JPH01129951A - Sintered alloy for valve seat for internal combustion engine - Google Patents

Sintered alloy for valve seat for internal combustion engine

Info

Publication number
JPH01129951A
JPH01129951A JP28897987A JP28897987A JPH01129951A JP H01129951 A JPH01129951 A JP H01129951A JP 28897987 A JP28897987 A JP 28897987A JP 28897987 A JP28897987 A JP 28897987A JP H01129951 A JPH01129951 A JP H01129951A
Authority
JP
Japan
Prior art keywords
wear
valve seat
alloy
gasoline
carbide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28897987A
Other languages
Japanese (ja)
Other versions
JPH07109024B2 (en
Inventor
Keitaro Suzuki
啓太郎 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Powdered Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Powdered Metals Co Ltd filed Critical Hitachi Powdered Metals Co Ltd
Priority to JP28897987A priority Critical patent/JPH07109024B2/en
Publication of JPH01129951A publication Critical patent/JPH01129951A/en
Publication of JPH07109024B2 publication Critical patent/JPH07109024B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To inhibit the wear of valve seat in gasoline engine and to stabilize the function of valve seat by dispersing prescribed percentages of Cu and Pb into a carbide-dispersed iron matrix in which respective contents of C, Si, Cr, Mo, V and Fe are specified. CONSTITUTION:A sintered alloy for valve seat of internal combustion engine has a structure where 15-20wt.% (based on the composition as a whole), in total, of Cu and Pb are dispersed in a carbide-dispersed iron matrix. The above carbide-dispersed iron matrix has a composition consisting of, by weight, 1.2-2.7% C, 0.2-2.5% Si, 11-27% Cr, 0.6-4% Mo, <=2.5% V, and the balance Fe, and further. The above Cu and Pb are incorporated in the weight ratio of Cu to Pb of 80:20-60:40.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、無鉛ガソリンおよび有鉛ガソリンのいずれで
も安定して機能する内燃機関用の弁座に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a valve seat for an internal combustion engine that functions stably with both unleaded gasoline and leaded gasoline.

[従来の技術] 自動車の排ガス規制以降、内燃機関の弁座は無鉛ガソリ
ン(約0.5Q Pb /ガロン)を前提に改良され、
例えば特公昭55−36242号のよう・に焼結合金鋼
の空孔内に鉛を含浸した焼結材料が良好な耐摩耗性を示
し、実用化されている。
[Prior Art] After automobile exhaust gas regulations were introduced, the valve seats of internal combustion engines were improved based on unleaded gasoline (approximately 0.5Q Pb/gallon).
For example, as disclosed in Japanese Patent Publication No. 55-36242, a sintered material in which lead is impregnated into the pores of a sintered alloy steel exhibits good wear resistance and has been put into practical use.

また、この種の弁座には、特開昭51−37011号、
特公昭51−44684号、特開昭60−258449
号のように、焼結合金鋼の空孔内に銅鉛合金を含浸した
焼結材料が挙げられる。
In addition, for this type of valve seat, Japanese Patent Application Laid-Open No. 51-37011,
Japanese Patent Publication No. 51-44684, Japanese Patent Publication No. 60-258449
As shown in No. 1, there is a sintered material in which the pores of sintered alloy steel are impregnated with copper-lead alloy.

しかし、世界的にみると欧州、豪州、中近東地区等では
エンジン出力向上の目的からいまだ有鉛ガソリン(例え
ば約3gPb/ガロン)を使用しているのが実状である
However, worldwide, the reality is that leaded gasoline (for example, about 3 gPb/gallon) is still used in Europe, Australia, the Middle East, etc. for the purpose of improving engine output.

有鉛ガソリンを燃料に用いるエンジンの場合、燃焼時に
酸化鉛、硫化鉛、硫酸鉛、等の燃焼生成物が弁および弁
座表面に付着するため通常の焼結合金では摩耗し易いと
ころから、マルテンサイト系耐熱鋼溶製材料が一般に用
いられている。
In the case of engines that use leaded gasoline as fuel, combustion products such as lead oxide, lead sulfide, and lead sulfate adhere to the valve and valve seat surfaces during combustion. Site-based heat-resistant steel ingot materials are generally used.

