JPH0555593B2 - - Google Patents

Info

Publication number
JPH0555593B2
JPH0555593B2 JP60149475A JP14947585A JPH0555593B2 JP H0555593 B2 JPH0555593 B2 JP H0555593B2 JP 60149475 A JP60149475 A JP 60149475A JP 14947585 A JP14947585 A JP 14947585A JP H0555593 B2 JPH0555593 B2 JP H0555593B2
Authority
JP
Japan
Prior art keywords
sample
hard phase
alloy
temperature
wear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60149475A
Other languages
Japanese (ja)
Other versions
JPS6210244A (en
Inventor
Keitaro Suzuki
Minoru Uchino
Hiroyuki Endo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Resonac Corp
Original Assignee
Hitachi Powdered Metals Co Ltd
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Powdered Metals Co Ltd, Nissan Motor Co Ltd filed Critical Hitachi Powdered Metals Co Ltd
Priority to JP14947585A priority Critical patent/JPS6210244A/en
Publication of JPS6210244A publication Critical patent/JPS6210244A/en
Publication of JPH0555593B2 publication Critical patent/JPH0555593B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は主に内燃機関の弁座用に開発された、
耐摩耗性の高い焼結合金に関するものである。 昭和40年代の中頃以降、自動車のエンジンには
先ず排ガス規制の対策を、次いで規制前に優る動
力性能と低燃費の実現を目指して激しい技術革新
が行なわれ、エンジンの作動条件は益々過酷にな
りつつある。そしてその結果、エンジンの動弁機
構を構成する各部材も従来の材質では耐熱性・耐
摩耗性などが不足して代替材料の開発が急務とな
り、本件出願人も下記の如き新材料を逐次開発し
てきた。 特公昭49−17968(45年出願) 特公昭55−36242(50年出願) 特公昭57−56547(53年出願) 特公昭59−37343(55年出願) この内、およびはそれぞれの時期における
要求特性に対応した材料、は所要の特性を保ち
ながらコスト低減を図つた材料、は更に厳しく
なつた要求特性に対応した材料である。 しかし、その後も続いているエンジンの改良に
より、弁座用材料の特性、特に耐摩耗性に対する
要望は最近更に厳しくなつてきた。また、弁座の
摩耗については燃料の種類(無鉛ガソリン、有鉛
ガソリン、LPG……)も大きな影響を及ぼすが、
自動車の国際商品としての性格上、仕向け地毎に
異なる諸条件に対しても広汎に対応できる品質が
望ましいのは当然のことである。 本発明はこの様な事情に基づいてなされたもの
で、これまでの経験から上記に係る合金、即ち
重量比でNi0.5〜3%、Mo0.5〜3%、Co5.5〜
7.5%、C0.6〜1.2%およびFe残部の合金を主体と
して改良を行なつた結果、この組成に基地中に選
択された硬質相を、即ちMo33〜36%、Si4〜12%
およびCo残部(63〜52%)の金属間化合物また
はMo26〜30%Cr7〜9%、Si1.5〜2.5%およびCo
残部(65.5〜58.5%)の金属間化合物を5〜25%
分散させることによつて所期の目的を達成したも
のである。ちなみに、これらの金属間化合物はそ
れぞれ上記の組成範囲の合金粉として、前者はキ
ヤボツト社からトリバロイの商品名で、後者は福
田金属箔粉からコバメツトの商品名で市販されて
いるものである。 本発明の合金は焼結後の後処理によつて、その
特性をエンジンの性格に応じて向上させることが
できる。例えば、作動温度は比較的に低いが摩耗
しやすい場合や、LPGのように燃料中には減摩
成分が含まれない場合には焼結材の空孔内に鉛を
溶浸するのが有効であり、デイーゼルエンジンの
ように特に高温・高圧縮比になる場合とか、有鉛
ガソリンの常用によりスラツジが付着する場合に
は、焼結材を再圧縮して高密度化するのが有効で
ある。なお合金組織をより安定させるためには、
焼結後に調質の意味で焼入れ焼戻しを施すことが
望ましい。ただし鉛の溶浸を行なう場合は、溶浸
温度が550℃前後と高いので、調質に近い効果を
得ることができる。 以下本発明を実施例について詳細に説明する。 先ず、基地の組成から炭素を除いた組成の合金
粉末、即ち重量比で1.5%のNi、1.5%のMoと6.5
%のCoを含む粒度100メツシユ以下のアトマイズ
合金鉄粉を主原料として用意し、また基地中に分
散させる硬質相の形成用として、Mo28%、Cr8
%、Si2%およびCo62%の金属間化合物粉末(コ
バメツト)を用意した。 次に試料の作製であるが、先ず硬質相を含まな
い比較試料として、上記合金鉄粉に黒鉛粉1%と
潤滑剤としてステアリン酸亜鉛0.8%を混合して
圧粉密度6.9g/cm3の所定の形状に成形後、アン
モニア分解ガス炉中で温度1200℃、20分間の焼結
を行なつた。また本発明の例として、上記金属間
化合物粉末の所定量を合金鉄粉に添加し、黒鉛と
潤滑剤の配合、成形および焼結は比較試料の場合
と同様にした試料(試料1)を作製した。 かくして得られた試料の内、比較試料と硬質相
含有量が15%の本発明試料1について、高温にお
ける機械的性質の試験結果を第1図に示す。 弁座は、一般にシリンダー内の取付孔に締まり
嵌めで固定されているに過ぎないので、その強度
が不充分な場合は、加熱と冷却が反復される稼動
中に脱落するおそれがある。また同じ理由から、
熱膨張係数は小さい方が望ましい。この観点から
第1図を見ると、破線で示した比較試料の場合は
低温では高い圧環強度を示すものの、高温域では
著しく低下しいる。これに対して実線で示した本
発明試料の場合は、低温域から高温域を通して安
定した強度を保ち、400℃以上では比較試料より
も高い強度を示している。また熱膨張係数の点で
も、この方が優つていることが判る。 なお、試料1の硬質相を第2発明における硬質
相、則ちMo34%、Si8%およびCo58%の金属間
化合物粉末(トリバロイ)所定量で置換した本発
明試料(試料2)の場合は、熱膨張係数は温度
100℃では試料1と等しく、以後昇温につれて漸
減し、500℃では試料1の12.8に対して12.5の値
を示す。また圧環強さは試料1の100℃で72、500
℃で67Kg/mm2に対して試料2は100℃で70、500℃
で65Kg/mm2と、曲線全体に亙つて約2Kg/mm2低下
している。これは両硬質相に靭性の差に因ると考
えられる。試料2のデータは繁雑を避け、図示を
省略する。 次に硬質相の含有量の影響を見るため、各試料
の空孔内に550℃で鉛を溶浸し、模擬エンジン試
験機を用いて各弁座の摩耗量を比較した。この試
験機はLPG燃焼ガスで弁および弁座を所定の温
度に加熱しながらカム軸をモーターで駆動する機
構で、温度、回転数、弁のスプリング圧力などを
任意に設定でき、短期間に過酷な試験を行なうこ
とができる。なお弁の材質は耐熱鋼21−4N材で
ある。この試験機で弁座の温度を350℃に設定し
て30時間連続運転した試験結果と、各試料の常温
における圧環強度の測定結果を第2図に示す。こ
の図のデータは、硬質相含有量を5%〜25%迄変
化させた前記の試料1に鉛を溶浸した試料(試料
3)のもの、但し含有量0のデータは前記の比較
試料のものである。 圧環強度は硬質相の含有量が増すにつれて低下
するが、含有量25%でも、実用上は支障の無い強
度を保つている。 弁座の摩耗は硬質相の含有量5%迄は急激に、
