JPH07109024B2 - Sintered alloy for valve seat of internal combustion engine - Google Patents
Sintered alloy for valve seat of internal combustion engineInfo
- Publication number
- JPH07109024B2 JPH07109024B2 JP28897987A JP28897987A JPH07109024B2 JP H07109024 B2 JPH07109024 B2 JP H07109024B2 JP 28897987 A JP28897987 A JP 28897987A JP 28897987 A JP28897987 A JP 28897987A JP H07109024 B2 JPH07109024 B2 JP H07109024B2
- Authority
- JP
- Japan
- Prior art keywords
- wear
- valve seat
- alloy
- gasoline
- lead
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Powder Metallurgy (AREA)
Description
【発明の詳細な説明】 [産業上の利用分野] 本発明は、無鉛ガソリンおよび有鉛ガソリンのいずれで
も安定して機能する内燃機関用の弁座に関するものであ
る。TECHNICAL FIELD The present invention relates to a valve seat for an internal combustion engine that stably functions with both unleaded gasoline and leaded gasoline.
[従来の技術] 自動車の排ガス規制以降、内燃機関の弁座は無鉛ガソリ
ン(約0.5g Pb/ガロン)を前提に改良され、例えば特公
昭55−36242号のように焼結合金鋼の空孔内に鉛を含浸
した焼結材料が良好な耐摩耗性を示し、実用化されてい
る。[Prior Art] Since the exhaust gas regulations of automobiles, the valve seats of internal combustion engines have been improved on the premise of unleaded gasoline (about 0.5 g Pb / gallon). A sintered material in which lead is impregnated has good wear resistance and has been put to practical use.
また、この種の弁座には、特開昭51−37011号、特公昭5
1−44684号、特開昭60−258449号のように、焼結合金鋼
の空孔内に銅鉛合金を含浸した焼結材料が挙げられる。Further, a valve seat of this type is disclosed in JP-A-51-37011 and JP-B-5.
As described in JP-A No. 1-44684 and JP-A No. 60-258449, a sintered material obtained by impregnating the pores of a sintered alloy steel with a copper-lead alloy is mentioned.
しかし、世界的にみると欧州、豪州、中近東地区等では
エンジン出力向上の目的からいまだ有鉛ガソリン(例え
ば約3g Pb/ガロン)を使用しているのが実状である。However, in the world, Europe, Australia, the Middle East, etc. are still using leaded gasoline (for example, about 3 g Pb / gallon) for the purpose of improving engine output.
有鉛ガソリンを燃料に用いるエンジンの場合、燃焼時に
酸化鉛、硫化鉛、硫酸鉛、等の燃焼生成物が弁および弁
座表面に付着するため通常の焼結合金では摩耗し易いと
ころから、マルテンサイト系耐熱鋼溶製材料が一般に用
いられている。In the case of an engine using leaded gasoline as a fuel, combustion products such as lead oxide, lead sulfide, and lead sulfate adhere to the valve and valve seat surfaces during combustion, and are easily worn by ordinary sintered alloys. Site-based heat-resistant steel ingot material is generally used.
[発明が解決しようとする問題点] 前述の如くガソリンエンジン用の弁座は、無鉛ガソリン
用として適するものと、有鉛ガソリン用として適するも
のに別れており、例えば、前記特公昭55−36242号の弁
座を有鉛ガソリンエンジンに適用すると、摩耗が顕著に
現われるようになる。また、マルテンサイト系耐熱鋼溶
製材料で作られた弁座を無鉛ガソリンエンジンに適用し
ても同様な結果になる。そこで有鉛用、無鉛用または国
内仕様、輸出仕様の区別無く使用できれば極めて便利で
ある。[Problems to be Solved by the Invention] As described above, valve seats for gasoline engines are classified into those suitable for unleaded gasoline and those suitable for leaded gasoline. For example, the above Japanese Patent Publication No. 55-36242. When the valve seat of No. 1 is applied to a leaded gasoline engine, wear becomes noticeable. Also, the same result can be obtained by applying a valve seat made of molten martensitic heat-resistant steel to an unleaded gasoline engine. Therefore, it would be extremely convenient if it can be used for lead-free, lead-free, domestic or export specifications.