[発明が解決しようとする問題点〕 前述の如くガソリンエンジン用の弁座は、無鉛ガソリン
用として適するものと、有鉛ガソリン用として適するも
のに別れており、例えば、前記特公昭55−36242
号の弁座を有鉛ガソリンエンジンに適用すると、摩耗が
顕著に現われるようになる。また、マルテンサイト系耐
熱鋼溶製材料で作られた弁座を無鉛ガソリンエンジンに
適用しても同様な結果になる。そこで有鉛用、無鉛用ま
たは国内仕様、輸出仕様の区別無く使用Cきれば極めて
便利である。
[Problems to be Solved by the Invention] As mentioned above, valve seats for gasoline engines are divided into those suitable for use with unleaded gasoline and those suitable for use with leaded gasoline.
When this valve seat is applied to a leaded gasoline engine, wear becomes noticeable. Furthermore, similar results will be obtained if a valve seat made of martensitic heat-resistant steel is applied to an unleaded gasoline engine. Therefore, it would be extremely convenient if C could be used without distinction between leaded and unleaded products, domestic specifications, and export specifications.

本発明の目的は、内燃機関の燃料が無鉛ガソリンでも有
鉛ガソリンでも摩耗しにくい弁座を提供することにある
An object of the present invention is to provide a valve seat that is resistant to wear whether the fuel used in the internal combustion engine is unleaded gasoline or leaded gasoline.

[問題点を解決するための手段] 前記目的を達成するために、本発明にあっては、弁座の
材料を次のように構成することにより達成される。すな
わち、組成が重量比で01.2〜2゜7%、Si0.2
〜2.5%、Cr11〜27%、Mo0.6〜4%、■
2.5%以下およびFe残部からなる硬質な金属炭化物
が分散した鉄基地中に、CLIとpbの合計が全体組成
で15〜25重堡%分散し、且つCu:Pbの成分が重
量比で80:20乃至60:40であることを特徴とす
る焼結合金である。
[Means for Solving the Problems] In order to achieve the above object, the present invention is achieved by configuring the material of the valve seat as follows. That is, the composition is 01.2 to 2.7% by weight, Si0.2
~2.5%, Cr11~27%, Mo0.6~4%,■
In the iron base in which hard metal carbide consisting of 2.5% or less and the balance of Fe is dispersed, the total of CLI and PB is dispersed in the total composition of 15 to 25% by weight, and the Cu:Pb component is in the weight ratio. It is a sintered alloy characterized by a ratio of 80:20 to 60:40.

[作用] 次に各元素の作用について説明する。[Effect] Next, the effects of each element will be explained.

まず、基地組成について述べる。First, we will discuss base composition.

Cr二銑鉄基地固溶し高温強度を向上させる作用及びC
と結合し基地中に堅い炭化物を析出して耐摩耗性の向上
に寄与する成分である。含有量が11%未満では基地強
度が低すぎる。又、使用したときに酸化摩耗し易い。一
方、27%を越えても添加量の割に効果が少ない伯、無
鉛ガソリンでは反って摩耗し易くなる性質がある。
Effect of solid solution of Cr on two pig iron bases to improve high temperature strength and C
It is a component that contributes to improvement of wear resistance by combining with and precipitating hard carbide in the matrix. If the content is less than 11%, the base strength is too low. Also, it is prone to oxidative wear when used. On the other hand, even if it exceeds 27%, unleaded gasoline has little effect considering the amount added, and unleaded gasoline tends to warp and wear easily.

MO:C「と同様に炭化物生成元素であり、Crと同じ
作用をする。0.0%未満では効果が少なく、4%を越
えると酸化摩耗が大きくなる。
MO: Like C, it is a carbide-forming element and has the same effect as Cr. If it is less than 0.0%, it has little effect, and if it exceeds 4%, oxidative wear increases.