その後20%付近迄は緩慢に減少し、それ以後は殆
ど変化していない。従つて、硬質相の含有量は耐
摩耗性のバラツキを避けるために5%を下限と
し、15%程度が最も好ましく、25%を上限とす
る。なお、硬質相を置換した試料2に鉛を溶浸し
た試料(試料4)では、試料3の場合に比べて圧
環強さは約4Kg/mm2低下し、摩耗量は硬質相の含
有量5%の場合で9μ、10%以上では約2μ増加し
ている。 次に、上記の模擬エンジン試験機で弁座温度を
変更した試験の結果を第3図に示す。図の実線は
硬質相の含有量が15%の本発明試料32、破線は第
2図の場合と同一の比較試料であり、また一点鎖
線は前記(特公昭59−37343)に係る試料で、
即ち3%のCr、各0.3%のMoおよびVを含む合金
鉄粉と本発明材の主原料である前記合金鉄粉の各
等量と炭素1%からなる基地中に、Mo35%、
Si10%およびCo55%の硬質相を15%分散させた
従来材である。 このグラフから、比較試料は200℃の低温と400
℃での摩耗は少ないものの中間の350℃前後にお
ける摩耗が著しく多く、一方従来試料は逆に350
℃付近で極小値を示すがその前後特に低温域での
摩耗が著しく、両者それぞれ一得一失である。こ
れに対して、本発明の試料は摩耗量が前2者より
少ないだけでなく、低温から高温の全域に亙り安
定した耐摩耗性を持つことが判る。 なお、この他の本発明試料の試験結果について
は図示を省き、試料3のデータと併せて第1表に
示した。焼結材の空孔に溶浸された鉛は固体潤滑
作用によつて磨耗を防くため、その効果はデータ
が示すように低温の環境で特に著しく、鉛が溶融
する高温では、殆ど無意味となる。従つて第3、
第4の発明は無鉛燃料を使用し、且つ作動環境が
低温のエンジン(国内仕様車の大部分が該当)に
好適であり、有鉛燃料を用いる場合とか設計温度
が高温のエンジンの場合は、第1または第2の発
明に係る焼結材に必要に応じて再圧縮を施した弁
座の方が適している。 次に、4気筒2000c.c.LPGエンジンによる台上
耐久試験(回転数6000rpm一定;燃料は無鉛ガソ
リン)の結果を第4図に示す。各試料の内容は第
3図の場合と同様である。 図に明らかなように、硬質相を含有しない比較
試料の摩耗が最も多く、硬質相を含有するものの
基地が異なる従来試料がこれに次ぎ、本発明試料
(試料3)が最良の結果を示している。試料4に
ついては第2表のデータの通りで、摩耗量が試
料、より僅かに多くなるものの、従来のものより
は明らかに優れている。 次に、本発明に係る合金を製造する際の、焼結
温度と得られる焼結材の耐摩耗性および圧環強さ
との関係を第5図に示す。これらの各項目を綜合
すると、焼結温度は1200℃を中心とする前後30℃
の範囲内が適しているが、硬質相の拡散を防ぐ意
味では範囲内の低めの方が好ましい。 冒頭の述べたように、本発明材の基地は本出願
人による先発明(特公昭55−36242号)の合金
をそのまま転用したものである。 そこでこの公報から要約引用して説明すると、
本発明材の基地において、NiおよびMoは主に強
度の向上に寄与するが0.5%未満では不充分であ
り、一方3%以上添加しても費用の割に効果が少
ない。またMoを過剰に入れると、耐酸化性が低
下する。Coは5.5%未満では高温硬さが不足し摩
耗しやすく、一方、7.5%以上になると原料粉が
硬くなり、圧縮成形が困難になる。Cは焼結工程
の管理と品質安定の面から、0.6〜1.2%が適当で
ある。 これらの成分の配合に際しては各単味のものを
配合することも考えられるが、炭素以外の全成分
を含む合金鉄粉を用いることが望ましい。それに
より、配合時の偏析防止に併せて基地と硬質相の
相互拡散の少ない、所望の合金を確実に得ること
ができる。 本発明に係る焼結合金の全体組成については、
本発明は上記の基地に選択した硬質相の所定量を
分散させたことに意義があり、且つ、そのことで
合金の組成、組織および性質が特定されている。
そしてこの分散硬化型の組織は、基地を形成する
所要組成の合金粉に硬質相を形成する所要組成の
金属間化合物粉末を所定量配合して作られる。 従つて全体組成は基地、硬質相それぞれの組成
と両者の割合から帰納された結果であつて、即ち
ニツケルと炭素は(硬質相には含まれないため)、
それぞれの範囲が第1項および第2項に共通で、
ニツケルの場合はNi含有量が3%の基地に硬質
相5%を配合した場合の2.9%上限、Ni含有量0.5
%の基地に硬質相25%を配合した場合の0.3%が
下限となる。 一方、コバルトは基地と硬質相の両方に含まれ
るためその組成範囲は第1項と第2項で異なり、
第2項の場を例示すると、Co含有量5.5%の基地
にCo含有量52%の硬質相を5%配合した場合の
7%が下限となり、Co含有量7.5%の基地にCo含
有量63%の硬質相を25%配合した場合の22%が上
限となる。 また、SiとCrは基地には含まれないため、そ
の組成範囲は硬質相中の含有量と基地への配合量
によつて定まる。この様にして定まる各成分の範
囲とその根拠を示せば第3表の通りである。 なお硬質相の成分と組成範囲については、配合
された金属間化合物粉末がそのまま硬質相を形成
するので、硬質相の成分、組成範囲は選択された
市販金属間化合物のそれと等しい。そして金属間
化合物のそれは原料粉メーカーが設定した仕様で
ある。 本発明における硬質相に適する金属間化合物と
しては4〜5頁に記述した2種類の商品があり、
Crを含有する(商品名コバメツトの)方が、所
期の特性を発揮する温度域が広いとされている。
しかし、前述したエンジン試験の試験条件と温度
範囲では両者間に格別の差は認められなかつた。 以上詳述した通り、本発明に係る弁座用合金は
低温から高温まで一様に優れた耐摩耗性を示し、
エンジンの性格や燃料の種類に殆ど制約されない
特徴を持つている。従つて、その基地と硬質相の
双方に多量のCoを含み価格的には割高な材料で
あるが、品質第一の用途には極めて適している。
The present invention was mainly developed for valve seats of internal combustion engines.
This invention relates to a sintered alloy with high wear resistance. Since the mid-1960s, intense technological innovation has been carried out in automobile engines, first to comply with exhaust gas regulations, and then to achieve greater power performance and lower fuel consumption than before the regulations, and the operating conditions for engines have become increasingly harsh. It's coming. As a result, the conventional materials that make up the engine's valve mechanism lack heat resistance, wear resistance, etc., and there is an urgent need to develop alternative materials, and the applicant has also successively developed new materials as shown below. I've been doing it. 17968 (filed in 1945) 36242 (filed in 1950) 36242 (filed in 1950) 56547 (filed in 1953) 37343 (filed in 1955) Materials that meet the characteristics are materials that reduce costs while maintaining the required characteristics, and materials that meet increasingly strict requirements. However, as engine improvements have continued since then, the requirements for the properties of valve seat materials, particularly wear resistance, have recently become more stringent. Additionally, the type of fuel (unleaded gasoline, leaded gasoline, LPG...) also has a large effect on valve seat wear.
