JPS58224154A - Sintered fe alloy for valve seat of internal combustion engine - Google Patents

Sintered fe alloy for valve seat of internal combustion engine

Info

Publication number
JPS58224154A
JPS58224154A JP10649982A JP10649982A JPS58224154A JP S58224154 A JPS58224154 A JP S58224154A JP 10649982 A JP10649982 A JP 10649982A JP 10649982 A JP10649982 A JP 10649982A JP S58224154 A JPS58224154 A JP S58224154A
Authority
JP
Japan
Prior art keywords
internal combustion
density
alloy
valve seat
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10649982A
Other languages
Japanese (ja)
Other versions
JPH0115583B2 (en
Inventor
Hajime Murayama
肇 村山
Tomomi Ishikawa
石川 智美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP10649982A priority Critical patent/JPS58224154A/en
Publication of JPS58224154A publication Critical patent/JPS58224154A/en
Publication of JPH0115583B2 publication Critical patent/JPH0115583B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To obtain a sintered Fe alloy for the valve seats of an internal combustion engine with superior resistance to wear, heat, corrosion and oxidation by adding specified amounts of C, Mo, Ni and Cr to a steel and by providing a specified density to the resulting alloy as sintered. CONSTITUTION:The composition of this sintered Fe alloy for the valve seats of an internal combustion engine is composed of, by weight, 0.5-2% C, 3.5-13% Mo, 6-12% Ni, 1-6% Cr and the balance Fe with inevitable impurities, and >=7g/cm<3> density is provided to the alloy as sintered. 0.1-5% Co, 0.1-5% Cu or 0.05-0.4% S may be added furthermore. Since the alloy has said high density as sintered, it is not required to increase the density by coining, hot or cold forging or other method, so the alloy is obtd. at a reduced cost.

Description

【発明の詳細な説明】 この発明は、t、ol//cr1以上の高密度および高
強度、さらにすぐれた耐摩耗性、耐熱性、耐食性。
DETAILED DESCRIPTION OF THE INVENTION This invention provides high density and high strength of t, ol//cr1 or more, and excellent wear resistance, heat resistance, and corrosion resistance.

および耐酸化性を有し、特に多様化、小型化、および高
性能化がはかられつつある内燃機関の弁座として用いた
場合にすぐれた性能(#人件)を発揮するF’e基焼結
合金に関するものである。
F'e-based combustion has excellent oxidation resistance and exhibits excellent performance when used as a valve seat for internal combustion engines, which are becoming more diversified, more compact, and have higher performance. It concerns bond money.

近年、内燃機関の弁座の製造に焼結合金が多用されるよ
うになってきた。これは、焼結合金が高い生産性〔経済
性〕をもっほが、焼結合金のもつ特有の組織や多孔が内
燃機関弁座の性能に有効に作用することによるものであ
る。
In recent years, sintered alloys have come into widespread use in the manufacture of valve seats for internal combustion engines. This is because sintered alloys have high productivity (economic efficiency), and the unique structure and pores of sintered alloys effectively affect the performance of internal combustion engine valve seats.

しか、しながら、最近の内燃機関の多様化、小型化、お
よび高性能化に伴い、弁座の使用条件も増々苛酷になり
つつあり、この場合従来焼結合金製弁座では焼結合金の
もつ多孔が、逆に障害となって所望の耐久性を示さない
ものである。
However, with the recent diversification, miniaturization, and high performance of internal combustion engines, the operating conditions for valve seats are becoming increasingly severe. On the contrary, the porosity that it has causes it to become an obstacle and does not exhibit the desired durability.

そこで、焼結合金製弁座における耐久性劣化の原因とな
る多孔を、コイニングや、熱間あるいは冷間鍛造などに
よシっぷして密度を上げたり、さらにはこの多孔中にC
uやpbなどを含浸させたりして耐久性向上をはかる試
みもなされているが、と  1れらの方法はいずれもコ
ストアップをまねき、経済性において問題がある。
Therefore, the pores that cause durability deterioration in sintered alloy valve seats are increased by coining, hot or cold forging, etc. to increase the density, and even more carbon atoms are added to the pores.
Attempts have been made to improve durability by impregnating it with U, PB, etc., but all of these methods increase costs and are problematic in terms of economy.

