JPS61139644A - Sintered iron alloy for valve seat - Google Patents

Sintered iron alloy for valve seat

Info

Publication number
JPS61139644A
JPS61139644A JP26042084A JP26042084A JPS61139644A JP S61139644 A JPS61139644 A JP S61139644A JP 26042084 A JP26042084 A JP 26042084A JP 26042084 A JP26042084 A JP 26042084A JP S61139644 A JPS61139644 A JP S61139644A
Authority
JP
Japan
Prior art keywords
iron
alloy
wear resistance
iron alloy
valve seat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26042084A
Other languages
Japanese (ja)
Inventor
Yukio Kadota
門田 幸男
Akira Manabe
明 真鍋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP26042084A priority Critical patent/JPS61139644A/en
Publication of JPS61139644A publication Critical patent/JPS61139644A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To obtain the titled sintered iron alloy having the well-balanced its own wear resistance and attacking action on an opposite member by dispersing the rigid particles of an alloy consisting of Co, Cr, Mo and C in an iron matrix contg. C or further contg. Ni. CONSTITUTION:The sintered iron alloy for a valve seat is obtd. by dispersing rigid particles of an alloy consisting of, by weight, 0.5-3.0% C, 5-20% Mo, 10-40% Cr and the balance Co in an iron matrix consisting essentially of pearlite. The iron alloy has a composition consisting of 1.9-21.1% Co, 0.5-10% Cr, 0.15-5% Mo, 0.8-2.8% C and the balance Fe or further contg. 1-10% Ni. Pb may be infiltrated into the iron alloy by 1-20wt% of the total amount. The iron alloy has the improved wear resistance and the weakened attacking action on an opposite member as compared with a conventional seat material, so an engine valve not subjected to filling or other processing for improving the wear resistance can be used stably.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は内燃機関のバルブシート用焼結合金の性能改善
に係り、より詳しくは自身の耐摩耗性を高めるとともに
、相手バルブに対する攻撃性を弱めた鉄系焼結合金に関
する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to improving the performance of a sintered alloy for valve seats of internal combustion engines, and more specifically, it improves its own wear resistance and reduces its aggressiveness against mating valves. Concerning weakened iron-based sintered alloys.

〔従来技術〕[Prior art]

内燃機関のバルブシートには高温での耐摩耗性を高める
ため、Cr、 Ni、 Co、 Mo等の合金元素を添
加した鉄系焼結合金が多用されつつある。
Iron-based sintered alloys containing alloying elements such as Cr, Ni, Co, and Mo are increasingly being used for valve seats of internal combustion engines in order to improve wear resistance at high temperatures.

ところで、バルブシートの材質の選択は、相手部材すな
わちエンジンバルブとの相関において決定されるべきも
ので、この選択を誤ると自身の耐磨耗性を弱めるばかり
か、相手部材に対する攻撃性を増して、バルブ機構全体
に思わしくない影響を与えることになる。例えば従来、
エンジンバルブとしては耐摩耗性を高めるため、ステラ
イト等の盛金を施したものが多用されているが、近年、
原価低減の要求からバルブ盛会を廃止する動きにある。
By the way, the selection of the material for the valve seat should be determined in relation to the mating component, that is, the engine valve.If this selection is incorrect, it will not only weaken its own wear resistance, but also increase its aggressiveness against the mating component. This will have an undesirable effect on the entire valve mechanism. For example, conventionally,
Engine valves that are coated with metal such as stellite are often used to increase wear resistance, but in recent years,
There is a movement to abolish valve sales due to demands for cost reduction.

このような背景のもとに、従来のような例えばフェロモ
リブデン等の金属間化合物または複合炭化物を添加して
、極度に耐摩耗性を高めたバルブシートをそのまま使用
すると、エンジンバルブの摩耗を増大させる結果となる
Against this background, if conventional valve seats that have been added with intermetallic compounds such as ferromolybdenum or composite carbides to have extremely high wear resistance are used as they are, engine valve wear will increase. This results in

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は上記の盛金処理等により耐摩耗性が高められて
ない汎用エンジンバルブ(例えばJI88tJH31,
8(JH3製)を相手にした場合にも、相手を摩耗し、
あるいは自身め摩耗を著しく増大させることのないよう
にしようとするもので、耐摩耗性と相手攻撃性との適度
のバランスのとれたバルブシート用鉄系焼結合金を提供
しようとするものである。
The present invention applies to general-purpose engine valves (for example, JI88tJH31,
8 (manufactured by JH3), it will wear out the opponent,
Alternatively, it is an attempt to avoid a significant increase in self-wear, and an attempt is made to provide an iron-based sintered alloy for valve seats that has an appropriate balance between wear resistance and attack resistance. .