V:Cr、Moと同じ炭化物を形成する。■炭化物は比
較的硬い。少ない添加で効果があり、多過ぎると相手の
弁を摩耗させるので2.5%未満が良い。
V: Forms the same carbide as Cr and Mo. ■Carbide is relatively hard. A small amount is effective, and too much will wear out the other valve, so it is best to add less than 2.5%.

Si 二酸化摩耗を防止する目的で添加する元素であり
、0.2%添加で効果が現れ、2.5%を越えて添加し
ても添加の割に効果が少ない。
Si This is an element added for the purpose of preventing wear due to oxidation.It is effective when added at 0.2%, and even when added in excess of 2.5%, the effect is small considering the amount of addition.

C: Feに固溶し基地を強化すると共にCr。C: Solid solution in Fe to strengthen the base and Cr.

Mo、Vと結合して硬質な炭化物を析出させる作用をす
る。1.2%未満では炭化物生成量が少なく耐摩耗性が
期待できない。また、2.7%を越えると炭化物が粗大
化し、使用時に相手の弁の摩耗を増大させる。
It combines with Mo and V and acts to precipitate hard carbides. If it is less than 1.2%, the amount of carbide produced is small and wear resistance cannot be expected. Moreover, if it exceeds 2.7%, the carbide becomes coarse and increases the wear of the mating valve during use.

以上、鉄基地の特徴は、ビッカース硬さがHv2000
〜3000の硬質な析出炭化物(C「。
As mentioned above, the characteristics of the iron base are that the Vickers hardness is Hv2000.
~3000 hard precipitated carbides (C".

Fe) 7 C3,(Cr、Mo、Fe) 7 C3及
びVCを多量に含むよう構成されている。
It is configured to contain a large amount of Fe) 7 C3, (Cr, Mo, Fe) 7 C3 and VC.

次に、分散組成についてのべる。Next, we will talk about the dispersion composition.

CIJおよびPb:Cuは一部が基地に拡散し、基地を
強化する。又、一部が銅相の形で残り、銅の°好熱伝導
性は使用中に弁座の放熱性を良くする作用がある。
A portion of CIJ and Pb:Cu diffuses into the base and strengthens the base. In addition, a portion remains in the form of a copper phase, and the thermophilic conductivity of copper has the effect of improving the heat dissipation of the valve seat during use.

一方、pbは使用時に弁との凝着摩耗を防止する作用が
あり、無鉛ガソリン用には効果の大きい成分である。し
かし、有鉛ガソリンでは燃料中に含まれる硫黄と反応し
て燃焼生成物を作り、シートフェースに付着して摩耗を
促進させてしまう。
On the other hand, PB has the effect of preventing adhesive wear with valves during use, and is a highly effective component for unleaded gasoline. However, leaded gasoline reacts with the sulfur in the fuel to create combustion products that adhere to the seat face and accelerate wear.

CLIとPbが所定の状態で共存すると、無鉛と有鉛の
どちらでも摩耗しにくい性質が生まれる。
When CLI and Pb coexist in a predetermined state, both lead-free and leaded materials are resistant to wear.

Cuとpbの重量比が80 : 20乃至60:40の
範囲が良い。Cuの比率が80より多いとCuの性質が
顕著に現れ無鉛ガソリン用に於て摩耗が大きくなる。又
、Cuの比率が60より少ないとpbの性質が現れ有鉛
ガソリン用に於て摩耗が大きくなる。更に、Cuとpb
は基地中に分散した組織であることが肝要で、Cu中に
pbが゛分散した合金状態であることが好ましい。この
組織は鉄系焼結体にCu−Pbを溶浸する方法及び合金
鉄粉にCu−Pb粉を配合し、成形、焼結する方法によ
り得られる。Cuとpbの合計含有量は、全体組成で1
5%未満は前述の作用効果が少なく、25%を越えると
その分基地の量が少なくなって強度を低下させ耐摩耗性
も悪くなる。
The weight ratio of Cu to PB is preferably in the range of 80:20 to 60:40. When the ratio of Cu is more than 80, the properties of Cu become noticeable and wear increases when used for unleaded gasoline. Furthermore, if the Cu ratio is less than 60, the properties of PB will appear and wear will increase when used for leaded gasoline. Furthermore, Cu and pb
It is important that the structure be dispersed in the matrix, and it is preferable that the alloy be in an alloy state in which PB is dispersed in Cu. This structure is obtained by a method of infiltrating Cu-Pb into an iron-based sintered body, and a method of blending Cu-Pb powder with alloyed iron powder, forming, and sintering. The total content of Cu and PB is 1 in the overall composition.
If it is less than 5%, the above-mentioned effects will be small, and if it exceeds 25%, the amount of base will decrease accordingly, resulting in a decrease in strength and poor wear resistance.

[実施例] 以下、実施例により詳細に説明する。[Example] Hereinafter, it will be explained in detail using examples.

実施例1 実施例1は基材に銅分散、鉛分散、および銅鉛分散した
材料の摩耗特性比較をしたものである。
Example 1 Example 1 compares the wear characteristics of materials in which copper is dispersed, lead is dispersed, and copper-lead is dispersed in the base material.

まず、組成がFe−18,5Cr−1,2M。First, the composition is Fe-18,5Cr-1,2M.

−0,6V−0,5Si−1,80で粒度が100メツ
シユ以下の合金鉄粉にステアリン酸亜鉛を一〇、8%添
加して混合粉とし、弁座形状の所定寸法に圧縮成形した
後、アンモニア分解ガス雰囲気炉中、温度1150℃で
焼結した。
-0,6V-0,5Si-1,80 ferroalloy powder with a particle size of 100 mesh or less is added with 10.8% zinc stearate to make a mixed powder, and after compression molding into the specified dimensions of the valve seat shape. , sintered at a temperature of 1150° C. in an ammonia decomposition gas atmosphere furnace.

そして、Cu−3co合金粉の成形体とCu−30Pb
合金粉の成形体を準備し、それぞれ前記焼結体と共にア
ンモニア分解ガス雰囲気炉中、温度1150℃で溶浸処
理を行ない摩耗試験用の試料1および試料2を作成した
。Cu−Go合金のCOは、溶浸中に基材を浸蝕させな
い目的で添加しである。又、もう一種は前記焼結体を減
圧容器中で加熱保持後、Pb溶湯中に沈め窒素ガスで加
圧し鉛溶浸した試料3を準備した。
Then, a molded body of Cu-3co alloy powder and Cu-30Pb
A molded body of alloy powder was prepared, and infiltration treatment was performed together with the sintered body at a temperature of 1150° C. in an ammonia decomposition gas atmosphere furnace to create Sample 1 and Sample 2 for the wear test. CO in the Cu-Go alloy is added to prevent the base material from being eroded during infiltration. Another sample 3 was prepared in which the sintered body was heated and held in a vacuum container, then immersed in molten Pb, pressurized with nitrogen gas, and infiltrated with lead.

第1表にこれら試料の溶浸量、圧環強さ、及び熱伝導率
の測定結果を示す。
Table 1 shows the measurement results of the infiltration amount, radial crushing strength, and thermal conductivity of these samples.

溶浸量は約19%で、圧環強さは銅が多い組成はど高く
、熱伝導率も銅が多い組成はど良い。
The amount of infiltration is about 19%, the radial crushing strength is the highest in the copper-rich composition, and the thermal conductivity is also good in the copper-rich composition.

耐摩耗性の評価は2000cc、6気筒エンジンを用い
前記試料を所定形状に加工して装着し、回転数6000
回転で全負荷運転した。
The wear resistance was evaluated using a 2,000cc, 6-cylinder engine.The sample was machined into a predetermined shape and installed, and the engine was rotated at a rotational speed of 6,000.
It was operated at full load with rotation.

なお、弁の材質は耐熱鋼2l−4Nを用い、燃料は有鉛
ガソリン(3g、Pb/ガロン)と無鉛ガソリン(0,
5(] ・Pb/ガロン)について試験した。200時
間運転した弁座の摩耗量測定結果を第1図に示す。
The material of the valve is heat-resistant steel 2L-4N, and the fuel is leaded gasoline (3 g, Pb/gallon) and unleaded gasoline (0,
5(] Pb/gal). Figure 1 shows the results of measuring the amount of wear on the valve seat after 200 hours of operation.

これによると、銅溶浸試料1は有鉛ガソリンに良好であ
るが無鉛ガソリンでは摩耗が大きいことがわかる。鉛層
−浸試料3はその反対で有鉛ガソリンのとき摩耗が極め
て大きくなる。銅鉛合金溶浸試料2は有鉛、無鉛共に耐
摩耗性が良好である。
According to this, it can be seen that the copper infiltrated sample 1 is good against leaded gasoline, but wears significantly when unleaded gasoline is used. On the contrary, lead layer-soaked sample 3 shows extremely high wear when using leaded gasoline. Copper-lead alloy infiltrated sample 2 has good wear resistance for both leaded and unleaded samples.

第1表 試料          1  2  3溶浸面(%)
      18,3  18,5  19.8(%) 圧環強ざ(kq/li2 )   135  115 
  75(ka/mm2) 熱伝導率       0,17  0,13  0.
07(Cal/an、 s 、 ’C) 実施例2 実施例2は、有鉛ガソリン、無鉛ガソリン共に耐摩耗性
が良好な銅鉛分散材料において、Cu −P b合金の
Pb含有珊の効果を調べたものである。
Table 1 Sample 1 2 3 Infiltrated surface (%)
18.3 18.5 19.8 (%) Radial crushing strength (kq/li2) 135 115
75 (ka/mm2) Thermal conductivity 0.17 0.13 0.
07 (Cal/an, s, 'C) Example 2 In Example 2, we investigated the effect of Pb-containing coral in Cu-Pb alloy in a copper-lead dispersion material that has good wear resistance for both leaded and unleaded gasoline. This is what I researched.

合金鉄粉は実施例1と同じで、Cu−Pb合金粉1.t
Ptl fflが10%、20%、30%、40%の4
種類を準備し、合金鉄粉に各Cu−pb合金粉を20%
一定及びステアリン酸亜鉛を0.8%添加した各混合粉
とし、焼結密度8.0(II/C13になるように成形
した後、実施例1と同じ条件で焼結して試料4〜7を作
成した。
The alloyed iron powder was the same as in Example 1, and Cu-Pb alloy powder 1. t
Ptl ffl is 10%, 20%, 30%, 40% 4
Prepare the types and add 20% of each Cu-PB alloy powder to the alloy iron powder.
Mixed powders containing 0.8% of zinc stearate and 0.8% of zinc stearate were formed to give a sintered density of 8.0 (II/C13), and then sintered under the same conditions as Example 1 to obtain Samples 4 to 7. It was created.

エンジン試験は実施例1と同じ条件であり、試験後の弁
座摩耗量測定結果を第2図に示す。なお、図中に実施例
1の試料1および試料3の結果を付記しである。
The engine test was conducted under the same conditions as in Example 1, and the results of measuring the amount of valve seat wear after the test are shown in FIG. In addition, the results of Sample 1 and Sample 3 of Example 1 are added in the figure.

これによると、添加するCu−Pb合金のPb吊は20
〜40%の範囲にあるとき2種類の燃料のどちらでも摩
耗が少ない結果を示している。また、2゛0%より少な
いと無鉛ガソリンのとき、40%より多いと有鉛ガソリ
ンのときにそれぞれ摩耗が大きくなることがわかる。
According to this, the Pb suspension of the Cu-Pb alloy to be added is 20
In the range of ~40%, both of the two types of fuel show results with less wear. Further, it can be seen that if it is less than 20%, wear increases when using unleaded gasoline, and when it exceeds 40%, wear increases when using leaded gasoline.

実施例3 実施例3は実施例1および2の結果を踏まえ、Cu−3
0%pb合金を代表とし、合金鉄粉に添加する量と摩耗
の関係を調べたものである。
Example 3 Based on the results of Examples 1 and 2, Example 3
The relationship between the amount added to alloyed iron powder and wear was investigated using a 0% PB alloy as a representative example.

実施例1と同じ合金鉄粉Cu−30Pb合金粉を石意し
、CIJ−30Pb合金10%、15%。
The same alloy iron powder Cu-30Pb alloy powder as in Example 1 was used, and CIJ-30Pb alloy was 10% and 15%.

20%、25%、及び30%配合し、夫々ステアリン酸
亜鉛を0.8%添加して混合粉とし、焼結密度8.0g
/ca+3になるように成形した後、実施例1と同じ条
件で焼結して試料を作成した。エンジン試験は実施例1
と同じ条件であり、試験後の弁座摩耗量測定結果を第3
図に示す。
20%, 25%, and 30%, each with 0.8% zinc stearate added to make a mixed powder, sintered density 8.0g
/ca+3, and then sintered under the same conditions as Example 1 to prepare a sample. Engine test is Example 1
The conditions are the same as that of the third test, and the results of measuring the amount of valve seat wear after the test are
As shown in the figure.

これによると、Cu−30Pb合金の添加量は15〜2
5%の範囲内では有鉛ガソリン、無鉛ガソリン共に摩耗
は少ないが、範囲外では対摩耗性が劣るようになる。
According to this, the amount of Cu-30Pb alloy added is 15 to 2
Within the range of 5%, both leaded gasoline and unleaded gasoline have little wear, but outside this range, the wear resistance becomes poor.

実施例4 実施例4は、基地を形成する合金鉄の組成と耐摩耗性の
関係、及び従来材料との比較を行ったものである。
Example 4 In Example 4, the relationship between the composition and wear resistance of the ferroalloy forming the matrix and the comparison with conventional materials were conducted.

第2表中の組成は、合金鉄粉のFe及び不可避不純物を
除く主要成分を型苗%で示しており、各合金鉄粉にCt
j−30Pb合金を20%一定、夫々ステアリン酸亜鉛
を0.8%添加して混合粉にし、焼結密度8. Oa 
/ca+3になるように成形した後、実施例1と同じ条
件で焼結して試料6〜15を作成した。試料6〜9が本
発明の材料である。
The composition in Table 2 shows the main components of the ferroalloy powder excluding Fe and unavoidable impurities in percentages, and each ferroalloy powder contains Ct.
j-30Pb alloy at 20% constant and 0.8% zinc stearate added respectively to make a mixed powder, and the sintered density was 8. Oa
/ca+3, and then sintered under the same conditions as Example 1 to create Samples 6 to 15. Samples 6 to 9 are materials of the present invention.

以下余白 第2表 Na      CrMoVSiC 6発明材 18.5 1.2 0.6 0,5  1.
87   #   11,8 1.2 0,9 0,4
  1,88   、、  26,5 1,1 0.9
 1.3  1,99   II   18,5 1,
6 0.1 2.5  1.810  比較材  6.
10.51.80.32:211   、  31,2
 1,3 0.5 1,9  1,912   〃22
.5 4.9 1.1 0.5  1,513   r
t   18.4 1,3 2,5 0,5  1.6
14   #   18,2 1,2 0.8 0,5
  0.(315n   14,5 1.6 0,7 
0.5  3.116  従来材 F e−6,5Co
−1,5N i−0,8c15.Opb17   n 
  F e−20Cr −1,5N i−2S i−1
,QC又、試料16及び17は従来材であり、全体組成
で示しである。試料16は無鉛ガソリン用弁座に実績が
ある特公昭55−36242号のGo。
Margin below Table 2 Na CrMoVSiC 6 Invention material 18.5 1.2 0.6 0.5 1.
87 # 11,8 1.2 0,9 0,4
1,88 ,, 26,5 1,1 0.9
1.3 1,99 II 18,5 1,
6 0.1 2.5 1.810 Comparative material 6.
10.51.80.32:211, 31,2
1,3 0.5 1,9 1,912 〃22
.. 5 4.9 1.1 0.5 1,513 r
t 18.4 1,3 2,5 0,5 1.6
14 # 18,2 1,2 0.8 0,5
0. (315n 14,5 1.6 0,7
0.5 3.116 Conventional material Fe-6,5Co
-1,5N i-0,8c15. Opb17 n
Fe-20Cr-1,5N i-2S i-1
, QC Also, Samples 16 and 17 are conventional materials and are shown in overall composition. Sample 16 is Go, manufactured by Special Publication No. 55-36242, which has a proven track record for valve seats for unleaded gasoline.