本発明者等は、上述のような観点から、コストアップの
原因となるコイニングや、鍛造加工、さらには金属含浸
などの密度向上手段を必要とすることなく、焼結ままの
状態で高密度を有し、かつ苛酷な使用条件下でもすぐれ
た耐久性(性能)を発揮する内燃機関の弁座を得べく、
材料面から研究を行なった結果、重量係で、C:0.5
〜2.0%。
From the above-mentioned viewpoint, the present inventors have achieved high density in the as-sintered state without requiring density-improving means such as coining, forging, or even metal impregnation, which increase costs. In order to obtain a valve seat for an internal combustion engine that exhibits excellent durability (performance) even under harsh operating conditions,
As a result of research from the material aspect, the weight ratio was C: 0.5.
~2.0%.

Mo: 3.5〜13.0%、Ni:6〜12%、Cr
:1〜6%を含有し、さらに必要に応じてCo:0.1
〜5%、 Cu: 0.1〜5%、およびS : 0.
05〜0.4%のうちの1種または2種を含有し、残り
がFeと不可避不純物からなる組成を有するFe基焼結
合金は、焼結ままの状態でt、ogla&以、Lの高密
度および高強度を有し、さらにすぐれた耐摩耗性、耐熱
性。
Mo: 3.5-13.0%, Ni: 6-12%, Cr
Co: 1 to 6%, and optionally Co: 0.1
~5%, Cu: 0.1~5%, and S: 0.
Fe-based sintered alloys containing one or two of 05 to 0.4% and the remainder consisting of Fe and unavoidable impurities have high t, ogla, and L in the as-sintered state. It has high density and high strength, as well as excellent wear resistance and heat resistance.

耐食性、および耐酸化性を有し、したがってとのFe基
焼結合金を内燃機関の弁座の製造に用いると、この結果
の弁座は苛酷な使用条件下でもすぐれた耐久性(性能)
を示すという知見を得たのである。
When Fe-based sintered alloys with corrosion and oxidation resistance are used in the manufacture of internal combustion engine valve seats, the resulting valve seats have excellent durability (performance) even under severe service conditions.
We obtained the knowledge that this shows that

この発明は上記知見にもとづいてなされたものであって
、以下に成分組成範囲を上記の通りに限定した理由を説
明する。
This invention was made based on the above knowledge, and the reason why the component composition range was limited as described above will be explained below.

(a)  C C成分には、素地に固溶して、とれを強化するほか、炭
化物を形成して耐摩耗性を向上させる作用があるが、そ
の含有量が0.5%未満では前記作用に所望の効果が得
られず、一方2.0%を越えて含有させると、圧粉体の
成形性が劣化するようになると共に、焼結合金の被、剛
性も悪化し、さらに脆化傾向が現われ、かつ相手材たる
弁への攻撃性が増すようになることから、その含有量を
0.5〜2、0%と定めた。
(a) C The C component has the effect of forming a solid solution in the base material and strengthening the wear resistance, as well as forming carbides and improving wear resistance, but if the content is less than 0.5%, the above effect will not occur. On the other hand, if the content exceeds 2.0%, the formability of the green compact deteriorates, the sheathing and rigidity of the sintered alloy deteriorate, and there is a tendency for embrittlement. appears and the aggressiveness towards the valve, which is the mating material, increases, so its content was set at 0.5 to 2.0%.

(b)  M。(b) M.

