JPH0555589B2 - - Google Patents

Info

Publication number
JPH0555589B2
JPH0555589B2 JP7899884A JP7899884A JPH0555589B2 JP H0555589 B2 JPH0555589 B2 JP H0555589B2 JP 7899884 A JP7899884 A JP 7899884A JP 7899884 A JP7899884 A JP 7899884A JP H0555589 B2 JPH0555589 B2 JP H0555589B2
Authority
JP
Japan
Prior art keywords
powder
hard particles
alloy
alloy powder
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP7899884A
Other languages
Japanese (ja)
Other versions
JPS60224762A (en
Inventor
Yukio Kadota
Tetsuya Suganuma
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP7899884A priority Critical patent/JPS60224762A/en
Publication of JPS60224762A publication Critical patent/JPS60224762A/en
Publication of JPH0555589B2 publication Critical patent/JPH0555589B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、バルブシート用鉄系焼結合金に関
し、詳しくは、Fe−C系基地組織中に特定組成
の硬質粒子を均一に分散させることによつて、バ
ルブシートとして自身の耐摩耗性に優れ、しか
も、摺動する相手材であるエンジンバルブに対す
る損傷性の少ないバルブシート用鉄系焼結合金に
かかる。 〔従来技術〕 最近、自動車用エンジンにおいて、高出力・高
回転化、排出ガス浄化対策、或いは、燃費向上対
策等に対する改善要求が一段と高まつている。 このため、自動車用エンジンにおけるエンジン
バルブ、バルブシートに対しては、従来にもまし
て厳しい使用環境条件に耐えることが不可避とな
つてきている。 即ち、エンジンバルブ、バルブシート等におい
ては、それ自身の対摩耗性の改善とともに、摺動
する相手材に対する損傷性を少なくし、しかも、
加工性を良好にして、低コストとすることが強く
望まれている。 従来のバルブシート用焼結合金としては、鉄系
合金にフエロモリブデン等の金属間化合物や複合
炭化物を添加したものが、優れたバルブシート用
焼結合金として採用されている。例えば、特開昭
57−108246号公報に記載の動弁機構部材は、部材
自身の耐摩耗性と相手部材に対する損傷性の低減
の両立を目的として、マルテンサイトの基地に金
属炭化物からなる硬質相を網目状に分散させたも
のであり、また、特公昭51−44684号公報に記載
の快削耐摩性焼結網は、耐摩耗性と切削性の両立
を目的として、クロム、モリブデンおよびバナジ
ウムを含む焼結合金の空孔部にケルメツトを溶浸
させたものである。しかし、このような焼結合金
は、各成分を均質に分布させて合金全体の成分組
成により対策するものであるため、上述のような
相反する特性の両立には限界があり、最近の厳し
い要求特性に対し、十分な耐久性を確保すること
ができないという問題点がある。 〔発明の目的〕 本発明は、上述のような従来技術の問題点を解
決するためになされたもので、Fe−C系基地組
織中に特定組成の硬質粒子を均一に分散させるこ
とによつて、バルブシートとして自身の耐摩耗性
に優れ、しかも、摺動する相手材に対する損傷性
を少なくすることができ、しかも、加工性を良好
にして、低コストにて製造することのできるバル
ブシート用鉄系焼結合金を提供することを目的と
している。 〔発明の構成〕 このような目的は、本発明によれば、Fe−C
基地組織用粉末に、重量比率にて5〜20%の範囲
で硬質粒子用合金粉末を混合し、圧粉成形後、焼
結処理して得られるパーライト組織を主体とする
Fe−C基地組織に硬質粒子が均一に分散した組
織からなるバルブシート用鉄系焼結合金であつ
て、前記基地組織用粉末は、重量比率で、黒鉛粉
末;0.5〜1.6%、残部実質的に鉄粉からなり、前
記硬質粒子用合金粉末は、重量比率で、C;1.0
〜2.0%、Cr;5.0〜20.0%、Mo;0.2〜3.0%、
V;0.1〜1.0%、残部実質的にFeからなり、その
合金粉末内部に10μ以下の微細に析出したCr、
Mo、V等の炭化物を有し、平均粒径;40〜
150μ、硬さ;Hv300〜700であることを特徴とす
るバルブシート用鉄系焼結合金によつて達成され
る。 〔発明の作用〕 以下、本発明の作用について説明する。 なお、以下の説明において、合金元素の含有量
は全て重量比率(%)にて説明する。 まず、本発明のバルブシート用鉄系焼結合金に
使用する硬質粒子用合金粉末を構成する各成分の
範囲限定理由について説明する。 本発明において、CはFe、Cr、Mo、Vと反応
して炭化物を形成して耐摩耗性を改善することか
ら有効であるが、1.0%未満では炭化物量が少な
いことから上述の耐摩耗性改善効果が十分でな
く、一方、2.0%を越えると炭化物量が過多とな
るとともに、焼結時における硬質粒子からその周
辺基地組織中へのCの拡散を促進して、硬質粒子
が消滅する可能性があることから1.0〜2.0%とし
た。 また、Cr、Mo、Vは、Cと反応し炭化物を形
成することから耐摩耗性改善に有効であるが、
Crは5.0%未満、Moは0.2%未満、Vは0.1%未満
では、炭化物量が少ないため上述の耐摩耗性改善
効果が十分でなく、一方、Crは20.0%、Moは3.0
%、Vは1.0%を越えると炭化物量が過多となり、
とりわけ、Vは硬質のVC炭化物が多く形成され
て摺動する相手材(エンジンバルブ)に対する損
傷性を増大することから、Cr;5.0〜20.0%、
Mo;0.2〜3.0%、V;0.1〜1.0%とした。 次に、硬質粒子用合金粉末内部に析出している
微細な炭化物の粒径を10μ以下としているのは、
炭化物粒径が10μを越えると摺動する相手材(エ
ンジンバルブ)に対する損傷性を増大するからで
ある。 硬質粒子用合金粉末の平均粒径を40〜150μと
しているのは、40μ未満では焼結する際に基地中
に拡散してしまい、一方、150μを越える大きな
硬質粒子用合金粉末が原料粉末中に存在すると原
料粉末を圧粉成形する際、充分に原料粉末を圧粉
できないためである。 また、硬質粒子用合金粉末の硬さをHv300〜
700としたのは、Hv300未満では硬質粒子として
の対摩耗性改善効果が十分でなく、一方、Hv700
を越えると硬質粒子が硬すぎて、摺動する相手材
(エンジンバルブ)に対する損傷性を増大するか
らである。 更に、本発明においてパーライト組織からなる
基地組織中への硬質粒子用合金粉末の分散量を、
重量比率にて5〜20%としたのは、硬質粒子用合
金粉末の分散量が5%未満では、硬質粒子量が少
なく耐摩耗性改善効果が十分でなく、一方、硬質
粒子用合金粉末量が20%を越えると摺動する相手
材(エンジンバルブ)に対する損傷性を増大する
からである。 以上の如く構成して、組織全体としての耐摩耗
性および相手材に対する損傷性は硬質粒子の成
分、硬さ、含有量で維持し、更に、平均粒径を調
整して、組織中における比較的柔らかい基地のみ
からなる部分を大きくすることにより加工性を良
好にしているのである。 次に、本発明材において焼結合金基地組織を形
成するために使用する原料粉末の成分の範囲限定
理由について説明する。 Cは焼結処理時、Feと反応してパーライト組
織を形成して基地組織を強化するとともに、基地
組織中に固溶して焼結反応を促進させるので有効
であるが、0.5%未満では上述の効果が十分でな
