JP2553664B2 - High temperature wear resistant iron-based sintered alloy - Google Patents

High temperature wear resistant iron-based sintered alloy

Info

Publication number
JP2553664B2
JP2553664B2 JP63238499A JP23849988A JP2553664B2 JP 2553664 B2 JP2553664 B2 JP 2553664B2 JP 63238499 A JP63238499 A JP 63238499A JP 23849988 A JP23849988 A JP 23849988A JP 2553664 B2 JP2553664 B2 JP 2553664B2
Authority
JP
Japan
Prior art keywords
alloy
balance
sintered alloy
based sintered
temperature wear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63238499A
Other languages
Japanese (ja)
Other versions
JPH0288749A (en
Inventor
真 阿部
芳輝 保田
啓太郎 鈴木
寛 池ノ上
徳眞 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP63238499A priority Critical patent/JP2553664B2/en
Publication of JPH0288749A publication Critical patent/JPH0288749A/en
Application granted granted Critical
Publication of JP2553664B2 publication Critical patent/JP2553664B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition

Description

【発明の詳細な説明】 《産業上の利用分野》 本発明は主に内燃機関の勉座用に開発された耐摩耗性
の高い焼結合金に関するものである。
DETAILED DESCRIPTION OF THE INVENTION << Industrial Application Field >> The present invention relates to a sintered alloy having high wear resistance, which is mainly developed for studying an internal combustion engine.

《従来の技術》 自動車のエンジンは作動条件がますます苛酷になって
いる。ディーゼルエンジンの弁座においてはシート面に
かかる面圧が高く、しかも温度は400〜550℃と高いこと
から、高温でも変形しにくい強度と耐摩耗性が要求され
る。
<< Conventional Technology >> The operating conditions of automobile engines are becoming more and more severe. In a diesel engine valve seat, since the surface pressure applied to the seat surface is high and the temperature is as high as 400 to 550 ° C, strength and wear resistance which are not easily deformed even at high temperatures are required.

本出願人もこのような用途を対象とした高温耐摩耗性
焼結合金を開発し、特開昭62−10245号公報で既に開示
している。
The present applicant has also developed a high-temperature wear-resistant sintered alloy intended for such applications, and has already disclosed it in JP-A-62-10245.

この合金はC0.6〜1.2%、Ni0.5〜3%、Mo0.5〜3
%、Co5.5〜7.5%およびFe残部の基地中に、Si1.5〜2.5
%、Cr7〜9%、Mo26〜30%およびCo残部の硬質相;も
しくはSi4〜12%、Mo33〜36%およびCo残部の硬質相の
いずれか一方が5〜25%分散した組織を呈するものであ
る。
This alloy has C0.6-1.2%, Ni0.5-3%, Mo0.5-3
%, Co5.5-7.5% and Fe balance in the base, Si1.5-2.5
%, Cr7 to 9%, Mo26 to 30%, and Co residual hard phase; or Si4 to 12%, Mo33 to 36%, and Co residual hard phase either 5 to 25%. is there.

また、この焼結合金を高密度化、焼き入れ焼き戻しま
たは空孔内に鉛を溶浸することにより性能が向上する。
Further, the performance is improved by densifying the sintered alloy, quenching and tempering, or infiltrating lead into the pores.

《発明が解決しようとする課題》 ところで前記の鉛を含む焼結材料は、従来例に比べ高
温における耐摩耗性、強度に優れていたが、その後も続
いているエンジンの高出力化に伴い、弁座が鉛の融点を
越える400〜550℃の温度にさらされ、高圧縮化も加わっ
て鉛が有効に作用しないという問題が起きている。
<Problems to be solved by the invention> By the way, the above-mentioned lead-containing sintered material was excellent in wear resistance and strength at high temperatures as compared with the conventional example, but with the increase in output of the engine that continues thereafter, There is a problem that the valve seat is exposed to a temperature of 400 to 550 ℃, which exceeds the melting point of lead, and due to high compression, lead does not work effectively.