Mo成分には、C成分と結合して炭化物を形成し、耐摩
耗性を向」ニさせる作用があるほか、素地に固溶して耐
熱性および耐食性を向上させる作用があるが、その含有
量が3.5係未満では前記作用に所望の効果が得られず
、一方13.0%を越えて含有させても前記作用により
一層の向上効果は現われず、むしろ密度および強度に低
下傾向が現われるようになることから、経済性をも考慮
して、その含有量を3.5〜13.0 %と定めた。
The Mo component has the effect of combining with the C component to form carbide and improving wear resistance, and also has the effect of solid solution in the base material to improve heat resistance and corrosion resistance. If the content is less than 3.5%, the desired effect cannot be obtained in the above action, and on the other hand, if the content exceeds 13.0%, the effect of further improving the action will not appear, but rather there will be a tendency for the density and strength to decrease. Therefore, the content was determined to be 3.5 to 13.0%, taking economic efficiency into consideration.

(c)  Ni Ni成分は密度を著しく向上させ、焼結合金が7、 O
g 1cr1以上の高密度をもつようにするには不可欠
の成分であり、さらにこの成分には強度および耐熱性を
向上させる作用があるが、その含有量が6%未満では’
7.0 F/、lcr!以上の高密度を確保することが
できないばかりでなく、強度および耐熱性も不十分であ
り、一方12%を越えて含有させてもより一層の顕著な
向上効果が現われず、むしろ粘さが増して被剛性が劣化
するようになることから、その含有量を6〜12%と定
めた。
(c) Ni The Ni component significantly improves the density, and the sintered alloy
It is an essential component in order to have a high density of 1cr1 or more, and it also has the effect of improving strength and heat resistance, but if its content is less than 6%,
7.0 F/, lcr! Not only is it not possible to secure a higher density than above, but the strength and heat resistance are also insufficient, and on the other hand, even if the content exceeds 12%, there is no significant improvement effect, and the viscosity increases. The content was set at 6 to 12% because the stiffness deteriorates when the content is lowered.

(d)  Cr Crt539分には、Moと同様C成分と結合して炭化
物を形成し、もって耐摩耗性を向上させる作用があるほ
か、素地に固溶して耐食性および耐酸化性を向上させる
作用があるが、その含有量が1係未満、4 では前記作
用に所望の効果が得られず、一方6%を越えて含有させ
ると、密度が7.ol/cr/l以下となって強度が低
下するほか、硬さが上昇して相手攻撃性が増すようにな
るととから、その含有量を1〜6%と定めた。
(d) Cr Similar to Mo, Crt539 combines with the C component to form carbide, thereby improving wear resistance, and also dissolves in the base material to improve corrosion resistance and oxidation resistance. However, if the content is less than 1% or 4%, the desired effect cannot be obtained, while if the content exceeds 6%, the density will be 7%. The content was determined to be 1 to 6% because if the content was less than ol/cr/l, the strength would decrease, and the hardness would increase, making the opponent more aggressive.

(eJ  C。(eJ C.

co酸成分は素地に固溶して耐熱性(赤熱硬さ)を向」
ニさせる作用があるので、特に耐熱性が要求される場合
に必要に応じて含有されるが、その含有量が0.1%未
満では所望の耐熱性向上効果を得ることができず、一方
5%を越えて含有させてもより一層の向上効果が現われ
ず、経済性を考慮して、その含有量を01〜6チと定め
た。
The co-acid component dissolves in the base material and improves heat resistance (red-hot hardness).
Since it has the effect of increasing the Even if the content exceeds 0.0%, no further improvement effect will be obtained, and in consideration of economic efficiency, the content was set at 0.01 to 6.0%.

