KR890003408B1 - Manufacturing method of fe sintering alloy for valve seat - Google Patents

Manufacturing method of fe sintering alloy for valve seat Download PDF

Info

Publication number
KR890003408B1
KR890003408B1 KR1019850002607A KR850002607A KR890003408B1 KR 890003408 B1 KR890003408 B1 KR 890003408B1 KR 1019850002607 A KR1019850002607 A KR 1019850002607A KR 850002607 A KR850002607 A KR 850002607A KR 890003408 B1 KR890003408 B1 KR 890003408B1
Authority
KR
South Korea
Prior art keywords
wear
sintering
valve seat
infiltration
alloy
Prior art date
Application number
KR1019850002607A
Other languages
Korean (ko)
Other versions
KR860008299A (en
Inventor
서상기
이강률
유한준
Original Assignee
재단법인 한국기계연구소
김훈철
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 재단법인 한국기계연구소, 김훈철 filed Critical 재단법인 한국기계연구소
Priority to KR1019850002607A priority Critical patent/KR890003408B1/en
Publication of KR860008299A publication Critical patent/KR860008299A/en
Application granted granted Critical
Publication of KR890003408B1 publication Critical patent/KR890003408B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy

Abstract

Sintering alloy is produced by pressing the powder mixture, consisting of (in wt.%) 1.0-2.0% C, 2.0-3.0% Cr, 0.2-0.4% Mo, 0.2- 0.4% V, 5-20% WC and balance Fe, to 5-7 ton/cm2, sintering the pressed element for 30-60 minutes at 1100-1200 deg.C under reduction atmosphere, infitrating copper into the sintered element, and high- temp. quenching for 60-120 minutes at 500-700 deg.C. The sintering alloy is used for valve seat and has an improved wearresistance.

Description

밸브 시이트용 내마모성 철계소결합금의 제조방법Manufacturing method of wear-resistant iron-based alloy for valve seat

제1도는 (Fe-Cr-Mo-V) -10% WC-1.5% C조성을 갖는 실시 시편의 소결, 용침후 광학 현미경 조직(배율×200) 1은 분산 내마모재인 WC입자, 2는 Cu용침재, 3은 마르텐사이트 기지조직을 각각 나타낸다.1 shows (Fe-Cr-Mo-V)-10% WC-1.5% C sintering and post-infiltration optical microscope structure of the test specimen (magnification × 200) where 1 is a dispersion wear-resistant WC particles, 2 is for Cu Infiltration, 3 represents martensite matrix, respectively.

제2도는 제1조성의 실시 시편의 소결, 용침후 뜨임 열처리를 한 조직의 광학 현미경 조직(배율×200) 2-1은 분산 내마모재인 WC입자, 2-2는 Cu용침재 2-3은 뜨임 열처리 조직을 각각 나타낸다.2 shows the optical microscope structure (magnification × 200) 2-1 of the structure subjected to the sintering and tempering heat treatment of the test specimen of the first composition 2 × is the WC particles of the dispersion wear-resistant material, 2-2 is the Cu infiltration material 2-3 Each temper heat treatment structure is shown.

본 발명은 내연기관의 밸브 시이트용 내마모성 소결합금의 제조방법에 관한 것이다. 밸브 시이트는 고온 산화성 분위기에서 밸브와 직접 접촉하여 회전운동을 하며, 동시에 열간 충격을 받는 조건하에서 사용되므로 내열, 내마모성이 요구된다.The present invention relates to a method for producing a wear resistant small alloy alloy for valve seats of an internal combustion engine. The valve sheet is in direct contact with the valve in a high temperature oxidizing atmosphere, and rotates, and at the same time, it is used under a condition that is subject to hot shock, so heat and wear resistance are required.

근년에 와서 내연기관이 소형, 고출력화 하는 추세이며, 공해 방지를 위해 무연가솔린을 사용하게 됨에 따라 내마모성에 대한 요구가 점점 더 엄격해지고 있다.In recent years, the internal combustion engine has become smaller and higher power, and the use of lead-free gasoline to prevent pollution has increased the demand for wear resistance.