本発明の目的は、内燃機関の燃料が無鉛ガソリンでも有
鉛ガソリンでも摩耗しにくい弁座を提供することにあ
る。An object of the present invention is to provide a valve seat that is resistant to wear regardless of whether the fuel of the internal combustion engine is unleaded gasoline or leaded gasoline.
[問題点を解決するための手段] 前記目的を達成するために、本発明にあっては、弁座の
材料を次のように構成することにより達成される。すな
わち、組成が重量比でC1.2〜2.7%、Si0.2〜2.5%、Cr1
1〜27%、Mo0.6〜4%、V2.5%以下およびFe残部からな
る硬質な金属炭化物が分散した鉄基地中に、CuとPbの合
計が全体組成で15〜25重量%分散し、且つCu:Pbの成分
が重量比で80:20乃至60:40であることを特徴とする焼結
合金である。[Means for Solving the Problems] In order to achieve the above object, the present invention is achieved by configuring the material of the valve seat as follows. That is, the composition is C1.2-2.7% by weight ratio, Si0.2-2.5%, Cr1
The total composition of Cu and Pb is 15-25% by weight in the total composition in the iron matrix in which the hard metal carbide consisting of 1 to 27%, Mo 0.6 to 4%, V2.5% or less and the balance of Fe is dispersed. The sintered alloy is characterized in that the weight ratio of Cu: Pb is 80:20 to 60:40.
[作用] 次に各元素の作用について説明する。[Action] Next, the action of each element will be described.
まず、基地組成について述べる。First, the base composition will be described.
Cr:鉄基地に固溶し高温強度を向上させる作用及びCと
結合し基地中に堅い炭化物を析出して耐摩耗性の向上に
寄与する成分である。含有量が11%未満では基地強度が
低すぎる。又、使用したときに酸化摩耗し易い。一方、
27%を超えても添加量の割に効果が少ない他、無鉛ガソ
リンでは反って摩耗し易くなる性質がある。Cr: A component that forms a solid solution in the iron matrix to improve the high temperature strength and combines with C to precipitate a hard carbide in the matrix and contribute to the improvement of wear resistance. If the content is less than 11%, the matrix strength is too low. Also, it is easily oxidized and worn when used. on the other hand,
Even if it exceeds 27%, the effect is small relative to the amount added, and unleaded gasoline has the property of being easily warped due to warping.
Mo;Crと同様に炭化物生成元素であり、Crと同じ作用を
する。0.6%未満では効果が少なく、4%を越えると酸
化摩耗が大きくなる。Like Mo; Cr, it is a carbide-forming element and has the same function as Cr. If it is less than 0.6%, the effect is small, and if it exceeds 4%, oxidative wear increases.
V;Cr,Moと同じ炭化物を形成する。V炭化物は比較的硬
い。少ない添加で効果があり、多過ぎると相手の弁を摩
耗させるので2.5%未満が良い。V; Forms the same carbides as Cr and Mo. V-carbides are relatively hard. Less addition is effective, and if too much is added, the valve of the other party will be worn away, so less than 2.5% is preferable.
Si;酸化摩耗を防止する目的で添加する元素であり、0.2
%添加で効果が現れ、2.5%を越えて添加しても添加の
割に効果が少ない。Si; an element added for the purpose of preventing oxidative wear, 0.2
% Addition, the effect appears, and even if added over 2.5%, the effect is small compared to the addition.
C;Feに固溶し基地を強化すると共にCr,Mo,Vと結合して
硬質な炭化物を析出させる作用をする。1.2%未満では
炭化物生成量が少なく耐摩耗性が期待できない。また、
2.7%を越えると炭化物が粗大化し、使用時に相手の弁
の摩耗を増大させる。It acts as a solid solution in C; Fe, strengthens the matrix, and combines with Cr, Mo, and V to precipitate hard carbides. If it is less than 1.2%, the amount of carbide produced is small and wear resistance cannot be expected. Also,
If it exceeds 2.7%, the carbides become coarse and increase the wear of the mating valve during use.