く、一方、1.6%を越えて添加するとセメンタイ
トが多量に析出して焼結体を脆化することから
0.5〜1.6%とした。 以上のように限定された構成を有する本願発明
のバルブシート用鉄系焼結合金は、焼結処理によ
り、パーライト組織を主体とする基地組織中に、
10μ以下の微細に析出したCr、Mo、V等の炭化
物を内部に有した平均粒径40〜150μの硬質粒子
が、重量比率にて5〜20%の範囲で均一に分散さ
れた組織として得る。 〔実施例〕 以下、添付表に基づいて、本発明の1実施例を
説明する。 本発明材製造に使用した硬質粒子用合金粉末の
組成、及び、その合金粉末内部に含有される微細
な炭化物粒径を第1表に示す。 パーライト組織の基地組織中に分散させる硬質
粒子原料粉末を第1表の組成に調整して溶融した
後、水噴霧法により−100メツシユの合金粉末に
した。 ついで、第2表に示すように基地組織用鉄粉に
この硬質粒子用合金粉末を第2表に示す配合割合
で添加し、さらに、黒鉛粉末、ステアリン酸亜鉛
を添加して圧粉成形用混合合金粉末とした。 たとえば、本発明材においては、第1表に示
す組成からなり、含有する炭化物粒径4μの硬質
粒子用合金粉末を、第2表に示すように重量比率
で12%、黒鉛粉末を1.2%、残部Fe粉末となるよ
うに配合し、さらに、潤滑剤として一般的に用い
るステアリン酸亜鉛を0.8%添加して圧粉成形用
混合合金粉末とした。 同様に、本発明材、、においても、第1
表に示す組成からなり第1表に示す炭化物粒径の
硬質粒子用合金粉末を、第2表に示すような配合
割合で添加し、さらに、本発明材と同様に黒鉛
粉末、ステアリン酸亜鉛を添加して圧粉成形用混
合合金粉末とした。 次に、比較材においては、硬質粒子用合金粉
末の組成を高Cr(30%)、高Mo(7%)、高C(2.5
%)としたものである。 また、比較材は、硬質粒子用合金粉末の組成
を低Cr(5%未満)、低C(1%未満)としたもの
である。 また、比較材は、硬質粒子用合金粉末の組成
を高V(3%)とし炭化物粒径も10μを越える粗
粒(15μ)として、物質のVC炭化物を多量に析
出させたものである。 このようにして生成された圧粉成形用混合粉末
を6ton/cm2で圧粉成形して、φ40mm×8mmの圧粉
成形体とした後、アンモニヤ分解ガス中にて1100
℃×1時間の焼結処理を実施した。 上述により焼結処理された本発明材の焼結体の
基地はパーライト組織であつた。 この焼結体を機械加工によりバルブシート形状
に仕上げた。 そして、このバルブシートを4気筒、1600c.c.エ
ンジンのアルミニウム合金製シリンダヘツドにエ
キゾーストバルブシートとして圧入し、エンジン
台上耐久試験を実施した。 なお、エンジン台上耐久試験条件としては、燃
料として無鉛ガソリンを用い、6600rpm、全負荷
で連続200時間運転とした。 このエンジン台上耐久試験結果は、試験終了後
におけるバルブシートの当り面幅増加量とエンジ
ンバルブ摩耗量を測定することによつて評価し
た。 そのエンジン台上耐久性試験結果を第2表に併
せて示している。 第2表から明らかなように、比較材は、硬質
粒子用合金粉末の組成を高Cr、高Mo、高Cとし
ていることから炭化物の析出量が過多となつて、
摺動する相手材(エンジンバルブ)の摩耗量が多
いことが理解される。 また、比較材は、硬質粒子用合金粉末の組成
をCr;5%未満、C;1%未満としていること
から、炭化物量が少なくなり耐摩耗性が低下して
バルブシートの摩耗量が増大していることが理解
される。 また比較材は、硬質粒子用合金粉末の組成を
高Vとし、炭化物粒径も10μを越えるものとして
いるため硬質のVC炭化物が多量に析出して摺動
する相手材(エンジンバルブ)の摩耗量が多くな
つていることが理解される。 上記の比較材、、に比較して本発明材
、、、はいずれも、バルブシートの当り
面積加量は0.2mm以下、エンジンバルブの摩耗量
も8μ以下と優れたエンジン台上耐久試験結果を
示している。
[Industrial Application Field] The present invention relates to an iron-based sintered alloy for valve seats, and more specifically, by uniformly dispersing hard particles of a specific composition in an Fe-C base structure, it can be used as a valve seat. The present invention relates to an iron-based sintered alloy for valve seats that has excellent wear resistance and is less likely to damage engine valves, which are sliding mating materials. [Prior Art] Recently, there has been an increasing demand for improvements in automobile engines, such as higher output and higher revolutions, measures to purify exhaust gas, and measures to improve fuel efficiency. For this reason, it has become inevitable for engine valves and valve seats in automobile engines to withstand harsher usage environmental conditions than ever before. In other words, in engine valves, valve seats, etc., it not only improves their own wear resistance, but also reduces damage to the mating material on which they slide.
It is strongly desired to improve processability and reduce costs. As conventional sintered alloys for valve seats, those made by adding intermetallic compounds such as ferromolybdenum or composite carbides to iron-based alloys have been adopted as excellent sintered alloys for valve seats. For example, Tokukai Akira