本発明の目的は従来の鉄系焼結合金を基本として改良
を加え、400℃以上の温度で耐摩耗性がある焼結合金を
開発することにある。
An object of the present invention is to develop a sintered alloy having wear resistance at a temperature of 400 ° C. or higher by making improvements based on the conventional iron-based sintered alloy.

《課題を解決するための手段》 本発明はまず、材料設計に当たり従来の経験から、耐
熱合金綱の基地に金属間化合物からなる硬質相を分散さ
せ基地を強化するとともに、耐酸化性があまり凝着摩耗
を防止するような材料を分散させた組織を目標してなさ
れた。
<< Means for Solving the Problems >> The present invention is based on conventional experience in designing materials, and strengthens the matrix by dispersing a hard phase composed of an intermetallic compound in the matrix of the heat-resistant alloy steel, and also has a high degree of oxidation resistance. The aim was to create a structure in which materials were dispersed to prevent wear and abrasion.

すなわち、C0.6〜1.2%、Ni0.5〜3%、Mo0.5〜3
%、Co5.5〜7.5%、およびFe残部の基地中に、Si1.5〜
2.5%、Cr7〜9%、Mo26〜30%、およびCo残部の硬質
相、またはSi4〜12%、Mo33〜36%、およびCo残部の硬
質相いずれか一方、あるいは両方の合計5〜25%分散
し、さらに、Pb30〜50%を含むCu合金相が10〜20%分散
した組織を呈することを特徴とする焼結合金とすること
により初期の目的を達成したものである。
That is, C0.6-1.2%, Ni0.5-3%, Mo0.5-3
%, Co5.5-7.5%, and Fe balance in the base, Si1.5-
2.5%, Cr7-9%, Mo26-30%, and hard phase of the balance Co, or Si4-12%, Mo33-36%, and hard phase of the balance Co, or both, total 5-25% dispersion In addition, a Cu alloy phase containing 30 to 50% of Pb exhibits a structure in which 10 to 20% of the Cu alloy phase is dispersed, and the sintered alloy is characterized by achieving the initial object.

《作用》 本発明の組織において、基地は強度および耐摩耗性を
受け持つ基本で、硬質相は基地を強化して高温における
耐磨耗性を向上させる作用があり、Cu−Pb合金相は主に
熱伝導性、材料強度の向上および潤滑作用を受け持って
いる。
<< Action >> In the structure of the present invention, the matrix is a basic element responsible for strength and wear resistance, the hard phase has the function of strengthening the matrix and improving the wear resistance at high temperatures, and the Cu-Pb alloy phase is mainly used. It is responsible for improving thermal conductivity, material strength, and lubrication.

まず、基地において、NiおよびMoは主に強度の向上に
寄与するが、0.5%未満では不十分であり、一方3%以
上添加しても費用の割に効果が少ない。またMoを過剰に
用いると耐酸化性が低下する。Coは5.5%未満では高温
硬さが不足し摩耗し易く、一方、7.5%以上になると原
料粉が硬くなり圧縮成形が困難になる。Cは焼結工程の
管理と品質安定の面から0.6〜1.2%が適当である。
First, in the base, Ni and Mo mainly contribute to the improvement of strength, but if less than 0.5% is insufficient, while if added in an amount of 3% or more, the effect is small for the cost. Further, if Mo is used excessively, the oxidation resistance decreases. If Co is less than 5.5%, the high temperature hardness is insufficient and wear tends to occur. On the other hand, if Co is more than 7.5%, the raw material powder becomes hard and compression molding becomes difficult. 0.6 to 1.2% is suitable for C in terms of control of the sintering process and stable quality.

これらの成分の配合に際しては単味のものを配合する
ことも考えられるが、炭素以外の全成分を含む合金鉄粉
を用いることが好ましい。それにより配合時の偏析防止
に併せて基地と硬質相の相互拡散の少ない、所望の合金
を得ることができる。
When blending these components, it is conceivable to blend plain ones, but it is preferable to use iron alloy powder containing all components other than carbon. As a result, a desired alloy can be obtained in which segregation at the time of compounding is prevented and the mutual diffusion of the matrix and the hard phase is small.