以上、鉄基地の特徴は、ビッカース硬さがHv2000〜3000
の硬質な析出炭化物(Cr,Fe)7 C3,(Cr,Mo,Fe)7
C3及びVCを多量に含むよう構成されている。As mentioned above, the characteristic of the iron base is that the Vickers hardness is Hv2000-3000.
Hard precipitated carbide (Cr, Fe) 7 C3, (Cr, Mo, Fe) 7
It is configured to contain a large amount of C3 and VC.
次に、分散組成についてのべる。Next, the dispersion composition will be described.
CuおよびPb;Cuは一部が基地に拡散し、基地を強化す
る。又、一部が銅相の形で残り、銅の好熱伝導性は使用
中に弁座の放熱性を良くする作用がある。Cu and Pb; Cu partially diffuse into the base and strengthen the base. Further, part of the copper phase remains in the form of a copper phase, and the thermophilic conductivity of copper has the effect of improving the heat dissipation of the valve seat during use.
一方、Pbは使用時に弁との凝着摩耗を防止する作用があ
り、無鉛ガソリン用には効果の大きい成分である。しか
し、有鉛ガソリンでは燃料中に含まれる硫黄と反応して
燃焼生成物を作り、シートフェースに付着して摩耗を促
進させてしまう。On the other hand, Pb has a function of preventing adhesive wear with the valve during use, and is a highly effective component for unleaded gasoline. However, in leaded gasoline, it reacts with sulfur contained in the fuel to produce combustion products, which adhere to the seat face and accelerate wear.
CuとPbが所定の状態で共存すると、無鉛と有鉛のどちら
でも摩耗しにくい性質が生まれる。CuとPbの重量比が8
0:20乃至60:40の範囲が良い。Cuの比率が80より多いとC
uの性質が顕著に現れ無鉛ガソリン用に於て摩耗が大き
くなる。又、Cuの比率が60より少ないとPbの性質が現れ
有鉛ガソリン用に於て摩耗が大きくなる。更に、CuとPb
は基地中に分散した組織であることが肝要で、Cu中にPb
が分散した合金状態であることが好ましい。この組織は
鉄系焼結体にCu−Pbを溶浸する方法及び合金鉄粉にCu−
Pb粉を配合し、成形、焼結する方法により得られる。Cu
とPbの合計含有量は、全体組成で15%未満は前述の作用
効果が少なく、25%を越えるとその分基地の量が少なく
なって強度を低下させ耐摩耗性も悪くなる。When Cu and Pb coexist in a given state, both lead-free and lead-containing properties are less likely to wear. The weight ratio of Cu and Pb is 8
The range from 0:20 to 60:40 is good. C when the ratio of Cu is more than 80
The property of u appears remarkably and wear becomes large in unleaded gasoline. Further, when the ratio of Cu is less than 60, the property of Pb appears and wear becomes large in leaded gasoline. In addition, Cu and Pb
It is important that the structure is a structure dispersed in the base, and Pb is contained in Cu.
Is preferably dispersed in an alloy state. This structure is obtained by infiltrating Cu-Pb into the iron-based sintered body and Cu-Pb in the alloy iron powder.
It is obtained by a method of blending Pb powder, molding and sintering. Cu
If the total content of Pb and Pb is less than 15% in the total composition, the above-mentioned action and effect are small, and if it exceeds 25%, the amount of matrix is reduced accordingly and the strength is lowered and the wear resistance is also deteriorated.
[実施例] 以下、実施例により詳細に説明する。[Examples] Hereinafter, examples will be described in detail.
実施例1 実施例1は基材に銅分散、鉛分散、および銅鉛分散した
材料の摩耗特性比較をしたものである。Example 1 Example 1 is a comparison of wear characteristics of materials in which copper is dispersed, lead is dispersed, and copper-lead is dispersed in a base material.