Due to the nature of automobiles as international products, it is natural that it is desirable to have quality that can be broadly adapted to various conditions that differ depending on the destination. The present invention was made based on these circumstances, and based on past experience, the above alloys, that is, Ni 0.5 to 3%, Mo 0.5 to 3%, Co 5.5 to
7.5%, C0.6-1.2% and the balance Fe as a main component.As a result, this composition has a selected hard phase in the matrix, namely Mo33-36%, Si4-12%.
and Co balance (63-52%) intermetallic compounds or Mo26-30% Cr7-9%, Si1.5-2.5% and Co
The balance (65.5-58.5%) is 5-25% intermetallic compounds.
The intended purpose was achieved by dispersing the materials. Incidentally, these intermetallic compounds are commercially available as alloy powders having the above-mentioned composition ranges, the former being commercially available from Cabot Co. under the trade name Tribaloy, and the latter being commercially available from Fukuda Metal Foil Powder under the trade name Kobamet. The properties of the alloy of the present invention can be improved depending on the characteristics of the engine by post-treatment after sintering. For example, infiltrating lead into the pores of the sintered material is effective when the operating temperature is relatively low but wears easily, or when the fuel does not contain anti-friction components such as LPG. Therefore, it is effective to re-compress the sintered material to make it more dense, especially in cases where high temperatures and high compression ratios occur, such as in diesel engines, or where sludge adheres due to the regular use of leaded gasoline. . In order to further stabilize the alloy structure,
After sintering, it is desirable to perform quenching and tempering for refining. However, when performing lead infiltration, the infiltration temperature is high at around 550°C, so an effect similar to that of thermal refining can be obtained. The present invention will be described in detail below with reference to examples. First, alloy powder with a composition excluding carbon from the base composition, that is, 1.5% Ni, 1.5% Mo and 6.5% by weight
Atomized alloy iron powder with a grain size of 100 mesh or less containing %Co was prepared as the main raw material, and Mo28% and Cr8 were prepared as the main raw material to form a hard phase dispersed in the base.
%, Si2% and Co62% intermetallic compound powder (kobamet) was prepared. Next, we prepared a sample. First, as a comparative sample that does not contain a hard phase, we mixed the above alloyed iron powder with 1% graphite powder and 0.8% zinc stearate as a lubricant to give a powder density of 6.9 g/ cm3 . After forming into a predetermined shape, sintering was performed in an ammonia decomposition gas furnace at a temperature of 1200°C for 20 minutes. Furthermore, as an example of the present invention, a sample (sample 1) was prepared in which a predetermined amount of the above-mentioned intermetallic compound powder was added to alloyed iron powder, and the blending of graphite and lubricant, molding, and sintering were the same as in the case of the comparative sample. did. Among the samples thus obtained, FIG. 1 shows the test results of mechanical properties at high temperatures for the comparison sample and sample 1 of the present invention having a hard phase content of 15%. Since the valve seat is generally only fixed in a mounting hole in the cylinder by an interference fit, if its strength is insufficient, there is a risk that it will fall off during operation when heating and cooling are repeated. Also, for the same reason,