The valve train member described in Publication No. 57-108246 has a hard phase made of metal carbide dispersed in a network of martensite bases for the purpose of achieving both wear resistance of the member itself and reduction of damage to mating members. In addition, the free-cutting wear-resistant sintered mesh described in Japanese Patent Publication No. 51-44684 is made of a sintered alloy containing chromium, molybdenum, and vanadium in order to achieve both wear resistance and machinability. Kelmet is infiltrated into the pores. However, since such sintered alloys are made by distributing each component homogeneously and adjusting the composition of the entire alloy, there is a limit to the ability to achieve both of the conflicting properties described above, and the recent strict demands have been met. There is a problem in that sufficient durability cannot be ensured with respect to the characteristics. [Object of the Invention] The present invention was made to solve the problems of the prior art as described above, and it is possible to , for valve seats that have excellent wear resistance as a valve seat, can reduce damage to the mating material on which it slides, and can be manufactured at low cost with good workability. The purpose is to provide iron-based sintered alloys. [Structure of the Invention] According to the present invention, such an object is achieved by
Mainly pearlite structure obtained by mixing powder for base structure with alloy powder for hard particles in the range of 5 to 20% by weight, compacting, and sintering.
An iron-based sintered alloy for valve seats consisting of a structure in which hard particles are uniformly dispersed in an Fe-C base structure, wherein the powder for the base structure is graphite powder in a weight ratio of 0.5 to 1.6%, and the balance is substantially The alloy powder for hard particles has a weight ratio of C; 1.0.
~2.0%, Cr; 5.0~20.0%, Mo; 0.2~3.0%,
V: 0.1 to 1.0%, the remainder essentially consisting of Fe, with finely precipitated Cr of 10μ or less inside the alloy powder;
Contains carbides such as Mo and V, average particle size: 40~
This is achieved using an iron-based sintered alloy for valve seats, which is characterized by a hardness of 150μ and a hardness of 300 to 700 Hv. [Action of the invention] The action of the present invention will be explained below. In addition, in the following description, all contents of alloying elements will be explained in terms of weight ratio (%). First, the reason for limiting the range of each component constituting the alloy powder for hard particles used in the iron-based sintered alloy for valve seats of the present invention will be explained. In the present invention, C is effective because it reacts with Fe, Cr, Mo, and V to form carbides and improve wear resistance, but if it is less than 1.0%, the amount of carbides is small, so the above-mentioned wear resistance The improvement effect is not sufficient, and on the other hand, if it exceeds 2.0%, the amount of carbides becomes excessive, and the diffusion of C from the hard particles into the surrounding base structure during sintering is promoted, which may cause the hard particles to disappear. It was set at 1.0 to 2.0% due to the nature of In addition, Cr, Mo, and V are effective in improving wear resistance because they react with C to form carbides.
If Cr is less than 5.0%, Mo is less than 0.2%, and V is less than 0.1%, the above-mentioned wear resistance improvement effect will not be sufficient due to the small amount of carbide, while Cr is 20.0% and Mo is 3.0%.
%, when V exceeds 1.0%, the amount of carbide becomes excessive,
In particular, since V forms a large amount of hard VC carbide and increases damage to sliding mating materials (engine valves), Cr; 5.0 to 20.0%;
Mo: 0.2-3.0%, V: 0.1-1.0%. Next, the particle size of the fine carbides precipitated inside the alloy powder for hard particles is set to 10μ or less because