(f)  Cu Cu成分には、その一部が素地に固溶して耐誘性を向上
させるほか、焼結性を促進させて密度を上昇させ、さら
に熱伝導性および耐溶着性をも向上させる作用があり、
この作用はN1との共存において一段と顕著になること
から、これらの特性が要求される場合に必要に応じて含
有されるが、その含有量が0.1%未満では前記作用に
所望の向上効果が得られず、一方5%を越えて含有させ
ると、耐摩耗性が低下するほか、結晶粒の粗大化をきた
して相手材たる弁の摩耗が増加するようになることから
、その含有量を0.1〜5チと定めた。
(f) Cu A part of the Cu component dissolves into the base material to improve induction resistance, promotes sinterability, increases density, and further improves thermal conductivity and welding resistance. It has the effect of causing
This effect becomes even more pronounced in coexistence with N1, so it is included as necessary when these properties are required, but if the content is less than 0.1%, the desired effect of improving the above effect may not be achieved. On the other hand, if the content exceeds 5%, the wear resistance will decrease and the crystal grains will become coarser, increasing the wear of the valve that is the mating material. It was set at 0.1 to 5 inches.

(g)  S S成分には合金の被剛性を改善すると共に、相手材たる
弁とのなじみ性を向上させる作用があシ、特にこれらの
作用はCoとの共存において顕著に現われるようになる
ことから、これらの特性が要求される場合に必要に応じ
て含有されるが、その含有量が0.05 %未満では前
記作用に所望の向上効果が得られず、一方0.40 %
を越えて含有させると強度が低下するようになることか
ら、その含有量を0.05〜0.40%と定めた。なお
、望ましくは01〜0,2係の含有が好ましい。
(g) SS The S component has the effect of improving the rigidity of the alloy and improving the compatibility with the valve, which is the mating material, and these effects become particularly noticeable when coexisting with Co. Therefore, it is included as necessary when these properties are required, but if the content is less than 0.05%, the desired effect of improving the above function cannot be obtained, while if the content is less than 0.40%
Since the strength will decrease if the content exceeds 0.05% to 0.40%. In addition, it is preferable to contain 01 to 0.2.

つぎに、この発明のFe基焼結合金を実施例により具体
的に説明する。
Next, the Fe-based sintered alloy of the present invention will be specifically explained using Examples.

実施例 原料粉末として、粒度: −100meshのアトマイ
ズ鉄粉、同一100meshのFe−Cr合金(Cr:
12%)粉末、同一100meshの炭素粉末、同一4
00meshのカーボニルN1粉末、同一200mes
hのFe−Mo合金(Mo:58%含有)粉末、同一2
00mesbのCo粉末、同一250meshのCu粉
末、および同−i 00meshのF’e−8合金(8
21%含有)粉末を用意し、これら原料粉末をそれぞれ
第1表に示される配合組成に配合し、マイニュートミキ
サにて15分間混合した後、6 t、on/cIlの圧
力にて弁座形状の圧粉体に成形し、ついでとの圧粉体を
、それぞれ水素雰囲気中、1140〜1180℃の温度
範囲内の温度に1時間保持の条件で焼結することによっ
て、実質的に配合組成と同一の最終成分組成をもった本
発明焼結合金製弁座l〜34.比較焼結合金製弁座1〜
11.および従来内燃機関の弁座として多用されている
従来焼結合金製弁座をそれぞれ製造した。
Examples of raw material powders include atomized iron powder with a particle size of -100 mesh and Fe-Cr alloy (Cr:
12%) powder, same 100 mesh carbon powder, same 4
00mesh carbonyl N1 powder, same 200mesh
h Fe-Mo alloy (Mo: 58% content) powder, same 2
Co powder of 00 mesb, Cu powder of the same 250 mesh, and F'e-8 alloy (8
21% (containing 21%) powder was prepared, and these raw material powders were blended into the composition shown in Table 1, mixed for 15 minutes in a MyNut mixer, and then molded into a valve seat shape under a pressure of 6 t, on/cIl. By molding the powder into a green compact and then sintering each green compact in a hydrogen atmosphere at a temperature within the temperature range of 1140 to 1180°C for 1 hour, the mixture composition can be substantially changed. Valve seats 1 to 34 made of sintered alloy of the present invention having the same final component composition. Comparative sintered alloy valve seat 1~
11. and a conventional sintered metal valve seat, which has been widely used as a valve seat for internal combustion engines, were manufactured.