〔問題を解決するための手段〕 本発明バルブシート用鉄系焼結合金は、パーライト主体
の鉄(Fe)基地中に、重量比で炭素(q: ’0.5
〜&0%、 モリブデン(MO)=5〜20%、クロム
(Cr) : 10〜40%、残部コバルト(Co)か
らなる硬質粒子が分散し、全体の組成をCo : 1.
9〜21.11゜Cr:α5〜l0IG、MO:α25
〜sj、C: 0.8〜2.8 % 、所望によりNi
 1〜10嗟、残部Fe及び不可避不純物とし、さらに
所望により全重量比にして1ないし20チの鉛(pb)
を溶浸させたことを特徴とするものである。
[Means for solving the problem] The iron-based sintered alloy for valve seats of the present invention contains carbon (q: '0.5 by weight) in an iron (Fe) base mainly composed of pearlite.
~&0%, molybdenum (MO) = 5 to 20%, chromium (Cr): 10 to 40%, and the remainder cobalt (Co). Hard particles are dispersed, and the overall composition is Co: 1.
9~21.11゜Cr: α5~l0IG, MO: α25
~sj, C: 0.8-2.8%, Ni if desired
1 to 10 cm, the balance being Fe and unavoidable impurities, and if desired, lead (pb) in a total weight ratio of 1 to 20 cm.
It is characterized by being infiltrated with.

〔作 用〕[For production]

上記のCO基合金硬質粒子は30ないし150μmの粒
径を有している。そしてこれを、Cを含むFe基地中に
分散させたのは、バルブシートの耐摩耗性を適度に高め
るためであり、合金中のCOの一部が基地中に拡散して
粒子の周囲に拡散層を形成し、粒子と基地との結合力を
増して、該粒子の脱落を防ぐ作用がある。このような硬
質粒子の混合率はFe基地の組成と全体の組成から決定
されるが、約5ないし25チの範囲である。
The above CO-based alloy hard particles have a particle size of 30 to 150 μm. The reason why this is dispersed in the Fe base containing C is to appropriately increase the wear resistance of the valve seat, and some of the CO in the alloy diffuses into the base and around the particles. It has the effect of forming a layer and increasing the bonding force between the particles and the base, thereby preventing the particles from falling off. The mixing ratio of such hard particles is determined based on the composition of the Fe base and the overall composition, and is in the range of about 5 to 25 inches.

一方、Fe基地中に含まれるCは基地のFeに固溶して
パーライトを形成し、焼結合金の硬さを増し、耐摩耗性
を向上させるとともに、未反応の遊離黒鉛が、ある程度
基地中に内在することにより、潤滑効果が発揮される。
On the other hand, C contained in the Fe base forms a solid solution with Fe in the base to form pearlite, increasing the hardness of the sintered alloy and improving wear resistance. The lubricating effect is exerted by being present in the .

但しα81g以下では上記の効果が現れず、2.0チ以
上では遊離黒鉛が多くなって基地の強歳が低下する。従
って0.8ないし2.0.全組成としてはα8ないし2
.8優が好ましい、、′ またバルブシートに特に耐摩耗性が要求される場合には
基地成分としてNiを添加する。Niは基地に固溶して
基地強化に役立つが1係以下ではその効果が発揮されず
、10−以上では逆に基地が軟化して耐摩耗性が低下す
るため1q′いし10チが好ましい。
However, if α is less than 81 g, the above effect will not appear, and if it is more than 2.0 g, free graphite will increase and the strength of the base will decrease. Therefore 0.8 to 2.0. The total composition is α8 to 2.
.. A value of 8 or better is preferable. If the valve seat is particularly required to have wear resistance, Ni is added as a base component. Ni is dissolved in the base and helps strengthen the base, but if the coefficient is less than 1, the effect will not be exhibited, and if it is more than 10, the base will become soft and the wear resistance will decrease, so 1q' to 10 is preferred.