This is because if the carbide particle size exceeds 10μ, damage to the sliding mating material (engine valve) increases. The reason why the average particle size of the alloy powder for hard particles is set to 40 to 150μ is that if it is less than 40μ, it will diffuse into the matrix during sintering, whereas if it is larger than 150μ, the alloy powder for hard particles will be dispersed in the raw material powder. This is because if it exists, the raw material powder cannot be sufficiently compacted when the raw material powder is compacted. In addition, the hardness of the alloy powder for hard particles is Hv300 ~
700 because if it is less than Hv300, the effect of improving wear resistance as a hard particle is not sufficient.
This is because if the hardness exceeds the hardness, the hard particles become too hard, increasing the damage to the sliding mating material (engine valve). Furthermore, in the present invention, the amount of dispersion of the alloy powder for hard particles into the matrix structure consisting of pearlite structure is
The reason for setting the weight ratio to be 5 to 20% is because if the amount of dispersed alloy powder for hard particles is less than 5%, the amount of hard particles will be small and the effect of improving wear resistance will not be sufficient. This is because if it exceeds 20%, damage to the sliding mating material (engine valve) increases. With the structure described above, the wear resistance of the structure as a whole and the damage resistance to the mating material are maintained by the composition, hardness, and content of the hard particles, and the average particle size is adjusted to Processability is improved by enlarging the portion consisting only of soft base. Next, the reason for limiting the range of components of the raw material powder used to form the sintered alloy base structure in the material of the present invention will be explained. During the sintering process, C reacts with Fe to form a pearlite structure to strengthen the base structure, and is also effective as it dissolves in the base structure and promotes the sintering reaction, but if it is less than 0.5%, the above-mentioned On the other hand, if it is added in excess of 1.6%, a large amount of cementite will precipitate and the sintered body will become brittle.
It was set at 0.5-1.6%. The iron-based sintered alloy for valve seats of the present invention having the limited configuration as described above has a matrix structure mainly composed of pearlite structure through sintering treatment.
Obtained as a structure in which hard particles with an average particle size of 40 to 150 μ and containing finely precipitated carbides of Cr, Mo, V, etc. of 10 μ or less are uniformly dispersed in the range of 5 to 20% by weight. . [Example] Hereinafter, one example of the present invention will be described based on the attached table. Table 1 shows the composition of the alloy powder for hard particles used in producing the material of the present invention and the diameter of fine carbide particles contained within the alloy powder. The hard particle raw material powder to be dispersed in the base structure of the pearlite structure was adjusted to the composition shown in Table 1 and melted, and then made into -100 mesh alloy powder by a water spray method. Next, as shown in Table 2, this alloy powder for hard particles was added to the iron powder for matrix structure in the proportions shown in Table 2, and graphite powder and zinc stearate were further added to form a mixture for compaction. It was made into an alloy powder. For example, the material of the present invention has the composition shown in Table 1, and contains alloy powder for hard particles with a carbide particle size of 4μ, 12% by weight, graphite powder at 1.2%, as shown in Table 2. The mixture was blended so that the balance was Fe powder, and 0.8% of zinc stearate, which is generally used as a lubricant, was added to obtain a mixed alloy powder for compaction. Similarly, in the present invention material, the first