なお、比較焼結合金製弁座1〜11は、いずれも構成成
分のうちのいずれかの成分含有量(第1表に※印を付し
たもの)がこの発明の範囲から外れた組成をもつもので
ある。
In addition, all of the comparative sintered metal valve seats 1 to 11 have a composition in which the content of one of the constituent components (those marked with * in Table 1) is outside the scope of the present invention. It is something.

ついで、この結果得られた本発明焼結合金製弁座l〜3
4.比較焼結合金製弁座1〜11.および従来焼焦合金
製弁座について、密度およびビッカース硬さを測定する
と共に、実用機関にシュミレートした弁座摩耗試験機を
用い、弁材:弁用オーステナイト鋼、弁湛度:850℃
、弁すフト量二6.8朋1着座荷重:aokg、回転数
: 300Or、p、m、 、雰囲気:LPG燃焼ガス
、試験時間ニア2時間の条件で耐久摩耗試験を行ない、
全沈下摩耗量と弁座摩耗量を測定した。これらの測定結
果を第1表に合せて示した。
Next, the resulting valve seats 1 to 3 made of the sintered alloy of the present invention
4. Comparative sintered alloy valve seats 1 to 11. The density and Vickers hardness of the conventional sintered alloy valve seat were measured, and a valve seat wear tester simulated in a practical engine was used to measure the valve seat.Valve material: austenitic steel for valves, valve filling degree: 850℃
, Valve shaft amount: 26.8 mm, Seated load: aokg, Rotation speed: 300 Or, p, m, , Atmosphere: LPG combustion gas, Test time: 2 hours, Durability and wear tests were carried out.
Total subsidence wear and valve seat wear were measured. These measurement results are also shown in Table 1.

第1表に示される結果から、本発明焼結合金製弁座1〜
34は、いずれも焼結ままの状態で7,011/art
以上の高密度を有すると共に、きわめて高い硬さを有し
、しかもその実用に際しては密度が7.0)7/ci以
下にして相対的に硬さも低い従来焼結合金製弁座に比し
て著しくすぐれた耐摩耗性を有し、しかも相手攻撃性(
全沈下摩耗量−弁座摩耗量−相手材たる弁の摩耗量)も
低いことが明らかである。
From the results shown in Table 1, valve seats made of sintered alloy of the present invention 1 to
34 is 7,011/art in the as-sintered state.
In addition to having a high density of 7.0)7/ci or less, it also has extremely high hardness compared to conventional sintered alloy valve seats, which have a density of 7.0)7/ci or less and relatively low hardness. It has outstanding abrasion resistance and is also highly resistant to attack by opponents (
It is clear that the total subsidence wear amount - valve seat wear amount - wear amount of the mating valve material is also low.

また、比較焼結合金製弁座に見られるように、構成成分
のうちのいずれかの成分含有量がこの発明の範囲から外
れると、密度、耐摩耗性、および相手攻撃性のうちの少
なくともいずれかの性質が劣ったものになることがわか
る。
Furthermore, as seen in the comparative sintered alloy valve seat, if the content of any one of the constituent components falls outside the scope of the present invention, at least one of the density, wear resistance, and aggressiveness against the other party will be affected. It can be seen that the character of the person becomes inferior.

上述のように、この発明のFe基焼結合金は、焼結まま
の状態で7.0#/c!を以上の高密度および高強度を
有し、かつすぐれた耐摩耗性、耐熱性、耐食性、および
耐酸化性を有しているので、特に苛酷な条件下で使用さ
れる弁座の製造に用いた場合にすぐれた耐久性(性能)
を著しく長期に亘って発揮するのである。
As mentioned above, the Fe-based sintered alloy of the present invention has a yield of 7.0#/c in the as-sintered state! It has a high density and high strength, as well as excellent wear resistance, heat resistance, corrosion resistance, and oxidation resistance, so it is used especially for manufacturing valve seats used under harsh conditions. Excellent durability (performance) when
This is achieved over an extremely long period of time.