Ni、Cを含む鉄系焼結合金に鉛溶浸した材料で、試料
17は5UH4耐熱鋼m製材ωを切削加工した弁座であ
る。
The material is a lead-infiltrated iron-based sintered alloy containing Ni and C. Sample 17 is a valve seat made by cutting a 5UH4 heat-resistant steel lumber ω.

エンジン試験は実施例1と同じ条件であり、試験後の弁
座の摩耗m測定結果を第3表に示す。
The engine test was carried out under the same conditions as in Example 1, and the results of measuring the wear m of the valve seat after the test are shown in Table 3.

第3表 鬼        摩耗1(μ−) 無鉛   有鉛 6 発明材     5545 7   #       50    608   #
       60    4G9   #     
  55    4510  比較材    230 
  25511   #       90    4
012   #       95    4513 
  #       105    4014   #
       135   15015   #   
    120    7516  従来材     
50   380″  17   tt      5
00    60これによると、本発明の基地鉄合金組
成の試料は有鉛ガソリン及び無鉛ガソリン共に少ない摩
耗結果を示しているが、試料10〜15の比較材は摩耗
量が大きいことがわかる。なお、比較材のうち試料11
及び試料12は摩耗量が比較的少ないが、相手の弁を摩
耗させるため好ましくない。
Table 3 Wear 1 (μ-) Lead-free Leaded 6 Invention material 5545 7 # 50 608 #
60 4G9 #
55 4510 Comparative material 230
25511 #90 4
012 #95 4513
# 105 4014 #
135 15015 #
120 7516 Conventional material
50 380″ 17 tt 5
00 60 According to this, it can be seen that the samples with the base iron alloy composition of the present invention show a small amount of wear in both leaded gasoline and unleaded gasoline, but the comparative materials of Samples 10 to 15 have a large amount of wear. In addition, among the comparative materials, sample 11
Sample 12 and Sample 12 have a relatively small amount of wear, but are not preferable because they wear out the other valve.

従来材は、ひとつの燃料に対しては優れた特性を示すが
、他方の燃料においては著しく摩耗することが分る。
It can be seen that the conventional material shows excellent properties with one fuel, but wears out significantly with the other fuel.

[発明・の効果] 以上詳述したように本発明の弁座は、有鉛ガソリンエン
ジン、有鉛ガソリンエンジンのいずれでも摩耗を小さく
抑えることができるようになり長期間に旦って安定して
機能するようになる。
[Effects of the invention] As detailed above, the valve seat of the present invention can suppress wear to a minimum in both leaded gasoline engines and leaded gasoline engines, and is stable over a long period of time. It becomes functional.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は焼結鉄合金に各稜材料を溶浸した弁座の摩耗結
果を示すグラフ、第2図は合金鉄粉に配合するCu−p
b合金粉のPb含有量と弁座の摩耗の関係を示すグラフ
、第3図は合金鉄粉に配合するCu−Pb合金粉の添加
mと弁座の摩耗の関係を示すグラフである2
Figure 1 is a graph showing the wear results of valve seats made by infiltrating sintered iron alloy with each ridge material, and Figure 2 is a graph showing the wear results of valve seats infiltrated with sintered iron alloy.
Figure 3 is a graph showing the relationship between the Pb content of the alloy powder and the wear of the valve seat, and Figure 3 is a graph showing the relationship between the addition m of Cu-Pb alloy powder mixed in the iron alloy powder and the wear of the valve seat.