A smaller coefficient of thermal expansion is desirable. Looking at FIG. 1 from this point of view, the comparative sample indicated by the broken line shows high radial crushing strength at low temperatures, but it significantly decreases at high temperatures. On the other hand, the sample of the present invention shown by the solid line maintains stable strength from the low temperature range to the high temperature range, and exhibits higher strength than the comparative sample at 400°C or higher. It can also be seen that this is superior in terms of thermal expansion coefficient. In addition, in the case of the present invention sample (Sample 2) in which the hard phase of Sample 1 was replaced with the hard phase of the second invention, that is, a predetermined amount of intermetallic compound powder (Tribaloy) containing 34% Mo, 8% Si, and 58% Co, The coefficient of expansion is the temperature
At 100°C, it is equal to Sample 1, and after that it gradually decreases as the temperature rises, and at 500°C, it shows a value of 12.5 compared to 12.8 of Sample 1. In addition, the radial crushing strength of sample 1 is 72,500 at 100℃.
67Kg/ mm2 at ℃, while sample 2 is 70 at 100℃, 500℃
65Kg/mm 2 , which is a decrease of about 2Kg/mm 2 over the entire curve. This is thought to be due to the difference in toughness between the two hard phases. Data for sample 2 is omitted from illustration to avoid complexity. Next, to examine the effect of the hard phase content, lead was infiltrated into the pores of each sample at 550°C, and the amount of wear on each valve seat was compared using a simulated engine test machine. This testing machine uses LPG combustion gas to heat the valve and valve seat to a predetermined temperature while driving the camshaft with a motor.The temperature, rotation speed, valve spring pressure, etc. can be set arbitrarily, and the test machine can undergo severe damage in a short period of time. tests can be conducted. The material of the valve is heat-resistant steel 21-4N. Figure 2 shows the test results of continuous operation for 30 hours with the valve seat temperature set at 350°C using this testing machine, and the measurement results of the radial crushing strength of each sample at room temperature. The data in this figure is for a sample (sample 3) in which lead was infiltrated into sample 1, whose hard phase content was varied from 5% to 25%. However, the data for the content of 0 are for the comparative sample mentioned above. It is something. The radial crushing strength decreases as the content of the hard phase increases, but even with a content of 25%, it maintains a strength that does not pose any practical problems. The wear of the valve seat increases rapidly up to a hard phase content of 5%.
After that, it decreased slowly until it reached around 20%, and after that there was almost no change. Therefore, in order to avoid variations in wear resistance, the content of the hard phase is set at a lower limit of 5%, most preferably about 15%, and an upper limit of 25%. In addition, in the sample (sample 4) in which lead was infiltrated into sample 2 in which the hard phase was replaced, the radial crushing strength was approximately 4 kg/mm 2 lower than in the case of sample 3, and the wear amount was lower than that of sample 3. %, it increases by 9μ, and for 10% or more, it increases by about 2μ. Next, FIG. 3 shows the results of a test in which the valve seat temperature was changed using the above-mentioned simulated engine test machine. The solid line in the figure is the present invention sample 32 with a hard phase content of 15%, the broken line is the same comparative sample as in Figure 2, and the dashed line is the sample according to the above (Japanese Patent Publication No. 59-37343).