出願人  三菱金属株式会社 代理人  富  1) 和  夫Applicant: Mitsubishi Metals Corporation Agent Tomi 1) Kazuo

Claims (1)

【特許請求の範囲】 (1)  c : 0.5〜2.0%、Mo:3.5〜
13.0%。 Ni: 6〜12%、 Cr二1〜6係を含有し、残り
がFeと不可避不純物からなる組成(以上重量%)、並
びに密度ニア、oIi/7以−ヒを有することを特徴と
する内燃機関の弁座用Fe基焼結合金。 (2)  C: 0.5〜2.0%、 Mo: 3.5
〜13.0 ’%。 Ni: 6〜12%、 Cr: 1〜6%を含有し、さ
らにCo:0.1〜5チを含有し、残りがFeと不可避
不純物からなる組成(以上重量%)、並びに密度ニア、
 0 、!i’ /a1以上を有することを特徴とする
内燃機関の弁座用Fe基焼結合金。 (3)  C: O,,5〜2.0%、 Mo: 3.
5〜13.0 %。 N1:6〜12チ、Cr:1〜6%を含有し、さら忙C
u:0.1〜5%を含有し、残りがFeと不可避不純−
からなる組成(以上重量ラノ、並びに密度ニア、 OJ
?’/crA以上を有することを特徴とする内燃機関の
弁座用Fe基焼結合金。 (41C:0.5〜2.0俤、Mo:3.5〜13.0
チ。 Ni: 6〜129&、 Cr: 1〜6%を含有し、
さらにS:0.05〜0.4俤を含有し、残シがFeと
不可避不純物からなる組成(以上重量係)、並びに密度
: 7. Oylcr&以−Fを有することを特徴とす
る内燃機関の弁座用Fe基焼結合金。 (51C: 0.5〜2.0 %、 Mo: 3.5〜
13.0%。 Ni: 6〜12’ib、 Cr: l〜6 %を含有
し、さらにCo:0.1〜5%およびCu: 0.1〜
5 %を含有し、残りがFeと不可避不純物からなる組
成(以上重量%)、並びに密度: 7.01!/cnt
 y、lを有するととを特徴とする内燃機関の弁座用F
e基焼結合金。 (+5)  C: 0.5〜2.096. Mo: 3
.5〜13.Oqb。 Nに6〜12チ、Cr:1〜6チを含有し、さらにCo
: 0.1〜5 %およびS:0.05〜0.4%を含
有し、残シがF’sと不可避不純物からなる組成(以上
重量%)、並びに密度: 7.0 g/d以−Lを有す
ることを特徴とする内燃機関の弁座用Fe基焼結合金。 (7)  C: 0.5〜2.0 %、 Mo: 3.
5〜13.0%。 Nl:6〜12 %、 Cr: 1〜6 %を含有し、
さらにCu:01〜5%および8 : 0.05〜0.
4 %を含有し、残りがFeと不可避不純物からなる組
成(以上重量係)、並びに密度ニア、oEtlcr1以
上を有することを特徴とする内燃機関の弁座用Fe基焼
結合金。 (8)  C: 0.5〜2.0%、 Mo: 3.5
〜13.0%。 N1:6〜12%、 Cr: 1〜6 %を含有し、さ
らにCo: 0.1〜5%、 Cu: 0.1〜5%、
およびS:0.05〜0.4%を含有し、残りがFeと
不可避不純物からなる組成(以上重量係)、並びに密度
ニア、oll/dt以上を有することを特徴とする内燃
機関の弁座用Fe基焼結合金。
[Claims] (1) c: 0.5-2.0%, Mo: 3.5-2.0%
13.0%. Internal combustion characterized by having a composition (by weight %) containing Ni: 6 to 12%, Cr21 to 6%, and the remainder consisting of Fe and unavoidable impurities, and a density near, oIi / 7 or more. Fe-based sintered alloy for engine valve seats. (2) C: 0.5-2.0%, Mo: 3.5
~13.0'%. Contains Ni: 6 to 12%, Cr: 1 to 6%, further contains Co: 0.1 to 5%, and the remainder is Fe and unavoidable impurities (wt%), density near,
0,! An Fe-based sintered alloy for a valve seat of an internal combustion engine, characterized in that it has i'/a1 or more. (3) C: O, 5-2.0%, Mo: 3.
5-13.0%. Contains N1: 6-12%, Cr: 1-6%, and has a smooth C
u: Contains 0.1 to 5%, the rest is Fe and unavoidable impurities.
Composition consisting of (more than weight Rano and density Nia,
? 1. An Fe-based sintered alloy for a valve seat of an internal combustion engine, characterized in that it has a sintered alloy of '/crA or more. (41C: 0.5-2.0 tou, Mo: 3.5-13.0
blood. Contains Ni: 6 to 129%, Cr: 1 to 6%,
Further, the composition contains S: 0.05 to 0.4 yen, and the remainder is Fe and inevitable impurities (weight ratio), and density: 7. An Fe-based sintered alloy for a valve seat of an internal combustion engine, characterized by having Oylcr&F. (51C: 0.5~2.0%, Mo: 3.5~
13.0%. Contains Ni: 6-12'ib, Cr: 1-6%, further Co: 0.1-5% and Cu: 0.1-6%.
Composition (wt%) and density: 7.01! /cnt
F for a valve seat of an internal combustion engine, characterized by having y, l.
e-based sintered alloy. (+5) C: 0.5-2.096. Mo: 3
.. 5-13. Oqb. Contains 6 to 12 H of N, 1 to 6 H of Cr, and further Co.
: 0.1 to 5% and S: 0.05 to 0.4%, with the remainder consisting of F's and unavoidable impurities (wt%), and density: 7.0 g/d or more. An Fe-based sintered alloy for a valve seat of an internal combustion engine, characterized by having -L. (7) C: 0.5-2.0%, Mo: 3.
5-13.0%. Contains Nl: 6-12%, Cr: 1-6%,
Furthermore, Cu: 01-5% and 8: 0.05-0.
An Fe-based sintered alloy for a valve seat of an internal combustion engine, characterized by having a composition (by weight) of Fe and unavoidable impurities, and a density of near oEtlcr of 1 or more. (8) C: 0.5-2.0%, Mo: 3.5
~13.0%. Contains N1: 6-12%, Cr: 1-6%, further Co: 0.1-5%, Cu: 0.1-5%,
and S: 0.05 to 0.4%, with the remainder consisting of Fe and unavoidable impurities (weight ratio), and a valve seat for an internal combustion engine characterized by having a density near, oll/dt or more. Fe-based sintered alloy for use.
JP10649982A 1982-06-21 1982-06-21 Sintered fe alloy for valve seat of internal combustion engine Granted JPS58224154A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10649982A JPS58224154A (en) 1982-06-21 1982-06-21 Sintered fe alloy for valve seat of internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10649982A JPS58224154A (en) 1982-06-21 1982-06-21 Sintered fe alloy for valve seat of internal combustion engine