次に硬質粒子中に含まれる成分の限定理由について述べ
る。
Next, the reasons for limiting the components contained in the hard particles will be described.

Orは炭素と化合して炭化物を形成するとともに、一部
がCOと合金を形成し、硬質粒子の硬さを向上さdる効
果を有しているが、109g以下で□は上記の効果が′
不十分であり、40%以上番こなると粒子内の平衡を保
つカ込【と一部のCrが粒子外に拡散し、該粒子丙に9
漬を生じて脆くなる。また粒子内の炭化物の食が多くな
り、相手部材に対する攻撃性を強めるので10ないし4
0憾とした。
Or combines with carbon to form carbide, and a part of it also forms an alloy with CO, which has the effect of improving the hardness of hard particles, but at 109g or less, □ does not have the above effect. ′
If it is insufficient, and if the number exceeds 40%, some of the Cr that maintains the equilibrium within the particle will diffuse out of the particle, and the particle
It will pickle and become brittle. In addition, the carbide in the particles will be eaten more and the aggressiveness towards the other member will be strengthened, so the
0 I was disappointed.

MOは炭素と化合して炭化物を形成し、一部は固溶して
硬質粒子の固さを増すが、5チ以下ではその効果が現れ
ず、201以上では硬くなりすぎて相手部材を攻撃する
ので5ないし20チとした、。
MO combines with carbon to form carbide, and some of it becomes solid solution to increase the hardness of the hard particles, but if it is less than 5 inches, this effect will not appear, and if it is more than 201, it will become too hard and attack the mating member. So I set it to 5 to 20 inches.

CはCr、Moと化合して炭化物を形成し、硬質粒子の
硬さを増すが、ttS*以下ではその効果が現れず、5
チ以上では炭化物の量が多過ぎて脆くなるので[15な
いし311iとした。
C combines with Cr and Mo to form carbides and increases the hardness of hard particles, but this effect does not appear below ttS*;
Since the amount of carbide becomes too large and becomes brittle when the amount is 15 or more, it is set to 15 to 311i.

上記のような基地と硬質粒子とからなる鉄系焼結合金の
全組成は、C:[L8〜2.8%、Co:1.9〜21
11g、Cr : Q、5〜10 S 、 Mo :1
25〜5 %、所望によりNi 1〜10嗟、残部がF
e及び不可避不純物となる。
The total composition of the iron-based sintered alloy consisting of the base and hard particles as described above is C: [L8 to 2.8%, Co: 1.9 to 21%.
11g, Cr: Q, 5-10 S, Mo: 1
25-5%, 1-10% Ni if desired, balance F
e and become unavoidable impurities.

使用条件が苛酷な場合には上記構成の鉄系焼結合金にざ
らにPbを溶浸させると、□該合金の表面番こ酸化物層
が形成され、その潤滑作用によつてバルブシートと相手
バルブ相互の耐摩耗性が向上する。但し含浸量が1係未
満ではその効果が小さく、201を越えるとスケルトン
が弱化して耐摩耗性が低下するため、1ないし20ヂが
好ましい。
If the operating conditions are severe, if the iron-based sintered alloy with the above structure is roughly infiltrated with Pb, a black oxide layer will be formed on the surface of the alloy, and its lubricating action will cause the valve seat to bond with the mating material. Improves wear resistance between valves. However, if the impregnation amount is less than 1 part, the effect will be small, and if it exceeds 20 parts, the skeleton will be weakened and the wear resistance will decrease, so 1 to 20 parts is preferable.