硬質相は市販の3元または4元の金属間化合物が適し
ている。すなわち、Co基の耐熱合金であって、組成がSi
1.5〜2.5%、Cr7〜9%、Mo26〜30%およびCo残部、ま
たはSi4〜12%、Mo33〜36%、およびCo残部の2種類で
ある。これらの組成範囲はメーカー規格で規定されてい
る。
Commercially available ternary or quaternary intermetallic compounds are suitable for the hard phase. That is, it is a Co-based heat-resistant alloy whose composition is Si
Two types are 1.5 to 2.5%, Cr7 to 9%, Mo26 to 30% and Co balance, or Si4 to 12%, Mo33 to 36%, and Co balance. The composition ranges of these are specified in the manufacturer's standards.

なお、上記硬質相はいずれか一方を用いるか、両方の
混合物で用いられる。
Either one of the above hard phases is used, or a mixture of both is used.

基地材料に硬質相を添加すると含有量を増すにつれて
圧環強度は低下するが、耐磨耗性は含有量5%までは急
激に良くなり、その後20%付近は緩慢に、それ以降はほ
とんど変化しない。従って硬質相の含有量は耐摩擦性の
バラツキを避けるために5%を下限とし、15%程度が最
も好ましく、実用上強度が許容できる25%を上限とし
た。
When the hard phase is added to the matrix material, the radial crushing strength decreases as the content increases, but the wear resistance sharply improves up to a content of 5%, then slowly increases around 20%, and hardly changes thereafter. . Therefore, the content of the hard phase has a lower limit of 5% in order to avoid variations in abrasion resistance, is most preferably about 15%, and has an upper limit of 25% at which practical strength is acceptable.

次に、上記の斑組織にCu−Pb合金相を分散させると高
温耐摩耗性が著しく向上する。Cuは高温で耐酸化性およ
び熱伝導性が良好で、一部が基地に固溶し材料強度を高
めるとともに放熱性が良くなる。Pbは固体潤滑材として
作用し、凝着磨耗を防止する。
Next, when the Cu—Pb alloy phase is dispersed in the mottled structure, the high temperature wear resistance is significantly improved. Cu has good oxidation resistance and thermal conductivity at high temperatures, and a part of it forms a solid solution in the matrix to increase the material strength and improve heat dissipation. Pb acts as a solid lubricant and prevents cohesive wear.

CuとPbはケルメット合金の形で添加する。Cu−Pb合金
のPb含有量が30%までは急激に高温耐摩耗性が向上し、
30〜50%Pbで最も良く、50%を越えるとPb100%の摩耗
量に近付く。また、材料強度はCu単味の場合が最も高く
なり、Pb50%までは緩慢に、それ以上では急激に低下す
る。従ってPb30〜50%−Cu残の組成が選ばれた。一方Cu
−Pb合金相の含有量は強度、耐摩耗性ともに10%より少
なくても、20%より多くても特性が悪くなる。
Cu and Pb are added in the form of Kelmet alloy. When the Pb content of the Cu-Pb alloy is up to 30%, the high temperature wear resistance rapidly improves,
30 to 50% Pb is the best, and when it exceeds 50%, the wear amount approaches 100% Pb. In addition, the material strength is highest in the case of Cu alone, becomes slower up to 50% Pb, and drops sharply above that. Therefore, the composition of Pb 30 to 50% -Cu residue was selected. On the other hand Cu
If the content of the -Pb alloy phase is less than 10% or more than 20% in both strength and wear resistance, the properties become poor.

