (engine valve) increases.
[実施例]
本発明の実施例を比較例とともに説明し、本発明の効果
を明らかにする。[Example] Examples of the present invention will be explained together with comparative examples to clarify the effects of the present invention.
第1表および第2表供試材料として使用した本発明材料
および比較材料の基地成分の組成、含浸金属、硬質分子
の組成および添加量、焼結体の硬さおよび密度、相手材
(インテークバルブ)の材質をそれぞれ示したものであ
る。Tables 1 and 2 Compositions of base components, impregnated metals, compositions and amounts of hard molecules added, hardness and density of sintered bodies, and counterpart materials (intake valves) used as test materials. ) are shown for each material.
(以下余白)
256
オースイナイト組織とパーライト組織の混合組織からな
る基地組織中に分散させる硬質粒子原料粉末を第1表の
組成に調製して溶融した後、水噴霧法により、−100
メツシユの合金粉末を製造した。(Left below) 256 After preparing and melting the hard particle raw material powder to be dispersed in the matrix structure consisting of a mixed structure of ausinite structure and pearlite structure, it has a composition shown in Table 1, and then -100
A mesh alloy powder was produced.
次いで、第1表に示す各成分の基地組成用鉄粉にこの硬
質粒子原料粉末を第1表に示す配合割合で添加し、さら
に黒鉛粉末、ステアリン酸亜鉛を添加して圧粉体成形用
混合合金粉末とした。Next, this hard particle raw material powder was added to the iron powder for base composition of each component shown in Table 1 in the mixing ratio shown in Table 1, and further graphite powder and zinc stearate were added to form a mixture for forming a green compact. It was made into an alloy powder.
このようにして調製した圧粉体成形用混合粉末を6 t
on/ am”で圧粉成形して、φ40mmX8mmの
圧粉成形体とした後、アンモニア分解ガス中にて110
0℃×1時間の焼結処理後、第2表に示す割合でpb金
合金用い溶浸処理を施した。溶浸処理をした焼結体は、
機械加工仕上げによりバルブシート形状に加工した。バ
ルブシート材料の全体成分、硬さおよび密度を第2表に
示す。6 t of the thus prepared mixed powder for green compact molding
on/am” to form a powder compact of φ40 mm x 8 mm, and then heated to 110 mm in ammonia decomposition gas.
After the sintering treatment at 0° C. for 1 hour, infiltration treatment using a PB gold alloy was performed at the ratio shown in Table 2. The infiltrated sintered body is
It was machined into a valve seat shape. The overall composition, hardness and density of the valve seat materials are shown in Table 2.
このようにして製造したバルブシートを、4気筒、16
00ccエンジンのアルミニウム合金製シリンダヘッド
にインテークバルブシートとてし圧入嵌合し、5UH3
からなるインテークバルブと組み合わせたエンジン台上
耐久試験を実施した。The valve seats manufactured in this way were used for 4-cylinder, 16-cylinder
The intake valve seat is press-fitted into the aluminum alloy cylinder head of the 00cc engine, and the 5UH3
An engine bench durability test was conducted in combination with an intake valve consisting of:
なお、エンジン台上耐久試験の条件としては、燃料とし
て無鉛ガソリンを用い、バルブシートの温度が比較的低
く酸化の進行しにくい5600rp−とアイドル回転(
約800 rpm)を繰り返すものであって、約600
時間運転した。The conditions for the engine bench durability test were as follows: unleaded gasoline was used as fuel, the valve seat temperature was relatively low, and oxidation did not proceed easily at 5,600 rpm and idle speed (
approximately 800 rpm), and approximately 600 rpm.
I drove for hours.
耐久試験の評価は、試験前後におけるバルブシートの摩
耗量、バルブシートの当たり幅増加量、摺動面の状況で
行った。得られた結果は第3表に示す。The durability test was evaluated based on the amount of wear on the valve seat, the amount of increase in the contact width of the valve seat, and the condition of the sliding surface before and after the test. The results obtained are shown in Table 3.