특히, 디젤엔진의 밸브 시이트는 가솔린 엔진에 비해 연소 압력이나 온도가 높고, 또한, 연료중의 유황이나 바나듐에 의한 화학적 부식을 수반한 마모 현상이 발생하므로 한층 가혹한 조건에서 사용된다. 이러한 이유때문에 지금까지 가솔린 엔진의 밸브 시이트용으로서, 무연가솔린이나 LPG를 연료로 하는 경우에도 우수한 내구성을 갖는 청계 소결합금이 개발되어 왔지만, 디젤엔진의 밸브 시이트용으로는 충분한 내구성을 갖지는 못하고 있다.In particular, valve seats of diesel engines have higher combustion pressure and temperature than gasoline engines, and are used in more severe conditions because wear phenomenon accompanied by chemical corrosion caused by sulfur or vanadium in fuel occurs. For this reason, blue-metal sintered alloys having excellent durability have been developed for gasoline engine valve seats even when using lead-free gasoline or LPG as fuel, but they do not have sufficient durability for valve seats of diesel engines. .

따라서, 본 발명의 특징은 디젤엔진의 밸브 시이트용으로도 충분한 내구성을 갖도록 하기 위하여 WC의 구상 경질입자를 분산 내마모재로 사용하여 밸브와 밸브 시이트간의 가혹한 접촉회전에 의한 마모를 방지하고 기지 분말로 2.0-3.0% Cr, 0.2-0.4% Mo, 0.2-0.4% V이 함유된 합금강 분말을 사용하여 기지에 내열성과 내식성을 부여하며, Cu를 용침함으로써 열전도 향상, 기계가공성 향상, 표면에 Cu산화물 피막형성으로 인한 내마모성 향상 및 기공을 Cu로 채움으로써 기공을 통한 연소분위기 침투에 의한 내부의 부식을 방지한 것을 요지로 한 것이다. 즉, 본 발명은 C 1.0-2.0%, Cr 2.0-3.0%, Mo 0.2-0.4%, V 0.2-0.4%, WC 5-20%, Cu 10-20% 조성을 갖는 밸브 시이트용 철계소결합금에 관한 것이다.Therefore, the characteristics of the present invention is to prevent wear due to severe contact rotation between the valve and the valve seat by using spherical hard particles of WC as a dispersion antiwear material in order to have sufficient durability even for the valve seat of a diesel engine. By using alloy steel powder containing 2.0-3.0% Cr, 0.2-0.4% Mo, 0.2-0.4% V furnace, it gives heat resistance and corrosion resistance to the base, improves thermal conductivity, improves machinability, and Cu oxide on the surface by infiltrating Cu. The purpose of the present invention is to improve wear resistance due to film formation and to prevent internal corrosion by infiltration of combustion atmosphere through pores by filling pores with Cu. That is, the present invention relates to an iron-based alloy for valve sheet having a composition of C 1.0-2.0%, Cr 2.0-3.0%, Mo 0.2-0.4%, V 0.2-0.4%, WC 5-20%, Cu 10-20% will be.

한편, 본 발명의 합금을 이용한 밸브 시이트의 제조방법은 다음과 같다. Cr2.0-3.0%, Mo 0.2-0.4%, V 0.2-0.4% 가 함유된 철계합금강 분말, 5-20% WC분말 1.0-2% 흑연분말 및 0.5-0.8% 스테아린산 아연을 혼합한 후 5-7ton/cm2의 성형 압력으로 성형한다.In addition, the manufacturing method of the valve seat using the alloy of this invention is as follows. Iron alloy steel powder containing Cr2.0-3.0%, Mo 0.2-0.4%, V 0.2-0.4%, 5-20% WC powder 1.0-2% graphite powder and 0.5-0.8% zinc stearate Molding is performed at a molding pressure of 7 ton / cm 2 .