以上の構成を全体組成で表わすと、Crを含む硬質相を
用いた第1の発明はC0.3〜1%、Si0.06〜0.56%、Cr0.
3〜2%、Ni0.3〜2.6%、Mo1.4〜8.8%、Co6.5〜20%、
Cu5〜14%、Pb3〜10%、およびFe残部で、Crを含まない
硬質相を用いた第2の発明はC 0.3〜1%、Si0.16〜
2.7%、Ni0.3〜2.6%、Mo1.7〜10%、Co6.3〜19%、Cu5
〜14%、Pb3〜10%、およびFe残部でとなり、また、両
方の硬質相を用いた第3の発明はC 0.3〜1%、Si0.0
6〜2.7%、Cr2%以下、Ni0.3〜2.6%、、Mo1.4〜10%、
Co6.3〜20%、Cu5〜14%、Pb3〜10%、およびFe残部と
なる。
When the above composition is represented by the overall composition, the first invention using the hard phase containing Cr has C0.3 to 1%, Si0.06 to 0.56%, and Cr0.
3-2%, Ni0.3-2.6%, Mo1.4-8.8%, Co6.5-20%,
Cu5-14%, Pb3-10%, and the balance of Fe, the second invention using a Cr-free hard phase is C0.3-1%, Si0.16-
2.7%, Ni0.3-2.6%, Mo1.7-10%, Co6.3-19%, Cu5
-14%, Pb3-10%, and the balance of Fe, and the third invention using both hard phases is C0.3-1%, Si0.0
6-2.7%, Cr2% or less, Ni0.3-2.6%, Mo1.4-10%,
Co 6.3 to 20%, Cu 5 to 14%, Pb 3 to 10%, and the balance of Fe.

《実施例》 まず、基地の組成から炭素を除いた組成の合金粉末、
すなわち重量比で1.5%のNi、1.5%のMo、6.5%のCoを
含む粒度100%メッシュ以下のアトマイズ合金鉄粉を主
原料として用意し、また基地中に分散させる硬質用とし
てMo28%、Cr8%、Si2%およびCo62%の金属間化合物粉
末を用意した。
<< Example >> First, an alloy powder having a composition in which carbon is removed from the composition of the base,
That is, prepare an atomized alloy iron powder with a particle size of 100% mesh or less containing 1.5% Ni, 1.5% Mo, and 6.5% Co as the main raw material, and for the hard material to be dispersed in the matrix Mo28%, Cr8 %, Si2% and Co62% intermetallic compound powders were prepared.

試料の作成は、上記合金鉄粉に金属間化合物粉末を15
%、黒鉛粉1%および潤滑材としてステアリン酸亜鉛0.
8%を混合して、成形密度6.4〜7.0g/cm3の各種密度で所
定形状に成形後、アンモニア分解ガス炉中で温度1200
℃、20分間の焼結を行なった。
The sample was prepared by adding 15 parts of intermetallic compound powder to the above alloy iron powder.
%, Graphite powder 1% and zinc stearate as a lubricant 0.
After mixing 8% and molding into various shapes with various densities of 6.4 to 7.0 g / cm 3 , the temperature is 1200 in an ammonia decomposition gas furnace.
Sintering was performed at 20 ° C. for 20 minutes.

次に、純銅と、30%Pb、50%Pbおよび70%Pbの各種ケ
ルメット材を用意し、各種密度の焼結体の上に載せ、同
じ炉中で恩1140℃で溶浸した。また、従来材と同様に温
度550℃、8気圧で鉛を含浸した試料も作成した。
Next, pure copper and various Kelmet materials of 30% Pb, 50% Pb and 70% Pb were prepared, placed on sintered bodies of various densities, and infiltrated at 1140 ° C in the same furnace. Also, a sample impregnated with lead at a temperature of 550 ° C. and 8 atm was prepared in the same manner as the conventional material.

かくして得られた各試料の温度500℃における圧環強
度を測定した。第1図にその結果を示す。
The radial crushing strength of each sample thus obtained at a temperature of 500 ° C. was measured. The results are shown in FIG.

このグラフは、強度を測定した試料の各種溶浸材成分
を定量分析した結果から、含有量を5%おきの等高線に
書き改めたものである。
This graph has been rewritten into contour lines at every 5% content based on the results of quantitative analysis of various infiltrant components of the sample whose strength was measured.

材料の種類をみると、Pb50%を越えると急激に低下し
ている。また、含有量は10〜20%の範囲が高い強度を示
している。
Looking at the type of material, it drops sharply when Pb exceeds 50%. Further, the content of 10 to 20% shows high strength.