第
表
(以下余白)
第3表から明らかなように、硬質粒子にフェロモリブデ
ンを使用した比較材1では、バルブシートの窄粍が殆ど
なく、バルブが過大摩耗することがわかる。また、比較
材2はCo含有量を0%としたものであるが、バルブシ
ート、バルブフェースともに摩耗量が本発明例の2〜4
倍程度であり、pbの溶浸が無いので、凝着による面あ
れが認められた。比較材3はCo含有量を4%としたも
のであるが、バルブシート材の凝着が認められ、バルブ
に50μ程度の摩耗が認められた。Table 3 (blank below) As is clear from Table 3, in Comparative Material 1 in which ferromolybdenum was used as the hard particles, there was almost no narrowing of the valve seat, indicating that the valve was subject to excessive wear. Comparative material 2 has a Co content of 0%, but the wear amount of both the valve seat and valve face is 2 to 4 of the inventive example.
Since there was no PB infiltration, surface roughness due to adhesion was observed. Comparative material 3 had a Co content of 4%, but adhesion of the valve seat material was observed, and wear of about 50 μm was observed on the valve.
これに対して第1発明に相当する発明材1および第2発
明に相当する発明材2は、バルブシート化たりの幅増加
量が0.1〜0.21であって、比較材1〜3と比較す
ると1/2〜1/4程度と少なく、またバルブフェース
摩耗量も12〜15μであって、比較材1〜3と比較す
ると、1/3〜1/12であって耐摩耗性に優れ、本発
明材が優れた耐久性を示すことが確認された。On the other hand, inventive material 1 corresponding to the first invention and inventive material 2 corresponding to the second invention, the width increase amount per valve seat was 0.1 to 0.21, and comparative materials 1 to 3 The amount of wear on the valve face is 12 to 15μ, which is 1/3 to 1/12 compared to comparative materials 1 to 3. It was confirmed that the material of the present invention exhibited excellent durability.
[発明の効果]
本発明のバルブシート用鉄系焼結合金は、以上詳述した
ように、オースイナイト組織とパーライト組織の混合組
織からなるFe−C−Co系基地組織中に、F e −
Cr系合金からなる微細な硬質粒子を分散させ、Pb合
金またはCu合金等の溶浸合金を溶浸処理したものであ
って、Fe−C−Co系基地組織中のCo含有量を低減
することにより低温度域での凝着が防止され、バルブシ
ートとしての自身の耐摩耗性に優れ、しかも相手材に対
する損傷性をすくなくすることができるので、盛金を廃
止したしたインテークバルブとの組み合わせにおいても
、インテークバルブおよびバルブシートの耐摩耗性およ
び耐久性を確保できる。これにより盛金を廃止したイン
テークバルブが使用できるため、省資源とエンジンのコ
ストダウンが可能となり、さらに従来多用されているフ
ェロモリブデン添加のシートバルブ材料に比較して、硬
質粒子の硬さが低いので、加工性が改善される。[Effects of the Invention] As described in detail above, the iron-based sintered alloy for valve seats of the present invention contains Fe-C-Co base structure consisting of a mixed structure of an ausinite structure and a pearlite structure.
Fine hard particles made of a Cr-based alloy are dispersed and an infiltrated alloy such as a Pb alloy or a Cu alloy is infiltrated to reduce the Co content in the Fe-C-Co matrix structure. This prevents adhesion in the low temperature range, has excellent wear resistance as a valve seat, and can reduce damage to mating materials, so it can be used in combination with intake valves that do not require fillers. Also, the wear resistance and durability of the intake valve and valve seat can be ensured. This allows the use of intake valves that do not require metal fillers, making it possible to save resources and reduce engine costs.Furthermore, the hardness of the hard particles is lower compared to seat valve materials containing ferromolybdenum, which are commonly used in the past. Therefore, workability is improved.