소결은 Cr의 환원을 돕기 위해 환원성 분위기(수소 또는 분해 암모니아 가스)에서 행하며, 소결온도는 1100-1200℃한다. Cu용침은 강도, 경도 향상 및 치수변화를 최소화시키기 위해 소결후 용침하는 방법이 바람직하며, 용침온도는 1100-1150℃로 한다. 이때 소결시 조직은 소르바이트(SORBITE) 또는 트루사이트(TROOSITE)조직이지만, 용침후에는 용침Cu의 영향으로 비교적 느린 냉각속도에서도 전체 기지조직이 마르텐 사이트로 된다.Sintering is carried out in a reducing atmosphere (hydrogen or decomposed ammonia gas) to assist in the reduction of Cr, and the sintering temperature is 1100-1200 ° C. Cu infiltration is preferably a method of infiltration after sintering in order to improve strength, hardness, and dimensional change, and infiltration temperature is 1100-1150 ° C. At the time of sintering, the structure is sorbite (SORBITE) or truesite (TROOSITE) structure, but after infiltration, the entire matrix structure becomes martensite even at a relatively slow cooling rate under the influence of infiltration Cu.

일반적으로 마르텐사이트는 경하고 취약하기 때문에 인성향상 및 피삭성 향상을 위해 뜨임 열처리를 행할 필요가 있으며, 뜨임 열처리 온도는 500-700℃로 하여 HV 300-500정도가 되도록 적절히 조절한다.In general, martensite is mild and fragile, so it is necessary to perform tempering heat treatment in order to improve toughness and machinability. Tempering heat treatment temperature is 500-700 ° C., so that HV 300-500 is appropriately adjusted.

다음은 실시예에 하여 설명한다.The following is described by way of examples.

[실시예]EXAMPLE

본 실시 시편은 Cr-Mo-V 강 분말에 평균입도 -100메시의 자연토상 흑연분말을 1.3%첨가한 혼합분을 기지로 하고 내마모분산재로 WC를 각각 5,10,15% 첨가한다.This test specimen is based on a mixed powder obtained by adding 1.3% of natural earth graphite powder having an average particle size of -100 mesh to Cr-Mo-V steel powder, and 5,10,15% of WC is added as a wear-resistant dispersion.

이러한 혼합분에 0.6% 스테아린산 아연분말(-325메시)을 첨가하여 혼합한후 6ton/cm2의 압력으로 성형한다.0.6% zinc stearate powder (-325 mesh) is added to the mixed powder, mixed, and molded at a pressure of 6 ton / cm 2 .

성형체를 분해 암모니아 분위기에서 1150℃, 50분간 소결후 20℃/분의 속도로 냉각한다. 이렇게 얻어진 소결체를 Cu용침한다. 용침량은 소결체 무게의 15%정도로 하였으며, 용침온도 및 용침시간은 1120℃, 50분으로 한다. 용침후 시편의 경도가 HRc 40정도이므로 피삭성을 해진다. 따라서 경도를 낮추기 위해 700℃에서 30분간 뜨임 열처리를 한다. 용침전, 후의 압환강도 변화와 경도 변화를 표 1과 표2에 나타내었다.The molded body is cooled at a rate of 20 ° C./min after sintering at 1150 ° C. for 50 minutes in a decomposed ammonia atmosphere. The sintered compact thus obtained is infiltrated with Cu. The infiltration amount was about 15% of the weight of the sintered body, and the infiltration temperature and infiltration time were 1120 ° C. and 50 minutes. After infiltration, the hardness of the specimen is about HRc 40, which leads to machinability. Therefore, the tempering heat treatment for 30 minutes at 700 ℃ to lower the hardness. The changes in the compressive strength and the hardness change after infiltration and infiltration are shown in Tables 1 and 2.

또한 용침시와 용침후 뜨임 열처리시의 기지조직과 WC분포상태를 제1도와 제2도에 나타내었다.Also, matrix structures and WC distributions during tempering and tempering after tempering are shown in FIGS. 1 and 2.

이상과 같이 제조된 밸브 시이트에 대해 밸브 시이트 전용 마모시험기를 사용하여 내구성 시험을 생하였으며, 시험조건과 시험결과는 표3과 같다.The endurance test was performed on the valve sheet manufactured as described above using a valve seat wear tester, and the test conditions and test results are shown in Table 3.