That is, in a base consisting of alloyed iron powder containing 3% Cr, 0.3% each of Mo and V, equal amounts of each of the above alloyed iron powders which are the main raw materials of the present invention material, and 1% carbon, 35% Mo,
This is a conventional material in which 15% of the hard phase of 10% Si and 55% Co is dispersed. From this graph, it can be seen that the comparison sample has a low temperature of 200℃ and a temperature of 400℃.
Although there is little wear at temperatures around 350°C, there is significantly more wear at the intermediate temperatures of around 350°C.
It shows a minimum value around ℃, but the wear before and after that is significant, especially in the low temperature range, so both are pros and cons. On the other hand, it can be seen that the sample of the present invention not only has less wear than the former two, but also has stable wear resistance over the entire range from low to high temperatures. The test results for other samples of the present invention are not shown in the figures and are shown in Table 1 together with the data for Sample 3. The lead infiltrated into the pores of the sintered material prevents wear through solid lubricant action, and as the data shows, this effect is particularly noticeable in low-temperature environments, and is almost meaningless at high temperatures where lead melts. becomes. Therefore, the third
The fourth invention is suitable for engines that use unleaded fuel and have a low operating environment (which applies to most domestic specification cars); when using leaded fuel or for engines with high design temperatures, A valve seat made of the sintered material according to the first or second invention, which is recompressed as necessary, is more suitable. Next, Figure 4 shows the results of a bench durability test using a 4-cylinder 2000 c.c. LPG engine (rotation speed constant 6000 rpm; fuel used was unleaded gasoline). The contents of each sample are the same as in the case of FIG. As is clear from the figure, the comparative sample that does not contain a hard phase has the most wear, followed by the conventional sample that contains a hard phase but has a different base, and the sample of the present invention (sample 3) shows the best results. There is. Regarding sample 4, the data is as shown in Table 2, and although the amount of wear is slightly greater than that of sample, it is clearly superior to the conventional one. Next, FIG. 5 shows the relationship between the sintering temperature and the wear resistance and radial crushing strength of the obtained sintered material when producing the alloy according to the present invention. Combining these items, the sintering temperature will be around 30℃ around 1200℃.
A value within this range is suitable, but a lower value within this range is preferred in terms of preventing diffusion of the hard phase. As stated at the beginning, the base of the material of the present invention is an alloy obtained by the applicant's previous invention (Japanese Patent Publication No. 36242/1982). Therefore, I will quote and explain the summary from this bulletin.