次に、模擬エンジン試験機を用いて各試料による弁座
の摩耗量を比較した。この試験機はLPG燃焼ガスで弁お
よび弁座を所定の温度に加熱しながらカム軸をモータで
駆動する機構で、温度、回転数、弁のスプリング圧等を
任意に設定でき、短時間に苛酷な試験を行なうことがで
きる。なお、弁の材質は耐熱鋼21−4Nを用いている。
Next, the amount of wear of the valve seat by each sample was compared using the simulated engine tester. This tester is a mechanism that drives the cam shaft with a motor while heating the valve and valve seat to a predetermined temperature with LPG combustion gas.The temperature, rotation speed, spring pressure of the valve, etc. can be set arbitrarily, and it can be severe in a short time. Various tests can be performed. The valve material is heat resistant steel 21-4N.

この試験機で弁座の温度を500℃に設定して回転数520
0rpmで50時間連続運転した結果を第2図に示す。溶浸し
た材料の含有量は第1図の場合と同様に等高線で表わし
てある。
With this tester, set the valve seat temperature to 500 ° C and rotate at 520 rpm.
The result of continuous operation at 0 rpm for 50 hours is shown in FIG. The content of the infiltrated material is represented by contour lines as in the case of FIG.

純銅に比べ30〜50%Pbを含むCu合金の方が摩耗が少な
い。含有量は圧環強さの場合と同じ傾向を示している。
The wear of the Cu alloy containing 30 to 50% Pb is less than that of pure copper. The content shows the same tendency as in the case of radial crushing strength.

次に、上記模擬エンジン試験機で弁座の温度を変えた
場合の試験結果を第3図に示す。
Next, FIG. 3 shows the test results when the temperature of the valve seat is changed by the above simulated engine tester.

図中の従来材は密度6.9g/cm3の焼結体に鉛含浸したも
ので、第1の発明材(1)は同じ焼結体にPb含有量が50
%のケルメットを全体組成で15%溶浸した試料である。
また、第2の発明材(2)は、試料の製作に当たり硬質
相となる金属間化合物粉末の種類をMo34%、Si7%およ
び59%Coの合金粉に代えたもので、密度6.9g/cm3の焼結
体に30%Pbのケルケメットを全体組成で15%溶浸した試
料である。また、第3の発明材(3)は2種類の金属間
化合物粉末を7.5%ずつ都合15%添加して製作した密度
6.9g/cm3の燃焼体に30%Pbのケルメットを全体構成で15
%溶浸した試料である。
The conventional material in the figure is a sintered body with a density of 6.9 g / cm 3 impregnated with lead. The first invention material (1) has the same sintered body with a Pb content of 50.
% Of Kelmet is infiltrated with 15% of the total composition.
The second invention material (2) is the one in which the kind of the intermetallic compound powder which becomes the hard phase in the production of the sample is replaced by the alloy powder of Mo34%, Si7% and 59% Co, and the density is 6.9 g / cm. This is a sample in which Kelkemet of 30% Pb was infiltrated into the sintered body of No. 3 by 15% in the total composition. In addition, the third invention material (3) is a density produced by adding two kinds of intermetallic compound powders in 7.5% by 15% for each convenience.
30% Pb kelmet in 6.9g / cm 3 combustor
% Infiltrated sample.

図から明らかなように本発明に係る各発明材は通常の
温度でも550℃の温度でも良好な結果を示している。
As is clear from the figure, each of the inventive materials according to the present invention shows good results at both normal temperature and 550 ° C.