[표1]Table 1

Figure kpo00001
Figure kpo00001

[표2][Table 2]

Figure kpo00002
Figure kpo00002

[표3]Table 3

Figure kpo00003
Figure kpo00003

밸브 재질 : SUH 36(Ni-Cr내열강) (HRC 30-40)VALVE MATERIAL: SUH 36 (Ni-Cr Heat Resistant Steel) (HRC 30-40)

본 발명의 근본 취지는, 분산 강화형 합금의 강화기구와는 다르게, 평균입도 40-100μm의 조대한 WC입자를 기지상에 분산시킴으로서, 밸브와의 접촉회전으로 인한 마모가 분산 마모재 역할을 하는 WC입자에서 발생하도록 하여 기지상을 마모로부터 보호하는 것이다. WC입자가 기지상을 마모로부터 보호할 수 있는 이유는 아래와 같다.The basic idea of the present invention is to disperse coarse WC particles having an average particle size of 40-100 μm on a matrix, unlike the reinforcing mechanism of dispersion-reinforced alloys, whereby wear caused by contact rotation with the valve acts as a distributed wear material It occurs in the particles to protect the matrix from abrasion. The reasons why the WC particles can protect the matrix from wear are as follows.

육안상으로 매우 평활한 접촉면도 미세하게 관찰하면 실제 접촉하고 있는 부위는 접촉표면의 요철로 인한 돌기부분이므로 마모가 주로 발생되는 부분은 육안상의 접촉면적 전체가 아니라 접촉면 사이의 돌기 부위에 국한된다.If the observation surface is very smooth on the naked eye, the actual contact area is the projection part due to the unevenness of the contact surface. Therefore, the area where wear is mainly occurred is not limited to the projection area between the contact surfaces but the entire visual contact area.

밸브 시이트의 표면 연삭과정에서 혹은 초기 마모과정에서, 기지상보다 경한 WC입자가 밸브 시이트면에 돌출하게 되며, 따라서 WC가 실제 접촉부위가 된다. 한편, 실제 접촉면적부위인 WC 입자가 기지상인 합금강 보다 내마모성이 우수한 것은 다음과 같다.In the surface grinding of the valve sheet or in the initial wear process, the harder WC particles are projected onto the valve sheet surface, so that the WC becomes the actual contact point. On the other hand, the WC particles as the actual contact area are superior to the wear resistance than the alloy steel having a known phase.

밸브 시이트의 경우 마모는 주로 마멸, 용착, 부식 그리고 표면피로 마모로 인하여 발생한다. 마멸마모의 주요인자는 경도로서, WC는 일반강보다 현저히 경도가 높으므로 기지조직을 마멸 마모로부터 보호해줄 수 있다.In the case of valve seats, wear occurs mainly due to wear, welding, corrosion and surface fatigue wear. The main factor of wear is hardness, and WC is significantly harder than ordinary steel, which can protect the matrix structure from wear and tear.

응착마모의 경우는 경도와 응착성 정도가 중요인자이므로 탄화물인 WC가 기지조직보다 금속인 밸브면에 대한 응착정도가 낮으므로 기지조직을 응착 마모로 부터 보호할 수 있다.In the case of adhesion wear, hardness and adhesion degree are important factors, so the adhesion of carbide WC to metal valve surface is lower than that of base structure, thus protecting the base structure from adhesion wear.

또한 부식 마모는 내부식성이 중요한 인자로서, 일반강보다 WC가 내부식성이 우수하므로 기지조직을 부식마모로부터 보호할 수 있다.In addition, corrosion wear is an important factor of corrosion resistance, WC is better corrosion resistance than ordinary steel can protect the base structure from corrosion wear.

따라서 WC입자가 기지조직을 3가지 형태의 마모로부터 보호해줄 수 있고 표면피로 마모의 경우는 WC입자가 받는 충격을 강인한 기지조직이 흡수함으로 마모량을 감소시킨다.Therefore, the WC particles can protect the base tissue from three types of abrasion. In the case of surface fatigue wear, the WC particles absorb the base tissues that resist the impact of the WC particles, thereby reducing the amount of wear.

이상과 같은 이유로서 본 발명의 합금은 내마모성이 우수하다. 다음은 본 발명에서 사용한 화학성분의 역할 및 최적조성에 대해 언급하기로 한다.For the above reason, the alloy of the present invention is excellent in wear resistance. Next will be mentioned the role and optimum composition of the chemical components used in the present invention.