In the base of the material of the present invention, Ni and Mo mainly contribute to improving the strength, but if it is less than 0.5%, it is insufficient, and on the other hand, if it is added in an amount of 3% or more, it is not cost effective. Moreover, when Mo is added in excess, oxidation resistance decreases. When Co is less than 5.5%, it lacks high-temperature hardness and is prone to wear, while when it exceeds 7.5%, the raw material powder becomes hard and compression molding becomes difficult. From the viewpoint of control of the sintering process and quality stability, a suitable content of C is 0.6 to 1.2%. When blending these components, it is conceivable to blend each single component, but it is desirable to use an alloy iron powder containing all components other than carbon. As a result, it is possible to reliably obtain a desired alloy that not only prevents segregation during blending but also has little interdiffusion between the matrix and the hard phase. Regarding the overall composition of the sintered alloy according to the present invention,
The present invention is significant in that a predetermined amount of the selected hard phase is dispersed in the above-mentioned matrix, and the composition, structure, and properties of the alloy are specified thereby.
This dispersion hardening type structure is created by blending a predetermined amount of intermetallic compound powder with a predetermined composition to form a hard phase with alloy powder having a predetermined composition to form a matrix. Therefore, the overall composition is the result of induction from the respective compositions of the base and hard phase and the proportions of the two, that is, nickel and carbon (because they are not included in the hard phase) are:
Each range is common to the first and second terms,
In the case of nickel, the upper limit is 2.9% when 5% hard phase is mixed into a base with a 3% Ni content, and the Ni content is 0.5%.
The lower limit is 0.3% when 25% of the hard phase is blended into the base of 25%. On the other hand, since cobalt is included in both the base and the hard phase, its composition range is different between the first and second terms.
To illustrate the case of the second term, the lower limit is 7% when 5% of a hard phase with a Co content of 52% is blended into a base with a Co content of 5.5%, and a base with a Co content of 63% in a base with a Co content of 7.5%. The upper limit is 22% when 25% of the hard phase is mixed. Furthermore, since Si and Cr are not included in the matrix, their composition range is determined by their content in the hard phase and the amount added to the matrix. Table 3 shows the range of each component determined in this way and its basis. The components and composition range of the hard phase are the same as those of the selected commercially available intermetallic compound, since the blended intermetallic compound powder forms the hard phase as is. The specifications for intermetallic compounds are set by the raw material powder manufacturer. As intermetallic compounds suitable for the hard phase in the present invention, there are two types of products described on pages 4 to 5.
It is said that the material containing Cr (trade name: Kobamet) exhibits the desired characteristics over a wider temperature range.
However, no particular difference was observed between the two under the test conditions and temperature range of the engine test described above. As detailed above, the valve seat alloy according to the present invention exhibits uniformly excellent wear resistance from low to high temperatures,
It has characteristics that are almost unrestricted by the characteristics of the engine or the type of fuel. Therefore, although it contains a large amount of Co in both the base and the hard phase and is relatively expensive, it is extremely suitable for applications where quality is paramount.