Publications (2)

Publication Number Publication Date
JPS58224154A true JPS58224154A (en) 1983-12-26
JPH0115583B2 JPH0115583B2 (en) 1989-03-17

Family

ID=14435123

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10649982A Granted JPS58224154A (en) 1982-06-21 1982-06-21 Sintered fe alloy for valve seat of internal combustion engine

Country Status (1)

Country Link
JP (1) JPS58224154A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6468447A (en) * 1987-09-10 1989-03-14 Nissan Motor High temperature wear-resistant sintered alloy
JP2007061892A (en) * 2005-09-02 2007-03-15 Yanmar Co Ltd Method for casting cast iron, and method for manufacturing cylinder head of internal combustion engine using the same
CN103182502A (en) * 2011-12-27 2013-07-03 北京有色金属研究总院 High-performance iron-based part pre-alloyed powder used for valve seat and preparation method thereof
CN103882325A (en) * 2012-12-20 2014-06-25 北京有色金属研究总院 Composite powder material for making high-performance abrasion resistant exhaust valve seat, and its application
JP2014169468A (en) * 2013-03-01 2014-09-18 Hitachi Chemical Co Ltd Sintered alloy and its manufacturing method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4928508A (en) * 1972-07-13 1974-03-14
JPS55148748A (en) * 1979-05-07 1980-11-19 Sumitomo Electric Ind Ltd Sintered alloy with superior wear resistance