《効果》 以上詳細に説明したように本発明に係る材料によれ
ば、低温から高温まで優れた体摩耗性を示すので、通常
のガソリンエンジンは勿論、特にディーゼルエンジン用
弁座に用いて顕著な効果を得ることができる。
<Effect> As described in detail above, the material according to the present invention exhibits excellent body wear properties from a low temperature to a high temperature. The effect can be obtained.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明に係る発明材を含む焼結合金の高温にお
ける機械的性質を示すグラフ、第2図は模擬エンジン試
験機によるCu−Pb合金の添加料と摩耗量の関係を示すグ
ラフ、第3図は模擬エンジン試験機による弁座の温度と
摩耗量の関係を示すグラフである。
FIG. 1 is a graph showing the mechanical properties of a sintered alloy containing the invented material according to the present invention at high temperature, and FIG. 2 is a graph showing the relationship between the additive and the wear amount of a Cu—Pb alloy by a simulated engine tester. FIG. 3 is a graph showing the relationship between the valve seat temperature and the wear amount by the simulated engine tester.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 池ノ上 寛 千葉県松戸市常盤平3―26―3 (72)発明者 青木 徳眞 千葉県柏市南増尾727―25 (56)参考文献 特開 昭62−10244(JP,A) 特開 昭61−179857(JP,A) 特開 昭60−215748(JP,A) 特開 昭61−19766(JP,A) 特公 昭55−36242(JP,B2) ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Hiroshi Ikenoue 3-26-3 Tokiwadai, Matsudo City, Chiba Prefecture (72) Inventor Tokoma Aoki 727-25 Minamimasuo, Kashiwa City, Chiba Prefecture (56) Reference Japanese Patent Laid-Open No. Sho 62 -10244 (JP, A) JP 61-179857 (JP, A) JP 60-215748 (JP, A) JP 61-19766 (JP, A) JP 55-36242 (JP, B2) )

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】全体組成が重量比で、 C 0.3〜1%、Si0.06〜0.56%、 Cr0.3〜2%、Ni0.3〜2.6%、 Mo1.4〜8.8%、Co6.5〜20%、 Cu5〜14%、Pb3〜10%、 およびFe残部で、かつ C 0.6〜1.2%、Ni0.5〜3%、 Mo0.5〜3%、Co5.5〜7.5%、 およびFe残部の基地中に Si1.5〜2.5%、Cr7〜9%、 Mo26〜30%およびCo残部の硬質相が5〜25%が分散し、
さらにPb30〜50%を含むCu合金相が10〜20%分散した組
織を呈することを特徴とする高温耐摩耗性鉄系焼結合
金。
1. The total composition by weight ratio is C 0.3-1%, Si 0.06-0.56%, Cr 0.3-2%, Ni 0.3-2.6%, Mo 1.4-8.8%, Co 6.5- 20%, Cu5-14%, Pb3-10%, and Fe balance, and C0.6-1.2%, Ni0.5-3%, Mo0.5-3%, Co5.5-7.5%, and Fe balance Si 1.5-2.5%, Cr 7-9%, Mo 26-30%, and Co residual hard phase 5-25% are dispersed in the matrix,
Furthermore, a high temperature wear-resistant iron-based sintered alloy having a structure in which a Cu alloy phase containing 30 to 50% Pb is dispersed in 10 to 20%.
【請求項2】全体組成が重量比で、 C 0.3〜1%、Si0.16〜2.7%、 Ni0.3〜2.6%、Mo1.7〜10%、 Co6.3〜19%、Cu5〜14%、 Pb3〜10%、 およびFe残部で、かつ C 0.6〜1.2%、Ni0.5〜3%、 Mo0.5〜3%、Co5.5〜7.5%、 およびFe残部の基地中に Si4〜12%、Mo33〜36%、 およびCo残部の硬質相が5〜25%が分散し、さらにPb30
〜50%を含むCu合金相が10〜20%分散した組織を呈する
ことを特徴とする高温耐摩耗性鉄系焼結合金。
2. The weight ratio of the entire composition is C 0.3-1%, Si 0.16-2.7%, Ni 0.3-2.6%, Mo 1.7-10%, Co 6.3-19%, Cu 5-14% , Pb3-10%, and the balance of Fe, and C0.6-1.2%, Ni0.5-3%, Mo0.5-3%, Co5.5-7.5%, and Si4-12% in the base of the balance of Fe. , Mo33-36%, and the remaining hard phase of Co is 5-25% dispersed, and Pb30
A high-temperature wear-resistant iron-based sintered alloy having a structure in which a Cu alloy phase containing -50% is dispersed in 10-20%.
【請求項3】全体組成が重量比で、 C 0.3〜1%、Si0.06〜2.7%、 Cr2%以下、Ni0.3〜2.6%、 Mo1.4〜10%、Co6.3〜20%、 Cu5〜14%、Pb3〜10%、 およびFe残部で、かつ C 0.6〜1.2%、Ni0.5〜3%、 Mo0.5〜3%、Co5.5〜7.5%、 およびFe残部の基地中に Si1.5〜2.5%、Cr7〜9%、 Mo26〜30%およびCo残部の硬質相とSi4〜12%、Mo33〜3
6およびCo残部の硬質相を5〜25%分散し、さらにPb30
〜50%を含むCu合金相が10〜20%分散した組織を呈する
ことを特徴とする高温耐摩耗性鉄系焼結合金。
3. The weight ratio of the entire composition is C 0.3 to 1%, Si 0.06 to 2.7%, Cr 2% or less, Ni 0.3 to 2.6%, Mo 1.4 to 10%, Co 6.3 to 20%, Cu5 to 14%, Pb3 to 10%, and the balance of Fe, and C 0.6 to 1.2%, Ni 0.5 to 3%, Mo 0.5 to 3%, Co 5.5 to 7.5%, and the balance of Fe in the base. Si1.5-2.5%, Cr7-9%, Mo26-30% and hard phase of Co balance and Si4-12%, Mo33-3
Disperse 5 to 25% of the hard phase in the balance of 6 and Co.
A high-temperature wear-resistant iron-based sintered alloy having a structure in which a Cu alloy phase containing -50% is dispersed in 10-20%.
JP63238499A 1988-09-22 1988-09-22 High temperature wear resistant iron-based sintered alloy Expired - Lifetime JP2553664B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63238499A JP2553664B2 (en) 1988-09-22 1988-09-22 High temperature wear resistant iron-based sintered alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63238499A JP2553664B2 (en) 1988-09-22 1988-09-22 High temperature wear resistant iron-based sintered alloy

Publications (2)

Publication Number Publication Date
JPH0288749A JPH0288749A (en) 1990-03-28
JP2553664B2 true JP2553664B2 (en) 1996-11-13

Family

ID=17031156

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63238499A Expired - Lifetime JP2553664B2 (en) 1988-09-22 1988-09-22 High temperature wear resistant iron-based sintered alloy

Country Status (1)

Country Link
JP (1) JP2553664B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5335002A (en) * 1991-09-30 1994-08-02 Rohm Co., Ltd. Printing head and printer incorporating the same

Also Published As

Publication number Publication date
JPH0288749A (en) 1990-03-28

Similar Documents

Publication Publication Date Title
US4422875A (en) Ferro-sintered alloys
US4919719A (en) High temperature wear resistant sintered alloy
JP3312585B2 (en) Valve seat made of Fe-based sintered alloy with excellent wear resistance
JP2553664B2 (en) High temperature wear resistant iron-based sintered alloy
JP2763826B2 (en) Sintered alloy for valve seat
JPS6210244A (en) Sintered alloy excellent in wear resistance at high temperature
JP2706561B2 (en) Valve seat material for internal combustion engine and method of manufacturing the same
JP3226618B2 (en) Iron-based sintered alloy for valve seat
JPH10102220A (en) Valve seat made of fe-base sintered alloy excellent in wear resistance
JPH0541693B2 (en)
JPH0555592B2 (en)
JPH0555591B2 (en)
JP3275729B2 (en) Method for producing valve seat made of Fe-based sintered alloy with excellent wear resistance
JPS61117254A (en) Ferrous sintered alloy for valve seat
JP3068127B2 (en) Wear-resistant iron-based sintered alloy and method for producing the same
JPH07109024B2 (en) Sintered alloy for valve seat of internal combustion engine
JPH0561346B2 (en)
JP3331927B2 (en) Method for producing valve seat made of Fe-based sintered alloy with excellent wear resistance
JP2677813B2 (en) High temperature wear resistant iron-based sintered alloy
JP3264092B2 (en) Wear-resistant iron-based sintered alloy and method for producing the same
JP3068128B2 (en) Wear-resistant iron-based sintered alloy and method for producing the same
JPH1088299A (en) Two-layer valve seat made of ferrum-base sintered alloy, excellent in wear resistance
JPH10102221A (en) Valve seat made of fe base sintered alloy excellent in wear resistance
JPH0456101B2 (en)
JPH08193250A (en) Iron-base sintered alloy with high temperature wear resistance and its production