第1図は自動車エンジンの動弁系の断面図を示す。
7・・−バルブ、9・・・バルブシート、16・・・フ
ェース部
第1図FIG. 1 shows a sectional view of a valve train of an automobile engine. 7...-Valve, 9... Valve seat, 16... Face part Fig. 1
Claims (2)
3%未満、Cr;1.2〜3.6、Mo;0.06〜0
.40%、V;0.003〜0.100%を含有し、残
部実質的にFeからなり、Pb、Pb合金、Cu合金ま
たはSn合金を5〜25%含浸させたバルブシート用鉄
系焼結合金であって、 前記含浸合金により含浸され重量比率でC;0. 5〜2.0%、Co;1.0〜3.0%未満を含有し残
部実質的にFeからなり、オーステナイト組織とパーラ
イト組織の混合組織からなるFe−C−Co基地組織中
に、重量比率でC;0.8〜2.0%、Cr;4〜18
%、Mo;0.2〜2%、V;0.1〜0.5%を含有
し残部がFeからなり、その内部に10μm以下の析出
したCr、Mo、Vの炭化物を含み、粒径40〜150
μm、硬さHv300〜850の硬質粒子を重量比で3
〜20%の割合で分散したことを特徴とするバルブシー
ト用鉄系焼結合金。(1) Weight ratio of C: 0.46~2.0%, Co: 1~
Less than 3%, Cr; 1.2-3.6, Mo; 0.06-0
.. 40%, V: 0.003 to 0.100%, the remainder substantially consists of Fe, and is impregnated with 5 to 25% of Pb, Pb alloy, Cu alloy, or Sn alloy. gold, impregnated with the impregnating alloy and having a weight ratio of C; 0. 5 to 2.0%, Co; less than 1.0 to 3.0%, the remainder substantially consists of Fe, and the Fe-C-Co base structure consists of a mixed structure of austenite structure and pearlite structure, C: 0.8-2.0%, Cr: 4-18 in ratio
%, Mo: 0.2 to 2%, V: 0.1 to 0.5%, the balance is Fe, and contains precipitated carbides of Cr, Mo, and V with a particle size of 10 μm or less inside. 40-150
μm, hard particles with hardness Hv300-850 in a weight ratio of 3
An iron-based sintered alloy for valve seats, characterized in that it is dispersed at a ratio of ~20%.
3%未満、Cr;0.3〜5.0%を含有し、残部実質
的にFeからなり、Pb、Pb合金、Cu合金またはS
n合金を5〜25%含浸させたバルブシート用鉄系焼結
合金であって、 前記含浸合金により含浸され重量比率でC;0. 5〜2.0%、Co;1.0〜3.0%未満を含有し残
部実質的にFeからなり、オーステナイト組織とパーラ
イト組織の混合組織からなるFe−C−Co基地組織中
に、重量比率でC;0.8〜2.0%、Cr;10〜2
5%を含有し残部がFeからなり、その内部に10μm
以下の析出したCr、Mo、Vの炭化物を含み、、粒径
40〜150μm、硬さHv300〜850の硬質粒子
を重量比で3〜20%の割合で分散したことを特徴とす
るバルブシート用鉄系焼結合金。(2) Weight ratio of C: 0.46~2.0%, Co: 1~
less than 3%, Cr: 0.3 to 5.0%, the remainder substantially consists of Fe, Pb, Pb alloy, Cu alloy or S
An iron-based sintered alloy for a valve seat impregnated with 5 to 25% of an n-alloy, the weight ratio of which is impregnated with the impregnated alloy is C; 0. 5 to 2.0%, Co; less than 1.0 to 3.0%, the remainder substantially consists of Fe, and the Fe-C-Co base structure consists of a mixed structure of austenite structure and pearlite structure, C: 0.8-2.0%, Cr: 10-2
5%, the remainder is Fe, and there is a 10μm inside.
For a valve seat, which contains the following precipitated carbides of Cr, Mo, and V, and is characterized in that hard particles having a particle size of 40 to 150 μm and a hardness of Hv 300 to 850 are dispersed at a weight ratio of 3 to 20%. Iron-based sintered alloy.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14717289A JP2684774B2 (en) | 1989-06-09 | 1989-06-09 | Iron-based sintered alloy for valve seats |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14717289A JP2684774B2 (en) | 1989-06-09 | 1989-06-09 | Iron-based sintered alloy for valve seats |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0313546A true JPH0313546A (en) | 1991-01-22 |
JP2684774B2 JP2684774B2 (en) | 1997-12-03 |
Family
ID=15424212
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP14717289A Expired - Lifetime JP2684774B2 (en) | 1989-06-09 | 1989-06-09 | Iron-based sintered alloy for valve seats |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2684774B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06101429A (en) * | 1992-09-22 | 1994-04-12 | Mitsubishi Materials Corp | Lead impregnated iron system sintered alloy made valve seat for internal combustion engine |
JPH06101428A (en) * | 1992-09-22 | 1994-04-12 | Mitsubishi Materials Corp | Copper infiltration iron system sintered alloy made valve seat for internal combustion engine |
JPH06101427A (en) * | 1992-09-22 | 1994-04-12 | Mitsubishi Materials Corp | Iron group sintered alloy made valve seat for internal combustion engine |
JPH06101426A (en) * | 1992-09-22 | 1994-04-12 | Mitsubishi Materials Corp | Iron group sintered alloy made valve seat for internal combustion engine |
JPH06101430A (en) * | 1992-09-24 | 1994-04-12 | Mitsubishi Materials Corp | Lead impregnated iron system sintered alloy made valve seat for internal combustion engine |
-
1989
- 1989-06-09 JP JP14717289A patent/JP2684774B2/en not_active Expired - Lifetime
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06101429A (en) * | 1992-09-22 | 1994-04-12 | Mitsubishi Materials Corp | Lead impregnated iron system sintered alloy made valve seat for internal combustion engine |
JPH06101428A (en) * | 1992-09-22 | 1994-04-12 | Mitsubishi Materials Corp | Copper infiltration iron system sintered alloy made valve seat for internal combustion engine |
JPH06101427A (en) * | 1992-09-22 | 1994-04-12 | Mitsubishi Materials Corp | Iron group sintered alloy made valve seat for internal combustion engine |
JPH06101426A (en) * | 1992-09-22 | 1994-04-12 | Mitsubishi Materials Corp | Iron group sintered alloy made valve seat for internal combustion engine |
JPH06101430A (en) * | 1992-09-24 | 1994-04-12 | Mitsubishi Materials Corp | Lead impregnated iron system sintered alloy made valve seat for internal combustion engine |
Also Published As
Publication number | Publication date |
---|---|
JP2684774B2 (en) | 1997-12-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2001050020A (en) | Valve device for internal combustion engine | |
JP4693170B2 (en) | Wear-resistant sintered alloy and method for producing the same | |
JP3614237B2 (en) | Valve seat for internal combustion engine | |
JPH0313546A (en) | Ferrous sintered alloy for valve seat | |
JPH0555589B2 (en) | ||
JPH0555591B2 (en) | ||
JP3225649B2 (en) | Wear resistant iron-based sintered alloy | |
JPS60258449A (en) | Sintered iron alloy for valve seat | |
JP3226618B2 (en) | Iron-based sintered alloy for valve seat | |
JPS62207847A (en) | Ferrous sintered alloy for valve seat | |
JP3068127B2 (en) | Wear-resistant iron-based sintered alloy and method for producing the same | |
JPS60258450A (en) | Sintered iron alloy for valve seat | |
JPS61117254A (en) | Ferrous sintered alloy for valve seat | |
JP2725430B2 (en) | Sintered alloy for valve seat | |
JP2833116B2 (en) | Sintered alloy for valve seat | |
JPH08291376A (en) | Combination of ferrous sintered alloy valve seat material with heat resistant and wear resistant alloy valve face material | |
JPH0347952A (en) | Wear-resistant ferrous sintered alloy and its production | |
JP3068128B2 (en) | Wear-resistant iron-based sintered alloy and method for producing the same | |
JP3304805B2 (en) | Iron-based sintered alloy with excellent wear resistance | |
JPS63171858A (en) | Ferrous sintered alloy for valve seat | |
JP3264092B2 (en) | Wear-resistant iron-based sintered alloy and method for producing the same | |
KR970001323B1 (en) | Sintering alloy of valve seat | |
JPH05171372A (en) | Sintered alloy for intake valve seat | |
JPS61183447A (en) | Sintered iron alloy for valve seat | |
JPH116040A (en) | Wear resistant iron-base sintered alloy |