The alloy powder for hard particles having the composition shown in Table 1 and the carbide particle size shown in Table 1 was added at the mixing ratio shown in Table 2, and graphite powder and zinc stearate were added in the same manner as the present invention material. It was added to obtain a mixed alloy powder for powder compaction. Next, for the comparison material, the composition of the alloy powder for hard particles was changed to high Cr (30%), high Mo (7%), and high C (2.5%).
%). In addition, the comparative material has a composition of alloy powder for hard particles with low Cr (less than 5%) and low C (less than 1%). In addition, the comparative material has a high V (3%) composition of the alloy powder for hard particles and a coarse carbide grain size (15μ) exceeding 10μ, so that a large amount of VC carbide is precipitated. The mixed powder for compacting thus produced was compacted at 6 tons/cm 2 to form a compact of φ40 mm x 8 mm, and then heated for 1100 min in ammonia decomposition gas.
A sintering treatment was performed at ℃ for 1 hour. The base of the sintered body of the material of the present invention, which was sintered as described above, had a pearlite structure. This sintered body was machined into a valve seat shape. Then, this valve seat was press-fitted into the aluminum alloy cylinder head of a 4-cylinder, 1600 c.c. engine as an exhaust valve seat, and an engine bench durability test was conducted. As for the engine bench durability test conditions, unleaded gasoline was used as the fuel, and the engine was operated continuously for 200 hours at 6600 rpm and full load. The results of this engine bench durability test were evaluated by measuring the amount of increase in the contact surface width of the valve seat and the amount of engine valve wear after the end of the test. The engine bench durability test results are also shown in Table 2. As is clear from Table 2, in the comparative material, the composition of the alloy powder for hard particles is high Cr, high Mo, and high C, so the amount of carbide precipitation is excessive.
It is understood that the amount of wear on the sliding mating material (engine valve) is large. In addition, in the comparison material, the composition of the alloy powder for hard particles is less than 5% Cr and less than 1% C, so the amount of carbide decreases, the wear resistance decreases, and the amount of wear on the valve seat increases. It is understood that In addition, the comparison material has a high V composition of alloy powder for hard particles and a carbide particle size of over 10μ, so a large amount of hard VC carbide precipitates, resulting in the amount of wear on the sliding mating material (engine valve). It is understood that there are more and more Compared to the above-mentioned comparative materials, the inventive materials showed superior engine bench durability test results, with a valve seat contact area addition of 0.2 mm or less and engine valve wear of 8 μ or less. It shows.