このような本発明焼結合金は18ないし2.0係の黒鉛
粉末、5ないし25憾のCO基合金、所望により1ない
し10チのNi、 0.5ないし1チのステアリン酸亜
鉛及び残部の還元鉄粉を配合、混合した後、金型内に充
填して成形圧力6ないし7 t/Jで成形し、これを還
元性雰囲気中、1100°Cないし1250’Cで30
ないし60分間焼結することによって得られる。また必
要に応じて該焼結体をPb塊に接触させ、還元性雰囲気
中、1000ないし1100°Cで30ないし60分間
加熱し、焼結体内に1ないし20チのpbを溶浸分散さ
せる。
Such a sintered alloy of the present invention contains graphite powder of 18 to 2.0 parts, CO-based alloy of 5 to 25 parts, optionally 1 to 10 parts of Ni, 0.5 to 1 part of zinc stearate, and the balance. After blending and mixing the reduced iron powder, it is filled into a mold and molded at a molding pressure of 6 to 7 t/J, and then heated at 1100°C to 1250'C for 30 minutes in a reducing atmosphere.
It is obtained by sintering for 60 minutes. If necessary, the sintered body is brought into contact with a Pb lump and heated in a reducing atmosphere at 1000 to 1100°C for 30 to 60 minutes to infiltrate and disperse 1 to 20 inches of Pb into the sintered body.

〔実施例〕〔Example〕

以下、本発明の実施例を比較例と対比しつつ説明する。 Examples of the present invention will be described below in comparison with comparative examples.

実施例1 第1表に示すように、−!i25メツシュの黒鉛粉末が
1.0係、重量比で159G Cr%、Cr%、O1,
8嗟C−残部COからなる一100メツシュCO基合金
粉末が8係、ステアリン酸亜鉛がα8%となるように、
残部の一100メツシュ還元鉄粉と配合・混合し、混合
物を金型に充填して圧カフ t o n/cdで圧縮成
形し、次に該粉末成形体をアンモニアガス中で1150
°C×60分間加熱・焼結した。
Example 1 As shown in Table 1, -! i25 mesh graphite powder has a coefficient of 1.0 and a weight ratio of 159G Cr%, Cr%, O1,
So that the 1100 mesh CO-based alloy powder consisting of 8 mo C and the balance CO is 8%, and the zinc stearate is α8%.
The remaining 1100 mesh reduced iron powder was blended and mixed, the mixture was filled into a mold and compression molded using a pressure cuff ton/cd, and then the powder compact was heated to 1150 mesh in ammonia gas.
It was heated and sintered at °C for 60 minutes.

その後、上記のごとくして得た焼結体をバルブシートに
加工し、該バルブシートを排気量2000cc 14 
気筒エンジンのアルミニウム合金製シリンダヘッドに排
気弁座として圧入・組付け、台上耐久試験に供した。
Thereafter, the sintered body obtained as described above was processed into a valve seat, and the valve seat was made into a valve seat with a displacement of 2000cc 14
It was press-fitted and assembled as an exhaust valve seat into the aluminum alloy cylinder head of a cylinder engine and subjected to a bench durability test.

台上耐久試験は有鉛ガソリンを用い、6600r、p、
m、全負荷で200時間継続した。この時の相手バルブ
には盛金なしの汎用バルブ(JISStJH3)を用い
た。そして試験終了後、バルブシートの当り面幅増加量
と相手バルブの摩耗量を測定し、その結果を焼結体の硬
さ及び密度とともに下の表に記す。なお表には後述する
実施例2〜5及び比較例1〜2の結果を併記した。
The bench durability test was conducted using leaded gasoline at 6600 r, p.
m, continued for 200 hours at full load. At this time, a general-purpose valve (JISStJH3) without a metal plate was used as the mating valve. After the test, the increase in the contact surface width of the valve seat and the amount of wear on the mating valve were measured, and the results are listed in the table below along with the hardness and density of the sintered body. The table also includes the results of Examples 2 to 5 and Comparative Examples 1 to 2, which will be described later.

実施例2〜5 表の記載のように組成を変えて実施例1と同様の方法で
バルブシートを製作し、これを実施例1と同様の台上耐
久試験に供した。なお実施例3.4については、焼結体
をPb塊に接触させアンモニア分解ガス雰囲気中で10
50’″CX30分間加熱してPbを溶浸させた。また
表記の成分以外にステアリン酸亜鉛をQ、81j含むこ
とは実施例1と同様である。
Examples 2 to 5 Valve seats were manufactured in the same manner as in Example 1, with the compositions changed as shown in the table, and were subjected to the same bench durability test as in Example 1. Regarding Example 3.4, the sintered body was brought into contact with a Pb lump and heated for 10 minutes in an ammonia decomposition gas atmosphere.
Pb was infiltrated by heating at 50'CX for 30 minutes. Also, as in Example 1, zinc stearate was included in addition to the listed components.