Claims (1)

【特許請求の範囲】[Claims] 組成が重量比でC1.2〜2.7%、SiO0.2〜2
.5%、Cr11〜27%、Mo0.6〜4%、V2.
5%以下およびFe残部からなる炭化物分散鉄基地中に
、CuとPbの合計が全体組成重量比で15〜25%分
散し、且つCu:Pbの重量比が80:20乃至60:
40であることを特徴とする内燃機関の弁座用焼結合金
Composition is C1.2-2.7%, SiO0.2-2 by weight ratio
.. 5%, Cr11-27%, Mo0.6-4%, V2.
In the carbide-dispersed iron base consisting of 5% or less and the remainder Fe, the total of Cu and Pb is dispersed in a total composition weight ratio of 15 to 25%, and the weight ratio of Cu:Pb is 80:20 to 60:
40. A sintered alloy for a valve seat of an internal combustion engine, characterized in that the alloy is 40.
JP28897987A 1987-11-16 1987-11-16 Sintered alloy for valve seat of internal combustion engine Expired - Lifetime JPH07109024B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28897987A JPH07109024B2 (en) 1987-11-16 1987-11-16 Sintered alloy for valve seat of internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28897987A JPH07109024B2 (en) 1987-11-16 1987-11-16 Sintered alloy for valve seat of internal combustion engine

Publications (2)

Publication Number Publication Date
JPH01129951A true JPH01129951A (en) 1989-05-23
JPH07109024B2 JPH07109024B2 (en) 1995-11-22

Family

ID=17737272

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28897987A Expired - Lifetime JPH07109024B2 (en) 1987-11-16 1987-11-16 Sintered alloy for valve seat of internal combustion engine

Country Status (1)

Country Link
JP (1) JPH07109024B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6104085A (en) * 1994-10-28 2000-08-15 Hitachi, Ltd. Semiconductor device and method of producing the same
GB2451898A (en) * 2007-08-17 2009-02-18 Federal Mogul Sintered Prod Sintered valve seat

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6104085A (en) * 1994-10-28 2000-08-15 Hitachi, Ltd. Semiconductor device and method of producing the same
US6320270B1 (en) 1994-10-28 2001-11-20 Hitachi, Ltd. Semiconductor device and method of producing the same
US6392308B2 (en) 1994-10-28 2002-05-21 Hitachi, Ltd. Semiconductor device having bumper portions integral with a heat sink
US6492739B2 (en) 1994-10-28 2002-12-10 Hitachi, Ltd. Semiconductor device having bumper portions integral with a heat sink
GB2451898A (en) * 2007-08-17 2009-02-18 Federal Mogul Sintered Prod Sintered valve seat

Also Published As

Publication number Publication date
JPH07109024B2 (en) 1995-11-22

Similar Documents

Publication Publication Date Title
US5031878A (en) Valve seat made of sintered iron base alloy having high wear resistance
JPH01201439A (en) Heat-resistant and wear-resistant iron-based sintered alloy
KR920007937B1 (en) Fe-sintered alloy for valve seat
JP2003119553A (en) Sinterd alloy material for valve seat and manufacturing method therefor
JPH01129951A (en) Sintered alloy for valve seat for internal combustion engine
JPH0555589B2 (en)
JP2684774B2 (en) Iron-based sintered alloy for valve seats
JPH0555591B2 (en)
JPS60258449A (en) Sintered iron alloy for valve seat
JP3361113B2 (en) Valve seats and valves
JPS61117254A (en) Ferrous sintered alloy for valve seat
JPS60258450A (en) Sintered iron alloy for valve seat
JP2683444B2 (en) Sintered alloy for valve mechanism of internal combustion engine
JPH10310851A (en) Sintered alloy with high temperature wear resistance
JPS6164855A (en) Iron compound sintered alloy for valve seat
JPS60221557A (en) Sintered alloy superior in high temperature wear resistance
JP2571567B2 (en) High temperature wear resistant iron-based sintered alloy
JPS62207847A (en) Ferrous sintered alloy for valve seat
JP3331963B2 (en) Sintered valve seat and method for manufacturing the same
JPS5810460B2 (en) Engine cylinder head manufacturing method
JP2643741B2 (en) Two-layer valve seat made of lead impregnated iron-based sintered alloy for internal combustion engines
JPS6032711B2 (en) Fe-based sintered alloy for valve seats
JPH07109023B2 (en) Iron-based sintered alloy for valve sheet
JPS62133043A (en) Fe sintered material impregnated with cu
JPS63114945A (en) Sintered alloy member excellent in wear resistance and corrosion resistance