まず、組成がFe−18.5Cr−1.2Mo−0.6V−0.5Si−1.8Cで
粒度が100メッシュ以下の合金鉄粉にステアリン酸亜鉛
を0.8%添加して混合粉とし、弁座形状の所定寸法に圧
縮成形した後、アンモニア分解ガス雰囲気炉中、温度11
50℃で焼結した。First, 0.8% zinc stearate was added to alloy iron powder with a composition of Fe-18.5Cr-1.2Mo-0.6V-0.5Si-1.8C and a grain size of 100 mesh or less to form a mixed powder, and the predetermined size of the valve seat shape was determined. After compression molding, the temperature was set to 11 in an ammonia decomposition gas atmosphere furnace.
Sintered at 50 ° C.
そして、Cu−3Co合金粉の成形体とCu−30Pb合金粉の成
形体を準備し、それぞれ前記焼結体と共にアンモニア分
解ガス雰囲気炉中、温度1150℃で溶浸処理を行ない摩耗
試験用の試料1および試料2を作成した。Cu−Co合金の
Coは、溶浸中に基材を浸蝕させない目的で添加してあ
る。又、もう一種は前記焼結体を減圧容器中で加熱保持
後、Pb溶湯中に沈め窒素ガスで加圧し鉛溶浸した試料3
を準備した。Then, a molded body of Cu-3Co alloy powder and a molded body of Cu-30Pb alloy powder were prepared, and each of them was subjected to infiltration treatment at a temperature of 1150 ° C. in an ammonia decomposition gas atmosphere furnace together with the sintered body, and a sample for wear test. 1 and sample 2 were prepared. Cu-Co alloy
Co is added for the purpose of not corroding the base material during infiltration. The other type is Sample 3 in which the sintered body is heated and held in a decompression container, immersed in a Pb molten metal, pressurized with nitrogen gas, and infiltrated with lead.
Prepared.
第1表にこれら試料の溶浸量、圧環強さ、及び、熱伝導
率の測定結果を示す。Table 1 shows the measurement results of the infiltration amount, radial crushing strength, and thermal conductivity of these samples.
溶浸量は約19%で、圧環強さは銅が多い組成ほど高く、
熱伝導率も銅が多い組成ほど良い。The infiltration amount is about 19%, and the radial crushing strength is higher in the composition with more copper,
The composition with more copper also has better thermal conductivity.
耐摩耗性の評価は2000cc、6気筒エンジンを用い前記試
料を所定形状に加工して装着し、回転数6000回転で前負
荷運転した。The wear resistance was evaluated by using a 2000 cc, 6-cylinder engine, processing the sample into a predetermined shape, and mounting the sample, followed by preload operation at a rotation speed of 6000 rpm.
なお、弁の材質は耐熱鋼21−4Nを用い、燃料は有鉛ガソ
リン(3g,Pb/ガロン)と無鉛ガソリン(0.5g・Pb/ガロ
ン)について試験した。200時間運転した弁座の摩耗量
測定結果を第1図に示す。Heat-resistant steel 21-4N was used as the material of the valve, and the fuel was tested with leaded gasoline (3 g, Pb / gallon) and unleaded gasoline (0.5 gPb / gallon). Fig. 1 shows the results of measuring the amount of wear of the valve seat after operating for 200 hours.
これによると、銅溶浸試料1は有鉛ガソリンに良好であ
るが無鉛ガソリンでは摩耗が大きいことがわかる。鉛溶
浸試料3はその反対で有鉛ガソリンのとき摩耗が極めて
大きくなる。銅鉛合金溶浸試料2は有鉛、無鉛共に耐摩
耗性が良好である。According to this, it is understood that the copper infiltration sample 1 is good for leaded gasoline, but has large wear for unleaded gasoline. On the contrary, the lead-infiltrated sample 3 has extremely large wear in the case of leaded gasoline. The copper-lead alloy infiltrated sample 2 has good wear resistance both with lead and without lead.