比較例1 鋳鉄FC50を用いてバルブシートを製作し。Comparative example 1 The valve seat was manufactured using cast iron FC50.

実施例1と同様の台上耐久試験に供した。It was subjected to the same bench durability test as in Example 1.

比較例2 JIS耐熱鋼材5UH4Bを用いてバルブシートを製作
し、実施例1と同様の台上耐久試験に供した。
Comparative Example 2 A valve seat was manufactured using JIS heat-resistant steel material 5UH4B, and subjected to the same bench durability test as in Example 1.

上記の表より本発明の範囲に包含される実施例1〜5の
焼結合金はいずれも摩耗量とバルブ当り面幅の増加量が
小さく、自身の耐摩耗性の優れていること、及び相手部
材に対する攻撃性の小さいことが明らかである。
From the table above, the sintered alloys of Examples 1 to 5, which fall within the scope of the present invention, have a small amount of wear and a small increase in the valve contact surface width, and have excellent wear resistance. It is clear that the attack on the component is low.

なかでも実施例2.4.5は実施例3と比較して硬質粒
子の号を減らす代りにNiを添加してあり、耐摩耗性が
実施例3よりも高く、シかもバルブ摩耗量が減少すると
いう優れた効果を得た。
Among them, Examples 2, 4, and 5 have Ni added instead of reducing the number of hard particles compared to Example 3, and have higher wear resistance than Example 3, and the amount of valve wear is also reduced. I got an excellent effect.

また実施例3及び4は硬質粒子の組成または配合量によ
って、それ自体の硬さが著しく高められているが、 P
b溶浸の効果によりバルブの摩耗量は他の実施例と大差
がない。
Furthermore, in Examples 3 and 4, the hardness itself was significantly increased depending on the composition or blending amount of the hard particles, but P
b Due to the effect of infiltration, the amount of valve wear is not much different from other examples.

これに対して比較例1及び2は自身の耐摩耗性が低いう
えにバルブの摩耗量が大きい。
On the other hand, Comparative Examples 1 and 2 have low wear resistance and a large amount of valve wear.

実施例6〜10、比較例3〜4 第2表に示す組成の焼結体を製造し、前記の如く台上耐
久試験に供した。その結果Niを含む硬質粒子を用いて
も、本発明の効果が現れていることが認められた。
Examples 6 to 10, Comparative Examples 3 to 4 Sintered bodies having the compositions shown in Table 2 were manufactured and subjected to the bench durability test as described above. As a result, it was found that even when hard particles containing Ni were used, the effects of the present invention appeared.

〔発明の効果〕〔Effect of the invention〕

以上、詳細に説明したように、本発明にかかるバルブシ
ート用鉄系焼結合金は、Cそして所望によりNiを含む
Fe基地中に硬質合金粒子を分散させ、かつ所望により
Pbを溶浸させることにより、自身の耐摩耗性が向上す
るばかりか、従来のシート材よりも相手部材に対する攻
撃性を弱めて、該部材の摩耗を少なくする効果を奏し、
これによって盛金等の耐摩耗処理を施してないエンジン
バルブの安定的使用が可能となった。
As described above in detail, the iron-based sintered alloy for valve seats according to the present invention is produced by dispersing hard alloy particles in an Fe base containing C and optionally Ni, and infiltrating Pb if desired. This not only improves its own abrasion resistance, but also weakens the aggressiveness of the mating member compared to conventional sheet materials, thereby reducing the wear of the member.
This has made it possible to stably use engine valves that have not been subjected to wear-resistant treatments such as fillers.

Claims (2)