【表】【table】

【表】【table】

【表】【table】 【図面の簡単な説明】[Brief explanation of the drawing]

第1図は弁座用焼結合金の高温における機械的
性質を示すグラフ、第2図は基地中に含有される
硬質相の量と耐摩耗性および圧環強度との関係を
示すグラフ、第3図は模擬エンジン試験機による
弁座の温度と摩耗量との関係を示すグラフ、第4
図は台上耐久試験の結果を示すグラフ、第5図は
本発明に係る合金の焼結温度と耐摩耗性および圧
環強度との関係を示すグラフである。
Figure 1 is a graph showing the mechanical properties of a sintered alloy for valve seats at high temperatures; Figure 2 is a graph showing the relationship between the amount of hard phase contained in the matrix and wear resistance and radial crushing strength; The figure is a graph showing the relationship between valve seat temperature and wear amount using a simulated engine test machine.
The figure is a graph showing the results of the bench durability test, and FIG. 5 is a graph showing the relationship between the sintering temperature, wear resistance, and radial crushing strength of the alloy according to the present invention.

Claims (1)

【特許請求の範囲】 1 全体組成が重量比でNi0.3〜2.9%、Mo1.7〜
9.8%、Co8〜22%、C0.4〜1.2%Cr0.3〜2.3%、
Si0.1〜0.7%およびFe残部で、且つNi0.5〜3%、
Mo0.5〜3%、Co5.5〜7.5%、C0.6〜1.2%および
Fe残部の基地中に、Mo26〜30%、Cr7〜9%
Si1.5〜2.5%およびCo残部の硬質相が5〜25%分
散した組織を呈することを特徴とする高温耐摩耗
性焼結合金。 2 全体組成が重量比でNi0.3〜2.9%、Mo2.1〜
11.3%、Co7〜22%、C0.4〜1.2%、Si0.1〜3%お
よびFe残部で、且つNi0.5〜3%、Mo0.5〜3%、
Co5.5〜7.5%C0.6〜1.2%およびFe残部の基地中
に、Mo33〜36%、Si4〜12%およびCo残部の硬
質相が5〜25%分散した組織を呈することを特徴
とする高温耐摩耗性焼結合金。 3 全体組成が重量比でNi0.3〜2.9%、Mo1.7〜
9.8%、Co8〜22%、C0.4〜1.2%Cr0.3〜2.3%、
Si0.1〜0.7%およびFe残部で、且つNi0.5〜3%、
Mo0.5〜3%、Co5.5〜7.5%、C0.6〜1.2%および
Fe残部の基地中に、Mo26〜30%、Cr7〜9%
Si1.5〜2.5%およびCo残部の硬質相が5〜25%分
散した組織を呈する合金であつて、その空孔内に
鉛が溶浸されている高温耐摩耗性焼結合金。 4 全体組成が重量比でNi0.3〜2.9%、Mo2.1〜
11.3%、Co7〜22%、C0.4〜1.2%、Si0.1〜3%お
よびFe残部で、且つNi0.5〜3%、Mo0.5〜3%、
Co5.5〜7.5%C0.6〜1.2%およびFe残部の基地中
に、Mo33〜36%、Si4〜12%およびCo残部の硬
質相が5〜25%分散した組織を呈する合金であつ
て、その空孔内に鉛が溶浸されている高温耐摩耗
性焼結合金。
[Claims] 1. Overall composition is 0.3 to 2.9% Ni and 1.7 to 2.9% Mo by weight.
9.8%, Co8~22%, C0.4~1.2% Cr0.3~2.3%,
Si0.1~0.7% and Fe balance, and Ni0.5~3%,
Mo0.5~3%, Co5.5~7.5%, C0.6~1.2% and
In the base of Fe remainder, Mo26~30%, Cr7~9%
A high-temperature wear-resistant sintered alloy characterized by exhibiting a structure in which a hard phase of 1.5 to 2.5% Si and 5 to 25% of the remaining Co is dispersed. 2 The overall composition is Ni0.3~2.9%, Mo2.1~ by weight.
11.3%, Co7~22%, C0.4~1.2%, Si0.1~3% and the balance of Fe, and Ni0.5~3%, Mo0.5~3%,
It is characterized by exhibiting a structure in which 5 to 25% of the hard phase of 33 to 36% Mo, 4 to 12% of Si, and the remainder of Co is dispersed in a base of 5.5 to 7.5% of Co, 0.6 to 1.2% of C, and the remainder of Fe. High temperature wear resistant sintered alloy. 3 Overall composition is Ni0.3~2.9%, Mo1.7~ by weight
9.8%, Co8~22%, C0.4~1.2% Cr0.3~2.3%,
Si0.1~0.7% and Fe balance, and Ni0.5~3%,
Mo0.5~3%, Co5.5~7.5%, C0.6~1.2% and
In the base of Fe remainder, Mo26~30%, Cr7~9%
A high-temperature wear-resistant sintered alloy which is an alloy exhibiting a structure in which a hard phase of 1.5 to 2.5% Si and 5 to 25% of the remainder Co is dispersed, and the pores of which are infiltrated with lead. 4 The overall composition is Ni0.3~2.9% and Mo2.1~ by weight.
11.3%, Co7~22%, C0.4~1.2%, Si0.1~3% and the balance of Fe, and Ni0.5~3%, Mo0.5~3%,
An alloy exhibiting a structure in which a hard phase of 33 to 36% Mo, 4 to 12% Si, and the remainder of Co is dispersed in a matrix of 5 to 25% of Co5.5 to 7.5%, C0.6 to 1.2%, and Fe remainder, A high-temperature wear-resistant sintered alloy whose pores are infiltrated with lead.
JP14947585A 1985-07-08 1985-07-08 Sintered alloy excellent in wear resistance at high temperature Granted JPS6210244A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14947585A JPS6210244A (en) 1985-07-08 1985-07-08 Sintered alloy excellent in wear resistance at high temperature

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14947585A JPS6210244A (en) 1985-07-08 1985-07-08 Sintered alloy excellent in wear resistance at high temperature