実施例2 実施例2は、有鉛ガソリン、無鉛ガソリン共に耐摩耗性
が良好な銅鉛分散材料において、Cu−Pb合金のPb含有量
の効果を調べたものである。 Example 2 Example 2 investigates the effect of the Pb content of a Cu-Pb alloy in a copper-lead dispersion material having good wear resistance in both leaded gasoline and unleaded gasoline.
合金鉄粉は実施例1と同じで、Cu−Pb合金粉はPb量が10
%,20%,30%,40%の4種類を準備し、合金鉄粉に各Cu
−Pb合金粉を20%一定及びステアリン酸亜鉛を0.8%添
加した各混合粉とし、焼結密度8.0g/cm3になるように成
形した後、実施例1と同じ条件で焼結して試料4〜7を
作成した。The alloy iron powder is the same as in Example 1, and the Cu-Pb alloy powder has a Pb content of 10
%, 20%, 30%, and 40% are prepared, and each alloy iron powder contains Cu
-Pb alloy powder of 20% constant and zinc stearate 0.8% were added to form mixed powders, each of which was molded to have a sintering density of 8.0 g / cm 3 , and then sintered under the same conditions as in Example 1 to obtain a sample. 4-7 were created.
エンジン試験は実施例1と同じ条件であり、試験後の弁
座摩耗量測定結果を第2図に示す。なお、図中に実施例
1の試料1および試料3の結果を付記してある。The engine test was conducted under the same conditions as in Example 1, and the measurement results of the valve seat wear amount after the test are shown in FIG. The results of Sample 1 and Sample 3 of Example 1 are additionally shown in the figure.
これによると、添加するCu−Pb合金のPb量は20〜40%の
範囲にあるとき2種類の燃料のどちらでも摩耗が少ない
結果を示している。また、20%より少ないと無鉛ガソリ
ンのとき、40%より多いと有鉛ガソリンのときにそれぞ
れ摩耗が大きくなることがわかる。According to this, when the Pb amount of the added Cu-Pb alloy is in the range of 20 to 40%, the result shows that the wear is small with both of the two types of fuel. Also, it can be seen that when the amount is less than 20%, unleaded gasoline increases, and when the amount exceeds 40%, unleaded gasoline increases wear.
実施例3 実施例3は実施例1および2の結果を踏まえ、Cu−30%
Pb合金を代表とし、合金鉄粉に添加する量と摩耗の関係
を調べたものである。Example 3 Example 3 was based on the results of Examples 1 and 2 and had a Cu-30% content.
The relation between the amount added to iron alloy powder and wear was investigated, using Pb alloy as a representative.
実施例1と同じ合金鉄粉Cu−30Pb合金粉を用意し、Cu−
30Pb合金10%,15%,20%,25%,及び30%配合し、夫々
ステアリン酸亜鉛を0.8%添加して混合粉とし、焼結密
度8.0g/cm3になるように成形した後、実施例1と同じ条
件で焼結して試料を作成した。エンジン試験は実施例1
と同じ条件であり、試験後の弁座摩耗量測定結果を第3
図に示す。The same alloy iron powder Cu-30Pb alloy powder as in Example 1 was prepared, and Cu-
30Pb alloy 10%, 15%, 20%, 25%, and 30% were compounded, 0.8% of zinc stearate was added to each to make a mixed powder, and the mixture was molded to have a sintered density of 8.0 g / cm 3 . A sample was prepared by sintering under the same conditions as in Example 1. Example 1 engine test
Under the same conditions as above, the valve seat wear measurement result after the test is
Shown in the figure.
これによると、Cu−30Pb合金の添加量は15〜25%の範囲
内では有鉛ガソリン、無鉛ガソリン共に摩耗は少ない
が、範囲外では対摩耗性が劣るようになる。According to this, when the addition amount of the Cu-30Pb alloy is within the range of 15 to 25%, both leaded gasoline and unleaded gasoline have little wear, but outside the range, wear resistance becomes inferior.