【表】【table】

〔発明の効果〕〔Effect of the invention〕

以上により明らかなように、本発明にかかるバ
ルブシート用鉄系焼結合金によれば、Fe−C系
基地組織中に特定組成の適宜粒度調整された硬質
粒子を均一に分散させることによつて、バルブシ
ートとして自身の耐摩耗性に優れ、しかも、摺動
する相手材に対する損傷性を少なくすることがで
き、更に、比較的柔らかい基地組織のみからなる
部分が組織中に大きく分布するため、加工性良好
にして、低コストにて製造するこができる利点が
ある。
As is clear from the above, according to the iron-based sintered alloy for valve seats according to the present invention, by uniformly dispersing hard particles having a specific composition and having an appropriately adjusted particle size in the Fe-C base structure, As a valve seat, it has excellent wear resistance, and can reduce damage to the mating material on which it slides.Furthermore, since the part consisting only of relatively soft base tissue is widely distributed in the structure, it is easy to process. It has the advantage of good properties and can be manufactured at low cost.

Claims (1)

【特許請求の範囲】 1 Fe−C基地組織用粉末に、重量比率にて5
〜20中の範囲で硬質粒子用合金粉末を混合し、圧
粉成形後、焼結処理して得られるパーライト組織
を主体とするFe−C基地組織に硬質粒子が均一
に分散した組織からなるバルブシート用鉄系焼結
合金であつて、 前記基地組織用粉末は、重量比率で、黒鉛粉
末;0.5〜1.6%、残部実質的に鉄粉からなり、 前記硬質粒子用合金粉末は、重量比率で、C;
1.0〜2.0%、Cr:5.0〜20.0%、Mo;0.2〜3.0%、
V;0.1〜1.0%、残部実質的にFeからなり、その
合金粉末内部に10μ以下の微細に析出したCr、
Mo、V等の炭化物を有し、平均粒径;40〜
150μ、硬さ;Hv300〜700であることを特徴とす
るバルブシート用鉄系焼結合金。
[Claims] 1 Fe-C base tissue powder, weight ratio 5
A valve consisting of a structure in which hard particles are uniformly dispersed in an Fe-C base structure mainly composed of pearlite structure obtained by mixing alloy powder for hard particles in the range of ~20, compacting, and sintering. A ferrous sintered alloy for sheets, wherein the powder for the base structure consists of graphite powder in a weight ratio of 0.5 to 1.6%, and the remainder substantially consists of iron powder, and the alloy powder for the hard particles has a weight ratio of 0.5 to 1.6%. ,C;
1.0~2.0%, Cr: 5.0~20.0%, Mo; 0.2~3.0%,
V: 0.1 to 1.0%, the remainder essentially consisting of Fe, with finely precipitated Cr of 10μ or less inside the alloy powder;
Contains carbides such as Mo and V, average particle size: 40~
An iron-based sintered alloy for valve seats, characterized by a hardness of 150μ and a hardness of Hv300 to 700.
JP7899884A 1984-04-19 1984-04-19 Iron sintered alloy for valve sheet Granted JPS60224762A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7899884A JPS60224762A (en) 1984-04-19 1984-04-19 Iron sintered alloy for valve sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7899884A JPS60224762A (en) 1984-04-19 1984-04-19 Iron sintered alloy for valve sheet