Publications (2)

Publication Number Publication Date
JPS6210244A JPS6210244A (en) 1987-01-19
JPH0555593B2 true JPH0555593B2 (en) 1993-08-17

Family

ID=15475961

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14947585A Granted JPS6210244A (en) 1985-07-08 1985-07-08 Sintered alloy excellent in wear resistance at high temperature

Country Status (1)

Country Link
JP (1) JPS6210244A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6562098B1 (en) 2001-08-06 2003-05-13 Hitachi Powdered Metals Co., Ltd. Wear resistant sintered member
US7294167B2 (en) 2003-11-21 2007-11-13 Hitachi Powdered Metals Co., Ltd. Alloy powder for forming hard phase and ferriferous mixed powder using the same, and manufacturing method for wear resistant sintered alloy and wear resistant sintered alloy

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0798985B2 (en) * 1987-09-10 1995-10-25 日産自動車株式会社 High temperature wear resistant sintered alloy
JP2763826B2 (en) * 1990-10-18 1998-06-11 日立粉末冶金株式会社 Sintered alloy for valve seat
JP3447030B2 (en) * 1996-01-19 2003-09-16 日立粉末冶金株式会社 Wear resistant sintered alloy and method for producing the same
JP3447031B2 (en) 1996-01-19 2003-09-16 日立粉末冶金株式会社 Wear resistant sintered alloy and method for producing the same
JP3719630B2 (en) 1998-05-22 2005-11-24 日立粉末冶金株式会社 Wear-resistant sintered alloy and method for producing the same
EP2162651B1 (en) 2007-06-13 2013-03-06 Gkn Sinter Metals, Llc Powder metal component tolerance improvements

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55145151A (en) * 1979-04-26 1980-11-12 Nippon Piston Ring Co Ltd Wear resistant sintered alloy material for internal combustion engine
JPS6164804A (en) * 1984-09-04 1986-04-03 Toyota Motor Corp Sliding member for valve system and its production
JPS6196058A (en) * 1984-10-15 1986-05-14 Toyota Motor Corp Control valve sliding member and its production

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55145151A (en) * 1979-04-26 1980-11-12 Nippon Piston Ring Co Ltd Wear resistant sintered alloy material for internal combustion engine
JPS6164804A (en) * 1984-09-04 1986-04-03 Toyota Motor Corp Sliding member for valve system and its production
JPS6196058A (en) * 1984-10-15 1986-05-14 Toyota Motor Corp Control valve sliding member and its production

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6562098B1 (en) 2001-08-06 2003-05-13 Hitachi Powdered Metals Co., Ltd. Wear resistant sintered member
US7294167B2 (en) 2003-11-21 2007-11-13 Hitachi Powdered Metals Co., Ltd. Alloy powder for forming hard phase and ferriferous mixed powder using the same, and manufacturing method for wear resistant sintered alloy and wear resistant sintered alloy
US7601196B2 (en) 2003-11-21 2009-10-13 Hitachi Powdered Metals Co., Ltd. Alloy powder for forming hard phase and ferriferous mixed powder using the same, and manufacturing method for wear resistant sintered alloy and wear resistant sintered alloy

Also Published As

Publication number Publication date
JPS6210244A (en) 1987-01-19

Similar Documents

Publication Publication Date Title
US5031878A (en) Valve seat made of sintered iron base alloy having high wear resistance
US4552590A (en) Ferro-sintered alloys
US4919719A (en) High temperature wear resistant sintered alloy
JPH0313299B2 (en)
JPH0453944B2 (en)
JPH0360897B2 (en)
JP4693170B2 (en) Wear-resistant sintered alloy and method for producing the same
JPH0555593B2 (en)
JPH0472027A (en) Valve seat material for outboard motor and its production
JP2763826B2 (en) Sintered alloy for valve seat
JPH0541693B2 (en)
JPH0555592B2 (en)
JP2553664B2 (en) High temperature wear resistant iron-based sintered alloy
JPH0115583B2 (en)
JPH10102220A (en) Valve seat made of fe-base sintered alloy excellent in wear resistance
JPS5828342B2 (en) Valve seat for internal combustion engines with excellent heat and wear resistance and machinability
KR100254820B1 (en) Abrasion proof sintering alloy for exhaust valve seat
JPH07109024B2 (en) Sintered alloy for valve seat of internal combustion engine
JPH0215624B2 (en)
JP2833116B2 (en) Sintered alloy for valve seat
KR0118773B1 (en) Sintered alloy steel for valve seat
JP2643742B2 (en) Two-layer valve seat made of lead impregnated iron-based sintered alloy for internal combustion engines
JPH01178712A (en) Valve seat made of iron-based sintered alloy
JPH0561346B2 (en)
JPS6136069B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term