実施例4 実施例4は、基地を形成する合金鉄の組成と耐摩耗性の
関係、及び従来材料との比較を行ったものである。Example 4 In Example 4, the relationship between the composition of the ferroalloy forming the matrix and the wear resistance, and comparison with the conventional material were performed.
第2表中の組成は、合金鉄粉のFe及び不可避不純物を除
く主要成分を重量%で示しており、各合金鉄粉にCu−30
Pb合金を20%一定、夫々ステアリン酸亜鉛を0.8%添加
して混合粉にし、焼結密度8.0g/cm3になるように成形し
た後、実施例1と同じ条件で焼結して試料6〜15を作成
した。試料6〜9が本発明の材料である。The composition in Table 2 shows the main components excluding Fe and unavoidable impurities of the alloy iron powder in% by weight.
Pb alloy was kept constant at 20% and zinc stearate was added at 0.8% to form a mixed powder, which was molded to a sintered density of 8.0 g / cm 3 and then sintered under the same conditions as in Example 1 to obtain Sample 6 ~ 15 created. Samples 6-9 are materials of the invention.
又、試料16及び17は従来材であり、全体組成で示してあ
る。試料16は無鉛ガソリン用弁座に実績がある特公昭55
−36242号のCo,Ni,Cを含む鉄系焼結合金に鉛溶浸した材
料で、試料17はSUH4耐熱鋼溶製材量を切削加工した弁座
である。 Further, Samples 16 and 17 are conventional materials and are shown by the overall composition. Specimen 16 is Japanese Examined Sho 55 which has a proven record in unleaded gasoline valve seats.
-No. 36242 is a material obtained by infiltrating lead into an iron-based sintered alloy containing Co, Ni, and C, and sample 17 is a valve seat that is machined from SUH4 heat-resistant steel.
エンジン試験は実施例1と同じ条件であり、試験後の弁
座の摩耗量測定結果を第3表に示す。The engine test was conducted under the same conditions as in Example 1, and Table 3 shows the measurement results of the amount of wear of the valve seat after the test.
これによると、本発明の基地鉄合金組成の試料は有鉛ガ
ソリン及び無鉛ガソリン共に少ない摩耗結果を示してい
るが、試料10〜15の比較材は摩耗量が大きいことがわか
る。なお、比較材のうち試料11及び試料12は摩耗量が比
較的少ないが、相手の弁を摩耗させるため好ましくな
い。 According to this, the samples of the base iron alloy composition of the present invention show less wear results for both leaded gasoline and unleaded gasoline, but it is understood that the comparative materials of Samples 10 to 15 have large wear amounts. Note that among the comparative materials, Samples 11 and 12 have a relatively small amount of wear, but they are not preferable because they wear the mating valve.
従来材は、ひとつの燃料に対しては優れた特性を示す
が、他方の燃料においては著しく摩耗することが分る。It can be seen that the conventional material shows excellent properties for one fuel, but it significantly wears for the other fuel.
[発明の効果] 以上詳述したように本発明の弁座は、有鉛ガソリンエン
ジン、有鉛ガソリンエンジンのいずれでも摩耗を小さく
抑えることができるようになり長期間に亘って安定して
機能するようになる。[Advantages of the Invention] As described in detail above, the valve seat of the present invention can suppress wear in both a leaded gasoline engine and a leaded gasoline engine to a small extent, and functions stably over a long period of time. Like
【図面の簡単な説明】 第1図は焼結鉄合金に各種材料を溶浸した弁座の摩耗結
果を示すグラフ、第2図は合金鉄粉に配合するCu−Pb合
金粉のPb含有量と弁座の摩耗の関係を示すグラフ、第3
図は合金鉄粉に配合するCu−Pb合金粉の添加量と弁座の
摩耗の関係を示すグラフである。[Brief Description of Drawings] FIG. 1 is a graph showing wear results of valve seats in which various materials are infiltrated into a sintered iron alloy, and FIG. 2 is a Pb content of Cu-Pb alloy powder blended with iron alloy powder. Graph showing the relationship between wear and valve seat wear, No. 3
The figure is a graph showing the relationship between the amount of Cu—Pb alloy powder added to the iron alloy powder and the wear of the valve seat.
Claims (1)
%,Cr11〜27%,Mo0.6〜4%,V2.5%以下およびFe残部か
らなる炭化物分散鉄基地中に、CuとPbの合計が全体組成
重量比で15〜25%分散し、且つCu:Pbの重量比が80:20乃
至60:40であることを特徴とする内燃機関の弁座用焼結
合金。1. A composition of C1.2-2.7% by weight and Si0.2-2.5 by weight.
%, Cr11 to 27%, Mo0.6 to 4%, V2.5% or less, and a balance of Fe in a carbide-dispersed iron matrix, the total of Cu and Pb is dispersed by 15 to 25% in the total composition weight ratio, and A sintered alloy for a valve seat of an internal combustion engine, characterized in that a weight ratio of Cu: Pb is 80:20 to 60:40.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28897987A JPH07109024B2 (en) | 1987-11-16 | 1987-11-16 | Sintered alloy for valve seat of internal combustion engine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28897987A JPH07109024B2 (en) | 1987-11-16 | 1987-11-16 | Sintered alloy for valve seat of internal combustion engine |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01129951A JPH01129951A (en) | 1989-05-23 |
JPH07109024B2 true JPH07109024B2 (en) | 1995-11-22 |
Family
ID=17737272
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP28897987A Expired - Lifetime JPH07109024B2 (en) | 1987-11-16 | 1987-11-16 | Sintered alloy for valve seat of internal combustion engine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH07109024B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2844316B2 (en) | 1994-10-28 | 1999-01-06 | 株式会社日立製作所 | Semiconductor device and its mounting structure |
GB2451898A (en) * | 2007-08-17 | 2009-02-18 | Federal Mogul Sintered Prod | Sintered valve seat |
-
1987
- 1987-11-16 JP JP28897987A patent/JPH07109024B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH01129951A (en) | 1989-05-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3952344B2 (en) | Wear-resistant iron-based sintered alloy material for valve seat and valve seat made of iron-based sintered alloy | |
JP2003268414A (en) | Sintered alloy for valve seat, valve seat and its manufacturing method | |
KR920007937B1 (en) | Fe-sintered alloy for valve seat | |
JPH01201439A (en) | Heat-resistant and wear-resistant iron-based sintered alloy | |
JP3784926B2 (en) | Ferrous sintered alloy for valve seat | |
JP3763782B2 (en) | Method for producing wear-resistant iron-based sintered alloy material for valve seat | |
JP3186816B2 (en) | Sintered alloy for valve seat | |
JP2706561B2 (en) | Valve seat material for internal combustion engine and method of manufacturing the same | |
JPH0555593B2 (en) | ||
JPH07109024B2 (en) | Sintered alloy for valve seat of internal combustion engine | |
JP3225649B2 (en) | Wear resistant iron-based sintered alloy | |
JPH0555592B2 (en) | ||
JP2716575B2 (en) | Manufacturing method of wear resistant iron-based sintered alloy | |
JPH0555591B2 (en) | ||
JP2683444B2 (en) | Sintered alloy for valve mechanism of internal combustion engine | |
JPS61117254A (en) | Ferrous sintered alloy for valve seat | |
KR0118773B1 (en) | Sintered alloy steel for valve seat | |
JPS589830B2 (en) | Sintered alloy for corrosion-resistant sliding parts | |
JPS5810460B2 (en) | Engine cylinder head manufacturing method | |
JPH07116489B2 (en) | Manufacturing method of infiltration valve seat ring | |
JP3763605B2 (en) | Sintered alloy material for valve seats | |
JP3068127B2 (en) | Wear-resistant iron-based sintered alloy and method for producing the same | |
JPH0543998A (en) | Valve seat made of metal-filled fe-base sintered alloy extremely reduced in attack on mating material | |
JP3331963B2 (en) | Sintered valve seat and method for manufacturing the same | |
JP2677813B2 (en) | High temperature wear resistant iron-based sintered alloy |