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4928508A (en) * 1972-07-13 1974-03-14
JPS55148748A (en) * 1979-05-07 1980-11-19 Sumitomo Electric Ind Ltd Sintered alloy with superior wear resistance

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6468447A (en) * 1987-09-10 1989-03-14 Nissan Motor High temperature wear-resistant sintered alloy
JP2007061892A (en) * 2005-09-02 2007-03-15 Yanmar Co Ltd Method for casting cast iron, and method for manufacturing cylinder head of internal combustion engine using the same
JP4646227B2 (en) * 2005-09-02 2011-03-09 ヤンマー株式会社 Method for casting cast iron and method for manufacturing cylinder head for internal combustion engine using the method
CN103182502A (en) * 2011-12-27 2013-07-03 北京有色金属研究总院 High-performance iron-based part pre-alloyed powder used for valve seat and preparation method thereof
CN103882325A (en) * 2012-12-20 2014-06-25 北京有色金属研究总院 Composite powder material for making high-performance abrasion resistant exhaust valve seat, and its application
JP2014169468A (en) * 2013-03-01 2014-09-18 Hitachi Chemical Co Ltd Sintered alloy and its manufacturing method

Also Published As

Publication number Publication date
JPH0115583B2 (en) 1989-03-17

Similar Documents

Publication Publication Date Title
JP5525986B2 (en) Sintered valve guide and manufacturing method thereof
US5031878A (en) Valve seat made of sintered iron base alloy having high wear resistance
JPH0350823B2 (en)
JPS63223142A (en) Fe based sintered alloy for valve seat of internal combustion engine
JP2014098189A (en) Hard particle for blending in sintered alloy, abrasion resistant iron-based sintered alloy and its manufacturing method
JPH1171651A (en) Ferrous sintered alloy for valve seat
JPS58224154A (en) Sintered fe alloy for valve seat of internal combustion engine
JPH0517839A (en) Bearing alloy for high temperature use and its production
JPS63109142A (en) Ferrous sintered alloy combining heat resistance with wear resistance
JP3275727B2 (en) Method for producing two-layer valve seat made of Fe-based sintered alloy with excellent wear resistance
JP3275729B2 (en) Method for producing valve seat made of Fe-based sintered alloy with excellent wear resistance
JPS5828342B2 (en) Valve seat for internal combustion engines with excellent heat and wear resistance and machinability
JP2683444B2 (en) Sintered alloy for valve mechanism of internal combustion engine
JP3331963B2 (en) Sintered valve seat and method for manufacturing the same
KR0118773B1 (en) Sintered alloy steel for valve seat
JP2643739B2 (en) Two-layer valve seat made of iron-based sintered alloy for internal combustion engine
JP2833116B2 (en) Sintered alloy for valve seat
JP2571567B2 (en) High temperature wear resistant iron-based sintered alloy
JP3068127B2 (en) Wear-resistant iron-based sintered alloy and method for producing the same
JP2643741B2 (en) Two-layer valve seat made of lead impregnated iron-based sintered alloy for internal combustion engines
JPH0431014B2 (en)
JPH059668A (en) Valve seat made of fe-based sintered alloy having high strength and high toughness
JPS58130260A (en) Sintered fe alloy for valve seat
JP2006193831A (en) Abrasion resistance iron-based sintered alloy material for valve seat and valve seat made of iron-based sintered alloy
JPH06158117A (en) Two-layered valve seat made of iron-containing sintered alloy for internal-combustion engine