【特許請求の範囲】[Claims] (1)パーライトを主体とする鉄(Fe)基地中に、重
量比で炭素(C)0.5〜30%、モリブデン(Mo)
5〜20%、クロム(Cr)10〜40%、残部コバル
ト(Co)からなる硬質粒子が分散し、全体の組成が、
Co1.9〜21.1%、Cr0.5〜10%、Mo0
.25〜5%、C0.8〜2.8%、所望によりNi1
〜10%、残部Fe及び不可避不純物からなることを特
徴とするバルブシート用鉄系焼結合金。
(1) 0.5 to 30% carbon (C) and molybdenum (Mo) by weight in an iron (Fe) base mainly composed of pearlite.
Hard particles consisting of 5% to 20% chromium (Cr), 10% to 40% chromium (Cr), and the balance cobalt (Co) are dispersed, and the overall composition is as follows:
Co1.9-21.1%, Cr0.5-10%, Mo0
.. 25-5%, C0.8-2.8%, optionally Ni1
An iron-based sintered alloy for valve seats, characterized in that the iron-based sintered alloy is comprised of ~10%, the balance being Fe and unavoidable impurities.
(2)パーライトを主体とする鉄(Fe)基地中に、重
量比で炭素(C)0.5〜30%、モリブデン(Mo)
5〜20%、クロム(Cr)10〜40%、残部コバル
ト(Co)からなる硬質粒子が分散し、かつ鉛が溶浸さ
れて全体の組成がCo1.9〜21.1%、Cr0.5
〜10%、Mo0.25〜5%、Pb1〜20%、C0
.8〜2.8%、所望によりNi1〜10%、残部Fe
及び不可避不純物からなることを特徴とするバルブシー
ト用鉄系焼結合金。
(2) 0.5 to 30% carbon (C) and molybdenum (Mo) by weight in an iron (Fe) base mainly composed of pearlite.
Hard particles consisting of 5% to 20% chromium (Cr), 10% to 40% chromium (Cr), and the balance cobalt (Co) are dispersed, and lead is infiltrated, resulting in an overall composition of 1.9% to 21.1% Co, 0.5% Cr.
~10%, Mo0.25~5%, Pb1~20%, C0
.. 8-2.8%, Ni 1-10% if desired, balance Fe
and unavoidable impurities.
JP26042084A 1984-12-10 1984-12-10 Sintered iron alloy for valve seat Pending JPS61139644A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26042084A JPS61139644A (en) 1984-12-10 1984-12-10 Sintered iron alloy for valve seat

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26042084A JPS61139644A (en) 1984-12-10 1984-12-10 Sintered iron alloy for valve seat

Publications (1)

Publication Number Publication Date
JPS61139644A true JPS61139644A (en) 1986-06-26

Family

ID=17347685

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26042084A Pending JPS61139644A (en) 1984-12-10 1984-12-10 Sintered iron alloy for valve seat

Country Status (1)

Country Link
JP (1) JPS61139644A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6468447A (en) * 1987-09-10 1989-03-14 Nissan Motor High temperature wear-resistant sintered alloy

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6468447A (en) * 1987-09-10 1989-03-14 Nissan Motor High temperature wear-resistant sintered alloy

Similar Documents

Publication Publication Date Title
JP2000297356A (en) High temperature wear resistant sintered alloy
JP3225649B2 (en) Wear resistant iron-based sintered alloy
JPS61139644A (en) Sintered iron alloy for valve seat
JP3226618B2 (en) Iron-based sintered alloy for valve seat
JPS61117254A (en) Ferrous sintered alloy for valve seat
JP2684774B2 (en) Iron-based sintered alloy for valve seats
JP3361113B2 (en) Valve seats and valves
JPH0555591B2 (en)
JPS60258449A (en) Sintered iron alloy for valve seat
JP2877211B2 (en) Iron-based sintered alloy for valve seat
JPH0633184A (en) Production of sintered alloy for valve seat excellent in wear resistance
JP3068127B2 (en) Wear-resistant iron-based sintered alloy and method for producing the same
JPS61179856A (en) Iron system sintered alloy for valve seat
JP2677813B2 (en) High temperature wear resistant iron-based sintered alloy
JPH0561346B2 (en)
JP2833116B2 (en) Sintered alloy for valve seat
JPS61183447A (en) Sintered iron alloy for valve seat
JPS61179857A (en) Iron system sintered alloy for valve seat
JPS6173865A (en) Sintered iron alloy for valve seat
JP3068128B2 (en) Wear-resistant iron-based sintered alloy and method for producing the same
JPS61183448A (en) Sintered iron alloy for valve seat
JPH07109024B2 (en) Sintered alloy for valve seat of internal combustion engine
JPH07109023B2 (en) Iron-based sintered alloy for valve sheet
JP3264092B2 (en) Wear-resistant iron-based sintered alloy and method for producing the same
JP3304805B2 (en) Iron-based sintered alloy with excellent wear resistance