Cr:Cr은 기지상의 탄소와 결합하여 탄화물을 형성함으로써 조직을 안정화시키며, 경화능을 증대시킨다. 또한 사용중 안정하고 견고한 산화피막이 형성되어 내식성 및 내열성 향상에 기여한다. 그러나 과다 첨가시에는 표면 산화가 급격히 일어나고 취화되므로 피삭성을 해친다. 따라서 기지상에 Cr의 최적함유량은 2.0-3.0%이다.Cr: Cr combines with carbon on a matrix to form carbides to stabilize the structure and increase hardenability. In addition, stable and solid oxide film is formed during use, contributing to improvement of corrosion resistance and heat resistance. However, when excessively added, surface oxidation rapidly occurs and becomes brittle, thereby impairing machinability. Therefore, the optimum content of Cr on the matrix is 2.0-3.0%.

Mo:Mo은 탄화물 형성 원소의 하나로 Fe기지중에서 Cr, V, C과 함께 복합 탄화물을 형성하여 고온 내마모성을 향상시키며, 또한 열처리성을 개선하여 열처리후 조직을 안정화시킨다. Mo은 탄화물 형성원소이며, 동시에 페라이트(FERRITE)에 고용되어 가공성 및 크립(CREEP)강도를 개선시키고 충격치와 피로강도를 상승시킨다.Mo: Mo is one of the carbide forming elements, which forms complex carbides together with Cr, V, and C in Fe base to improve high temperature wear resistance, and also improve heat treatment to stabilize the structure after heat treatment. Mo is a carbide forming element, and at the same time, it is dissolved in ferrite to improve processability and creep strength, and to increase impact value and fatigue strength.

그러나 과량 첨가시 석출과다로 가공성을 해치므로 0.2-0.4%가 적합하다.However, 0.2-0.4% is suitable for excessive addition because it impairs workability due to excessive precipitation.

V :바나듐은 탄화물 형성원소의 하나로 탄화물을 미세화시키며, 이러한 탄화물은 고온에서 안정하고 입개의 이동을 효과적으로 고착, 방해함으로서 내열성을 향상시킨다.V: Vanadium is one of the carbide forming elements to refine carbides, and these carbides are stable at high temperatures and effectively fix and hinder movement of the mouth, thereby improving heat resistance.

그러나 과다첨가시에는 피삭성을 해치므로 0.2-0.4%가 적합하다.However, 0.2-0.4% is suitable for over-addition because it impairs machinability.

탄소 : 탄소는 기지상의 탄화물 형성원소인 Cr, Mo, V과 결합하여 탄화물을 형성하므로 경화능을 증대시킨다. 기지중에 충분량의 탄화물 형성원소가 있으면 탄소량이 증가될수록 경화능이 증대시킨다. 기지조직의 첨가탄소량이 1.0%이하이면 강도가 낮은 페라이트(FERRITE)조직이 발생되며, 첨가탄소량이 2%이상이면 세멘타이트(CEMENTITE)의 석출량이 과대해지므로 취약하게 된다. 따라서 최적 탄소 첨가량은 1.0-2.0%이다.Carbon: Carbon combines with known carbide forming elements Cr, Mo, and V to form carbides to increase the hardenability. If there are enough carbide forming elements in the matrix, the hardenability increases as the amount of carbon increases. If the added carbon content of the matrix is less than 1.0%, a low-strength ferrite (FERRITE) structure is generated, and if the added carbon content is more than 2%, the precipitated amount of cementite becomes excessive, and thus becomes vulnerable. Therefore, the optimum carbon addition amount is 1.0-2.0%.

이상에서 언급한 조성의 기지조직에 내마모 분산재인 WC첨가량은 5-20%가 적절하다. 이것은 분산 내마모재인 WC의 첨가량이 5%이상이면 어느 정도 충분한 내마모 효과를 얻을 수 있고 20%이상이면 내마모효과보다는 성형성 및 피삭성을 해치기 때문에 바람직하지 않다.5-20% of the amount of WC added as a wear-resistant dispersant to the matrix structure of the composition mentioned above is appropriate. This is not preferable because the added amount of WC, which is a dispersion wear resistant material, is more than 5%, so that sufficient abrasion resistance can be obtained.

Claims (1)

C 1.0-2.0%, Cr 2.0-3.0%, Mo 0.2-0.4%, WC 5-20% 나머지 Fe로 구성된 혼합원료분말의 성형체(5-7ton/cm2)를 환원성 분위기에서 소결(1100-1200℃, 30-60분)하고, 이렇게 얻어진 소결체에 무게비 10-20% Cu를 용침(1100-1150℃, 30-60분) 한후, 고온 뜨임 열처리(500-700℃, 60-120분)를 행한 밸브 시이트용 내마모성 철계소결합금의 제조방법.Sintering a compact (5-7ton / cm 2 ) of a mixed raw material powder composed of C 1.0-2.0%, Cr 2.0-3.0%, Mo 0.2-0.4%, and WC 5-20% remaining Fe in a reducing atmosphere (1100-1200 ° C) 30-60 minutes), and the obtained sintered body was infiltrated with 10-20% Cu by weight ratio (1100-1150 deg. Method for producing a wear-resistant iron-based alloy for sheets.
KR1019850002607A 1985-04-18 1985-04-18 Manufacturing method of fe sintering alloy for valve seat KR890003408B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019850002607A KR890003408B1 (en) 1985-04-18 1985-04-18 Manufacturing method of fe sintering alloy for valve seat

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019850002607A KR890003408B1 (en) 1985-04-18 1985-04-18 Manufacturing method of fe sintering alloy for valve seat

Publications (2)

Publication Number Publication Date
KR860008299A KR860008299A (en) 1986-11-14
KR890003408B1 true KR890003408B1 (en) 1989-09-20

Family

ID=19240557

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019850002607A KR890003408B1 (en) 1985-04-18 1985-04-18 Manufacturing method of fe sintering alloy for valve seat

Country Status (1)

Country Link
KR (1) KR890003408B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2671993A1 (en) * 1991-01-28 1992-07-31 Sintertech PROCESS FOR MANUFACTURING A SINTERED PIECE BASED ON STEEL, USE AND PART OBTAINED

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2671993A1 (en) * 1991-01-28 1992-07-31 Sintertech PROCESS FOR MANUFACTURING A SINTERED PIECE BASED ON STEEL, USE AND PART OBTAINED

Also Published As

Publication number Publication date
KR860008299A (en) 1986-11-14

Similar Documents

Publication Publication Date Title
CN109402518B (en) High performance iron-based alloys for engine valvetrain applications, methods of making and uses thereof
CA1337748C (en) Sintered materials
JP5551413B2 (en) Powder metal valve seat insert
US7144440B2 (en) Hard particle, wear-resistant iron-base sintered alloy, method of manufacturing the same, and a valve seat
US4268309A (en) Wear-resisting sintered alloy
CN108868941B (en) Alcohol fuel engine valve seat ring and manufacturing method thereof, alcohol fuel engine and automobile
JPH11310854A (en) Alloy for cladding by welding, and engine valve
US4761344A (en) Vehicle component part
US6712871B2 (en) Sintered alloy for valve seat having excellent wear resistance and method for producing the same
JPH09242516A (en) Valve seat for internal combustion engine
JP6929313B2 (en) Iron-based sintered alloy for high-temperature wear resistance
JP3186816B2 (en) Sintered alloy for valve seat
KR890003408B1 (en) Manufacturing method of fe sintering alloy for valve seat
JP3434527B2 (en) Sintered alloy for valve seat
KR102180531B1 (en) Sabrication method of valve-seat using sintered steel alloy for wear resistance at high temperatures
KR950014353B1 (en) Process for making sintering alloy of valve sheet and article made thereby
JPS638180B2 (en)
JP3748586B2 (en) Durable fuel injection valve device and method for manufacturing the same
JPH0116905B2 (en)
JP2716575B2 (en) Manufacturing method of wear resistant iron-based sintered alloy
JP3559307B2 (en) Valve body or valve seat of fuel injection valve
KR970001323B1 (en) Sintering alloy of valve seat
JP3440008B2 (en) Sintered member
JPH0561346B2 (en)
JP2923130B2 (en) High corrosion and wear resistant cast steel

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
G160 Decision to publish patent application
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 19970919

Year of fee payment: 9

LAPS Lapse due to unpaid annual fee