Publications (2)

Publication Number Publication Date
JPS60224762A JPS60224762A (en) 1985-11-09
JPH0555589B2 true JPH0555589B2 (en) 1993-08-17

Family

ID=13677558

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7899884A Granted JPS60224762A (en) 1984-04-19 1984-04-19 Iron sintered alloy for valve sheet

Country Status (1)

Country Link
JP (1) JPS60224762A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6462442A (en) * 1987-08-31 1989-03-08 Teikoku Piston Ring Co Ltd Ferrous sintered alloy for valve seat
JP2697436B2 (en) * 1991-11-22 1998-01-14 三菱マテリアル株式会社 Two-layer forged valve seat made of iron-based sintered alloy for internal combustion engine
EP0604773B2 (en) * 1992-11-27 2000-08-30 Toyota Jidosha Kabushiki Kaisha Fe-based alloy powder adapted for sintering, Fe-based sintered alloy having wear resistance, and process for producing the same
JPH09256120A (en) * 1996-03-21 1997-09-30 Toyota Motor Corp Powder metallurgy material excellent in wear resistance
GB2451898A (en) * 2007-08-17 2009-02-18 Federal Mogul Sintered Prod Sintered valve seat
JP6635664B2 (en) * 2015-03-09 2020-01-29 山陽特殊製鋼株式会社 Hard powder for Fe-based sintering and Fe-based sintered body using the same and having excellent wear resistance
CN113490757A (en) * 2019-03-27 2021-10-08 日本碍子株式会社 Wear-resistant part material

Also Published As

Publication number Publication date
JPS60224762A (en) 1985-11-09

Similar Documents

Publication Publication Date Title
JP2957180B2 (en) Wear-resistant iron-based sintered alloy and method for producing the same
JPH0350824B2 (en)
GB2109004A (en) Anti-wear sintered alloy and process for the manufacture thereof
JP4693170B2 (en) Wear-resistant sintered alloy and method for producing the same
JPH0555589B2 (en)
JPH0555591B2 (en)
JP2684774B2 (en) Iron-based sintered alloy for valve seats
JPS60258449A (en) Sintered iron alloy for valve seat
JPS60258450A (en) Sintered iron alloy for valve seat
JPS61291954A (en) Sintering material having wear resistance and corrosion resistance at high temperature and its manufacture
JPH0555590B2 (en)
JP2877211B2 (en) Iron-based sintered alloy for valve seat
JPH0115583B2 (en)
JP2683444B2 (en) Sintered alloy for valve mechanism of internal combustion engine
JP2571567B2 (en) High temperature wear resistant iron-based sintered alloy
JPS62207847A (en) Ferrous sintered alloy for valve seat
JP2833116B2 (en) Sintered alloy for valve seat
JPS61117254A (en) Ferrous sintered alloy for valve seat
JP3304805B2 (en) Iron-based sintered alloy with excellent wear resistance
JPH06158217A (en) Valve guide member made of fe-based sintered alloy excellent in wear resistance
JPS6173865A (en) Sintered iron alloy for valve seat
JPH01129951A (en) Sintered alloy for valve seat for internal combustion engine
JPH08291376A (en) Combination of ferrous sintered alloy valve seat material with heat resistant and wear resistant alloy valve face material
JPH05171372A (en) Sintered alloy for intake valve seat
JPS62164858A (en) Ferrous sintered alloy for valve seat

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees