JP6929313B2 - Iron-based sintered alloy for high-temperature wear resistance - Google Patents

Iron-based sintered alloy for high-temperature wear resistance Download PDF

Info

Publication number
JP6929313B2
JP6929313B2 JP2019019581A JP2019019581A JP6929313B2 JP 6929313 B2 JP6929313 B2 JP 6929313B2 JP 2019019581 A JP2019019581 A JP 2019019581A JP 2019019581 A JP2019019581 A JP 2019019581A JP 6929313 B2 JP6929313 B2 JP 6929313B2
Authority
JP
Japan
Prior art keywords
weight
parts
powder
iron
matrix
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019019581A
Other languages
Japanese (ja)
Other versions
JP2020037732A (en
Inventor
ハン キム,キュ
ハン キム,キュ
Original Assignee
ユソン エンタープライズ カンパニー,リミテッド
ユソン エンタープライズ カンパニー,リミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ユソン エンタープライズ カンパニー,リミテッド, ユソン エンタープライズ カンパニー,リミテッド filed Critical ユソン エンタープライズ カンパニー,リミテッド
Publication of JP2020037732A publication Critical patent/JP2020037732A/en
Application granted granted Critical
Publication of JP6929313B2 publication Critical patent/JP6929313B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/16Both compacting and sintering in successive or repeated steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F3/26Impregnating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0068Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for particular articles not mentioned below
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0242Making ferrous alloys by powder metallurgy using the impregnating technique
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0257Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
    • C22C33/0278Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5%
    • C22C33/0285Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5% with Cr, Co, or Ni having a minimum content higher than 5%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0257Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
    • C22C33/0278Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5%
    • C22C33/0292Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5% with more than 5% preformed carbides, nitrides or borides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/30Ferrous alloys, e.g. steel alloys containing chromium with cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L3/00Lift-valve, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces; Parts or accessories thereof
    • F01L3/02Selecting particular materials for valve-members or valve-seats; Valve-members or valve-seats composed of two or more materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F2003/248Thermal after-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/35Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/008Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of engine cylinder parts or of piston parts other than piston rings

Description

本発明は内燃機関用バルブシートに適用される高温耐摩耗用鐵系焼結合金に関するものであって、特に、前記鐵系焼結合金の組成物を変更して、耐摩耗性は勿論耐熱性を極大化させるようにする高温耐摩耗用鐵系焼結合金及びこれを利用したバルブシートの製造方法に関する。 The present invention relates to an iron-based sintered alloy for high-temperature wear resistance applied to a valve seat for an internal combustion engine. In particular, the composition of the iron-based sintered alloy is changed to have heat resistance as well as wear resistance. The present invention relates to an iron-based sintered alloy for high-temperature wear resistance that maximizes the amount of gold, and a method for manufacturing a valve seat using the same.

一般には、内燃機関用バルブシートは吸気弁及び排気弁の開閉過程で吸/排気弁の気密性を維持するリング形状の焼結体であって、図1のように前記バルブシート18はシリンダーヘッド24にインサート式で挿入された状態で、前記吸気弁及び排気弁のヘッド部に接触してシーリング機能を遂行する。 Generally, the valve seat for an internal combustion engine is a ring-shaped sintered body that maintains the airtightness of the intake / exhaust valves in the process of opening and closing the intake valve and the exhaust valve, and the valve seat 18 is a cylinder head as shown in FIG. In a state of being inserted into the 24 by an insert type, it contacts the head portions of the intake valve and the exhaust valve to perform the sealing function.

前記バルブシート18は、前記排気弁が閉じている過程では吸排気弁と接触し、前記排気弁が開放される過程では排気ガスの漏出を防止する機能を遂行するので、前記バルブシート18を焼結することにおいて、前記吸排気弁との持続的な摩擦及び前記排気ガスとの持続的な化学反応に耐えることができる程度の耐摩耗性や耐熱性のような物理的な条件が要求される。 The valve seat 18 comes into contact with the intake / exhaust valve in the process of closing the exhaust valve, and performs a function of preventing leakage of exhaust gas in the process of opening the exhaust valve. In connecting, physical conditions such as wear resistance and heat resistance that can withstand continuous friction with the intake / exhaust valve and continuous chemical reaction with the exhaust gas are required. ..

したがって、前記バルブシートの耐摩耗性及び耐熱性を向上させる多くの研究が行っており、その一例として鉄マトリックスにコバルト系やクロム系炭化物を分散させる方法やまたはフェロークロム系(Fe−Cr)やフェローモリブデン系(Fe−Mo)の金属間化合物形態の硬質粒子を分散させる方法が知られている。 Therefore, many studies have been conducted to improve the wear resistance and heat resistance of the valve seat, and as an example, a method of dispersing cobalt-based or chromium-based carbides in an iron matrix, or a ferrochrome-based (Fe-Cr) or A method of dispersing hard particles in the form of a ferro-molybdenum-based (Fe-Mo) intermetallic compound is known.

その他、前記バルブシートの耐摩耗性及び耐熱性を向上させる他の例として、前記鉄マトリックスに耐摩耗性や耐熱性は優秀な様々な種類の合金を添加する粉末冶金法を利用した溶浸法や硬質粒子を添加する添加法や基地合金の制御による製造法、焼結段造法が知られている。 In addition, as another example of improving the wear resistance and heat resistance of the valve seat, a penetration method using a powder metallurgy method in which various types of alloys having excellent wear resistance and heat resistance are added to the iron matrix. And the addition method of adding hard particles, the manufacturing method by controlling the base alloy, and the sintering step forming method are known.

しかし、前記内燃機関は、液体燃料はもちろん気体燃料を燃焼する方式を適用しており、前記液体及び気体燃料によってもっと多様な形態の燃焼生成物が形成されるので、前記液体及び気体燃料の燃焼生成物に耐えることができる耐摩耗性や耐熱性のような物理的条件をもっと強化させる必要がある。 However, the internal combustion engine applies a method of burning gas fuel as well as liquid fuel, and since the liquid and gas fuel form more various forms of combustion products, combustion of the liquid and gas fuel Physical conditions such as abrasion resistance and heat resistance that can withstand the product need to be further strengthened.

韓国公開特許第10−2004-0025003号公報Korean Publication No. 10-2004-0025003 韓国公開特許第10−2012-0125817号公報Korean Publication No. 10-2012-0125817 韓国登録特許第10−0461304号公報Korean Registered Patent No. 10-0461304

よって、本発明は前記した問題点を解消するためのものであって、前記鐵系焼結合金の組成物を変更して耐摩耗性はもちろん耐熱性を極大化して、バルブシートの寿命を延長させるようにした高温耐摩耗用鐵系焼結合金及びこれを利用したバルブシートの製造方法を提供することにその目的がある。 Therefore, the present invention is for solving the above-mentioned problems, and the life of the valve seat is extended by maximizing not only wear resistance but also heat resistance by changing the composition of the iron-based sintered alloy. It is an object of the present invention to provide an iron-based sintered alloy for high temperature wear resistance and a method for manufacturing a valve seat using the same.

前記目的を達するための組成物は、鉄粉末100重量部に対して、コバルト粉末10.0〜14.0重量部、モリブデン粉末5.0〜9.0重量部、クロム粉末1.5〜4.1重量部、カーボン粉末0.7〜1.3重量部、マンガン粉末1.0〜1.8重量部、珪素粉末0.4〜1.2重量部、硫黄粉末0.2〜0.8重量部、バナジウム粉末0.1〜0.7重量部を含む焼結合金の組成物である。 The composition for achieving the above purpose is 100 parts by weight of cobalt powder, 5.0 to 9.0 parts by weight of molybdenum powder, and 1.5 to 4 parts by weight of chromium powder with respect to 100 parts by weight of iron powder. .1 parts by weight, carbon powder 0.7 to 1.3 parts by weight, manganese powder 1.0 to 1.8 parts by weight, silicon powder 0.4 to 1.2 parts by weight, sulfur powder 0.2 to 0.8 It is a composition of a sintered alloy containing 0.1 to 0.7 parts by weight of vanadium powder by weight.

前記目的を達するための製造方法は、前記焼結合金の組成物を均一に混合する混合段階、前記混合段階で形成された混合物をセッティング圧力で加圧する加圧段階、前記加圧段階で形成された成形体を溶浸材とともに焼結して前記成形体に銅を溶浸する焼結段階、前記焼結段階で形成された焼結体を低温処理して残留するオーステナイトをマルテンサイトに変化させる低温処理段階、及び前記低温処理段階で形成された低温処理体をテンパーリングして残留する応力を除去する熱処理段階を含む。 The manufacturing method for achieving the above object is formed in the mixing step of uniformly mixing the composition of the sintered alloy, the pressurizing step of pressurizing the mixture formed in the mixing step at the setting pressure, and the pressurizing step. In the sintering step where the molded body is sintered together with the infiltrating material and copper is infiltrated into the molded body, the sintered body formed in the sintering step is subjected to low temperature treatment to change the residual austenite into martensite. It includes a low-temperature treatment step and a heat treatment step of tempering the low-temperature treatment body formed in the low-temperature treatment step to remove residual stress.

以下のように本発明は少なくとも次の4つの効果を含む。
まず、前記バルブシートの組成物にコバルトやモリブデンやクロムと強度増大成分を添加して複合炭化物を形成することによって、前記バルブシートの鉄マトリックスに析出粒子及び固溶量が増大されて前記バルブシートの寿命が延長される。
The present invention includes at least the following four effects as described below.
First, by adding cobalt, molybdenum, chromium and a strength-increasing component to the composition of the valve seat to form a composite carbide, the amount of precipitated particles and the amount of solid solution is increased in the iron matrix of the valve seat, and the valve seat Life is extended.

次に、前記バルブシートの組成物に珪素やバナジウムを添加して前記鉄マトリックスに微細球形粒子を分散させることによって、前記バルブシートの磨耗過程で炭化物粒子の脱落が少なくなり、磨耗量が減少されて寿命が延長される。 Next, by adding silicon or vanadium to the composition of the valve seat to disperse the fine spherical particles in the iron matrix, the carbide particles are less likely to fall off during the wear process of the valve seat, and the amount of wear is reduced. And the life is extended.

そして、前記バルブシート組成物にマンガンと硫黄などを添加して自己潤滑性を向上することによって、前記バルブシートの機械加工性が向上されることはもちろん、前記吸/排気弁と摩擦過程で磨耗が最小化されて寿命がもっと延長される。 Then, by adding manganese, sulfur, or the like to the valve seat composition to improve self-lubricating property, not only the machinability of the valve seat is improved, but also wear is performed in the friction process with the intake / exhaust valve. Is minimized and the life is further extended.

最後に、前記バルブシートの組成物に銅粉末を溶浸しながら焼結処理することによって、従来の前記バルブシートに比べて耐摩耗性及び耐熱性が向上されて、前記液体燃料はもちろん気体燃料を用いるすべての内燃機関に適用することができる。 Finally, by sintering the composition of the valve seat while impregnating the copper powder, wear resistance and heat resistance are improved as compared with the conventional valve seat, and the liquid fuel as well as the gaseous fuel can be used. It can be applied to all internal combustion engines used.

従来技術によるバルブシートの設置状態を示す図面である。It is a drawing which shows the installation state of the valve seat by a prior art. 本発明による実施形態1の光学顕微鏡写真である(倍率500倍)。It is an optical micrograph of Embodiment 1 by this invention (magnification 500 times). 本発明による実施形態2の光学顕微鏡写真である(倍率500倍)。It is an optical micrograph of Embodiment 2 by this invention (magnification 500 times). 本発明による実施形態3の光学顕微鏡写真である(倍率500倍)。It is an optical micrograph of Embodiment 3 by this invention (magnification 500 times).

以下、本発明による組成物を説明する。図2ないし図4のように、本発明による前記鐵系焼結合金は前記内燃機関に適用される焼結合金であって、特に、前記吸気弁及び前記排気弁の開閉過程で前記吸/排気弁の気密性を維持することはもちろん、前記燃焼生成物との接触過程での損傷を最小化するバルブシートに適用される。 Hereinafter, the composition according to the present invention will be described. As shown in FIGS. 2 to 4, the iron-based sintered alloy according to the present invention is a sintered alloy applied to the internal combustion engine, and in particular, the intake / exhaust in the process of opening and closing the intake valve and the exhaust valve. It is applied to valve seats that not only maintain the airtightness of the valve but also minimize damage during the contact process with the combustion products.

この時、本願では前記高温耐摩耗性鐵系焼結合金が前記バルブシートに適用されることに限定して説明したが、その他にもシリンダーライナーやバルブガイドなどに適用しても本願の技術範囲に含まることが当然である。 At this time, the present application has been limited to the application of the high-temperature wear-resistant iron-based sintered alloy to the valve seat, but the technical scope of the present application may be applied to a cylinder liner, a valve guide, or the like. It is natural to be included in.

本発明による鐵系焼結合金、前記鉄粉末を主成分とする焼結合金の組成物及び前記焼結合金の組成物に溶浸される溶浸材を含み、前記焼結合金の組成物は鉄粉末100重量部に対して、コバルト粉末10.0〜14.0重量部、モリブデン粉末5.0〜9.0重量部、クロム粉末1.5〜4.1重量部、カーボン粉末0.7〜1.3重量部、マンガン粉末1.0〜1.8重量部、珪素粉末0.4〜1.2重量部、硫黄粉末0.2〜0.8重量部、バナジウム粉末0.1〜0.7重量部を含み、前記溶浸材は前記鉄粉末100重量部に対して10.0〜20.0重量部の銅粉末を意味する。 Iron-based sintered alloy according to the invention comprises the composition of the iron powder sintered alloy composed mainly of and infiltrant is infiltrated into the sintered alloy of the composition, the sintered alloy of the composition Is 100 parts by weight of iron powder, 10.0 to 14.0 parts by weight of cobalt powder, 5.0 to 9.0 parts by weight of molybdenum powder, 1.5 to 4.1 parts by weight of chromium powder, and 0 parts by weight of carbon powder. 7 to 1.3 parts by weight, manganese powder 1.0 to 1.8 parts by weight, silicon powder 0.4 to 1.2 parts by weight, sulfur powder 0.2 to 0.8 parts by weight, vanadium powder 0.1 to 1 part Including 0.7 parts by weight, the infiltrating material means 10.0 to 20.0 parts by weight of copper powder with respect to 100 parts by weight of the iron powder.

この時、前記焼結合金の組成物に前記溶浸材を溶浸することによって、前記鐵系焼結合金組成物はマルテンサイトマトリックスにコバルト系硬質粒子状やモリブデン系硬質粒子状やクロム系硬質粒子状のような複合炭化物が均一に分散され、特に、前記マンガンと硫黄または前記マンガンと炭素の金属間化合物が潤滑剤の役割を遂行し、前記珪素や前記バナジウムにより粒子が微細化される。 At this time, by infiltrating the infiltrant in the sintered alloy of the composition, the iron-based sintered alloy composition of cobalt-based hard particulate or molybdenum-based hard particulate and chromium-based hard martensite matrix Composite carbides such as particulate matter are uniformly dispersed, and in particular, the manganese and sulfur or the intermetallic compound of manganese and carbon perform the role of a lubricant, and the silicon and vanadium make the particles finer.

すなわち、前記焼結合金の組成物に前記溶浸材を溶浸して前記バルブシートに製造した理由は、前記吸排気弁と接触する接触部分の高温耐熱性や高温耐摩耗性や耐食性をもっと増大するためのものである。 That is, the reason why the infiltrating material is impregnated into the composition of the sintered alloy to produce the valve seat is that the high temperature heat resistance, high temperature wear resistance and corrosion resistance of the contact portion in contact with the intake / exhaust valve are further increased. It is for doing.

前記鐵系焼結合金組成物(以下、組成物という)に製造されたバルブシートは、最終製品の硬度(HRA)が少なくとも71〜81を有し、前記最終製品の密度(g/cm3)が少なくとも7.4〜8.1を維持する高強度の材質である。 The valve seat produced in the iron-based sintered alloy composition (hereinafter referred to as the composition) has a hardness (HRA) of at least 71 to 81 of the final product and a density (g / cm3) of the final product. It is a high-strength material that maintains at least 7.4 to 8.1.

一方、前記コバルト(Co)は鉄やモリブデンや炭素と反応して複合炭化物を析出することによって前記マトリックス中に均一に分散されて耐摩耗性に寄与し、前記コバルトの一部は前記マトリックスに固溶されて耐熱性を増大し、前記コバルトの含量が10.0重量部未満の場合、析出粒子及びマトリックスの固溶量が少なくて耐摩耗性及び耐熱性が低下され、前記コバルトの含量が14.0重量部を超過する場合には析出粒子の過多によりマトリックス金属が弱くなって機械加工性が低下される。 On the other hand, the cobalt (Co) reacts with iron, molybdenum and carbon to precipitate composite carbides, so that the cobalt (Co) is uniformly dispersed in the matrix and contributes to wear resistance, and a part of the cobalt is solidified in the matrix. When it is melted to increase heat resistance and the cobalt content is less than 10.0 parts by weight, the amount of solid dissolved particles and matrix is small and the wear resistance and heat resistance are lowered, and the cobalt content is 14. If it exceeds .0 parts by weight, the matrix metal is weakened due to the excess of precipitated particles, and the machinability is deteriorated.

また、前記モリブデン(Mo)は前記マトリックス中に固溶されるか、複合炭化物状態の金属間化合物を形成して耐摩耗性及び耐熱性を向上し、前記モリブデンの含量が5.0重量部未満の場合マトリックスの固溶量及び金属間化合物が少なくて耐摩耗性及び耐熱性が低下され、前記モリブデンの含量が9.0重量部を超過する場合にはマトリックス金属の固溶量が過多してマトリックス金属の脆弱要因となる。 Further, the molybdenum (Mo) is dissolved in the matrix or forms an intermetallic compound in a composite carbide state to improve wear resistance and heat resistance, and the content of the molybdenum is less than 5.0 parts by weight. In the case of, the amount of solid solution of the matrix and the amount of intermetallic compound are small, and the abrasion resistance and heat resistance are lowered. If the content of molybdenum exceeds 9.0 parts by weight, the amount of solid solution of the matrix metal is excessive. It becomes a fragile factor of matrix metal.

また、前記クロム(Cr)は前記マトリックス内で前記炭素と反応することによって、複合炭化物を形成して耐摩耗性を向上することはもちろん、前記マトリックスに固溶されて耐熱性を向上する成分として、その含量は1.5重量部ないし4.1重量部が望ましい。 Further, the chromium (Cr) reacts with the carbon in the matrix to form a composite carbide to improve the wear resistance, and is also dissolved in the matrix to improve the heat resistance. The content is preferably 1.5 parts by weight to 4.1 parts by weight.

前記クロムの含量が1.5重量部未満の場合、複合炭化物の量が少なくて耐摩耗性及び耐熱性が低下され、前記クロムの含量が4.1重量部を超過する場合にはマトリックス金属の固溶量が過多して製品が弱くなる。 When the chromium content is less than 1.5 parts by weight, the amount of the composite carbide is small and the abrasion resistance and heat resistance are lowered, and when the chromium content exceeds 4.1 parts by weight, the matrix metal The amount of solid solution is excessive and the product becomes weak.

また、前記炭素(C)は、前記マトリックスに固溶または拡散されてマトリックスを強化させることはもちろん、前記コバルトやクロムやモリブデンと反応することによって複合炭化物を形成する成分であって、前記マトリックスの強度及び硬度の増大する機能を遂行することはもちろん、耐摩耗性や耐熱性を増大する機能を遂行する。 Further, the carbon (C) is a component that not only strengthens the matrix by being solidified or diffused in the matrix but also forms a composite carbide by reacting with the cobalt, chromium and molybdenum, and is a component of the matrix. It not only performs the function of increasing strength and hardness, but also performs the function of increasing wear resistance and heat resistance.

前記炭素の含量が0.7重量部未満である場合には、マトリックス金属にパーライトとともにフェライトが過多に形成されるので、マトリックスが軟化して、強度と耐摩耗性が低下され、前記炭素の含量が1.3重量部を超過する場合にはパーライト形成に所要されて残る残留炭素がセメンタイトを形成してマトリックス金属を弱くするようにする。 When the carbon content is less than 0.7 parts by weight, ferrite is excessively formed in the matrix metal together with pearlite, so that the matrix is softened and the strength and abrasion resistance are lowered, and the carbon content is reduced. When is in excess of 1.3 parts by weight, the residual carbon required for pearlite formation forms cementite and weakens the matrix metal.

また、前記マンガン(Mn)は、前記鉄マトリックス内に存在する硫黄(S)と反応してMnSを形成することによって自己潤滑性を向上する成分であって、前記マンガンの含量が1.0重量部未満であると、前記MnSを形成して自己潤滑性の機能が低下され、前記マンガンの含量が1.8重量部を超過すると、前記MnSの形成以外に偏析の恐れがある。 Further, the manganese (Mn) is a component that improves self-lubricating property by reacting with sulfur (S) existing in the iron matrix to form MnS, and the content of the manganese is 1.0 weight by weight. If it is less than a portion, the self-lubricating function is deteriorated by forming the MnS, and if the manganese content exceeds 1.8 parts by weight, segregation may occur in addition to the formation of the MnS.

また、前記珪素(Si)は前記鉄マトリックスの結晶粒調節して微細化することはもちろん、耐食性や耐熱性を向上するための目的で添加される成分であって、前記珪素の含量は0.4ないし1.2重量部が望ましい。 Further, the silicon (Si) is a component added for the purpose of improving the corrosion resistance and heat resistance as well as adjusting the crystal grains of the iron matrix to make it finer, and the content of the silicon is 0. 4 to 1.2 parts by weight is desirable.

また、前記硫黄(S)は前記鉄マトリックスに添加されて、前記マトリックスの粒界にMnS形態で分散される成分であって、前記MnSは高温で化合物に分解されなく安定化状態を維持するので、焼結工程を完了した後、焼結体の粒界に残留し、前記最終製品を加工する過程で摩擦係数を低下して被削性を増大させ、特に、前記硫黄の含量は0.2〜0.8重量部が望ましい。 Further, the sulfur (S) is a component that is added to the iron matrix and dispersed in the grain boundaries of the matrix in the form of MnS, and the MnS is not decomposed into compounds at high temperatures and maintains a stabilized state. After the sintering process is completed, it remains at the grain boundaries of the sintered body and lowers the coefficient of friction in the process of processing the final product to increase machinability. In particular, the sulfur content is 0.2. ~ 0.8 parts by weight is desirable.

前記マンガンと前記硫黄を大略6:4の比率で混合して前記MnSを形成することによる効率を増大することが望ましい。 It is desirable to increase the efficiency by forming the MnS by mixing the manganese and the sulfur in a ratio of approximately 6: 4.

前記MnSの含量(Mn+S)が1.25重量部未満であれば、前記焼結体のマトリックス内に残留する役割が弱く、前記MnSの含量(Mn+S)が2.6重量部を超過すると、マトリックスの強度が弱くなってバルブシートの損傷原因となる。 If the MnS content (Mn + S) is less than 1.25 parts by weight, the role of remaining in the matrix of the sintered body is weak, and if the MnS content (Mn + S) exceeds 2.6 parts by weight, the matrix It becomes weak and causes damage to the valve seat.

また、前記バナジウム(V)は、前記鉄マトリックスの結晶粒調節を調節して微細化することはもちろん、耐熱性を向上するための目的に添加される成分であって、前記バナジウムの含量は0.1〜0.7重量部が望ましく、前記バナジウムが規定値を超過する場合、前記結晶粒が粗大化されて前記バルブシート最終製品の破壊原因となる。 Further, the vanadium (V) is a component added for the purpose of improving heat resistance as well as adjusting the crystal grain adjustment of the iron matrix to make it finer, and the content of the vanadium is 0. .1 to 0.7 parts by weight is desirable, and if the vanadium exceeds a specified value, the crystal grains are coarsened and cause damage to the final valve seat product.

以下、本発明による製造方法を説明する。まず、本発明は前記組成物を混合して混合物を製造する混合段階を含んで加圧する加圧段階と焼結する焼結段階と残留するオーステナイトをマルテンサイトに変化させる低温処理段階と残留する応力を除去する熱処理段階でなる。 Hereinafter, the production method according to the present invention will be described. First, the present invention includes a mixing step of mixing the compositions to produce a mixture, a pressurizing step of pressurizing, a sintering step of sintering, a low temperature treatment step of changing residual austenite into martensite, and residual stress. It is a heat treatment stage to remove.

また、前記混合段階は前記混合機内に前記鉄合金粉末を含んで高速度工具鋼粉末と超合金粉末と硫化マンガン粉末とカーボン粉末などを規定量に合わせて均一に混合する段階である。 Further, the mixing step is a step in which the iron alloy powder is contained in the mixer and the high-speed tool steel powder, the superalloy powder, the manganese sulfide powder, the carbon powder and the like are uniformly mixed in a predetermined amount.

また、前記加圧段階は前記混合段階で形成された混合物を圧縮して前記バルブシートに適合した密度に成形する段階であって、前記混合物を面圧6〜10t/cm2に加圧して緻密性を向上する段階を意味する。 Further, the pressurization step is a step of compressing the mixture formed in the mixing step to form a density suitable for the valve seat, and pressurizing the mixture to a surface pressure of 6 to 10 t / cm2 for compactness. Means the stage of improving.

また、前記焼結段階は前記加圧段階で成形された成形体を1120±20℃の温度範囲で30±10分間焼結して焼結体を形成する段階を意味し、前記焼結体に前記銅粉末10.0〜20.0重量部を溶浸する段階を含む。 Further, the sintering step means a step of sintering a molded body formed in the pressurizing step in a temperature range of 1120 ± 20 ° C. for 30 ± 10 minutes to form a sintered body, and the sintered body is formed. The step of infiltrating 10.0 to 20.0 parts by weight of the copper powder is included.

前記焼結段階での焼結温度が1100℃未満では粉末粒子の拡散が円滑しなくてマトリックス組織が弱化され、前記焼結温度が1140℃を超過すると結晶粒が粗大化されて機械的性質が低下される。 If the sintering temperature at the sintering stage is less than 1100 ° C, the diffusion of powder particles is not smooth and the matrix structure is weakened, and if the sintering temperature exceeds 1140 ° C, the crystal grains are coarsened and the mechanical properties are deteriorated. It will be lowered.

前記焼結段階で前記銅粉末10.0〜20.0重量部を添加した状態で焼結して前記マトリックス組織の気孔に銅粒子を溶浸することによって、前記マトリックスの強度補強はもちろん、潤滑性を増大するようになる。 By sintering with the addition of 10.0 to 20.0 parts by weight of the copper powder in the sintering step and infiltrating the copper particles into the pores of the matrix structure, the strength of the matrix is not only strengthened but also lubricated. Become more sexual.

また、前記低温処理段階は前記焼結段階で形成された焼結体を−120±10℃の温度範囲に20±5分間冷却して、残留するオーステナイトをマルテンサイトに変化させる段階であって、前記組成物の時効変形防止と機械的性質改善と組織安定化を誘導する。 The low temperature treatment step is a step of cooling the sintered body formed in the sintering step to a temperature range of −120 ± 10 ° C. for 20 ± 5 minutes to change the remaining austenite into martensite. It induces aging deformation prevention, mechanical property improvement and tissue stabilization of the composition.

また、前記熱処理段階は前記低温処理段階で形成された低温処理体をテンパーリングして、残留する応力を除去する段階であって、600±20℃の温度範囲に120±10分間加熱することによって前記マトリックス組織に靭性を与える段階である。 Further, the heat treatment step is a step of tempering the low temperature treated body formed in the low temperature treatment step to remove residual stress, and by heating in a temperature range of 600 ± 20 ° C. for 120 ± 10 minutes. This is the stage of imparting toughness to the matrix structure.

また、前記熱処理段階の後加工段階として前記最終製品のばり(burr)のような異物を除去するとか、鍛造や研磨のような機械加工工程を経て完成品を得る段階を含むことができるが、これに関する説明は省略する。 Further, as a post-processing step of the heat treatment step, a step of removing foreign substances such as burr of the final product or a step of obtaining a finished product through a machining process such as forging or polishing can be included. The description about this is omitted.

前記した段階を経た前記バルブシートの完成品は硬度(HRA)が大略71〜81程度あり、密度(g/cm3)は7.4〜8.1程度であって、前記液体燃料及び個体燃料の使用に適合な硬度及び密度を提供することが分かる。 The finished product of the valve seat that has undergone the above steps has a hardness (HRA) of about 71 to 81 and a density (g / cm3) of about 7.4 to 8.1. It can be seen that it provides hardness and density suitable for use.

以下、本発明による実施形態を説明する。 Hereinafter, embodiments according to the present invention will be described.

Figure 0006929313
Figure 0006929313

まず、表1の実施形態1ないし3の組成比を有する組成物を混合機で混合して混合物を製造した後、前記混合物を10t/cm2の面圧に加圧し、前記熱処理炉で1120℃から30分間焼結及び溶浸した。 First, the compositions having the composition ratios of Examples 1 to 3 in Table 1 are mixed with a mixer to produce a mixture, and then the mixture is pressurized to a surface pressure of 10 t / cm 2 and heated from 1120 ° C. in the heat treatment furnace. Sintered and soaked for 30 minutes.

その次、前記焼結段階で焼結及び銅溶浸を経た焼結体を−120℃の温度範囲で20分間急冷して低温処理体を製造した後、前記低温処理体を600℃の温度範囲で120分間加熱してテンパーリングした。 Next, the sintered body that has undergone sintering and copper infiltration in the sintering step is rapidly cooled in a temperature range of −120 ° C. for 20 minutes to produce a low-temperature treated body, and then the low-temperature treated body is placed in a temperature range of 600 ° C. The mixture was heated for 120 minutes and tempered.

続いて、前記熱処理段階を経た熱処理体を引き出した後、見本1ないし3を各々製造した後、磨耗試験機(Rig Tester、窒素雰囲気;0.2mm Offset;SUH35+Tuff弁、回転数:3,500rpm、温度:350℃、時間:2時間)を利用して磨耗量を測定した。 Subsequently, after drawing out the heat-treated body that has undergone the heat treatment step, samples 1 to 3 are manufactured, respectively, and then a wear tester (Rig Tester, nitrogen atmosphere; 0.2 mm Offset; SUH35 + Tuff valve, rotation speed: 3, The amount of wear was measured using 500 rpm, temperature: 350 ° C., time: 2 hours).

その結果、実施形態1ないし実施形態3(見本1ないし見本3)の場合、前記弁とバルブシートの全体磨耗量が平均48μmであって、前記バルブシートの素材として適合であることが分かった。 As a result, in the case of the first to third embodiments (samples 1 to 3), the total wear amount of the valve and the valve seat was 48 μm on average, and it was found that the valve seat was suitable as a material.

すなわち、図2ないし図4でのように、見本1ないし見本3は密度や硬度が似ている数値を表し、特に、前記マルテンサイトマトリックス組織内に硬質粒子及び加工性向上元素が均一に分布されていることを知ることができる。 That is, as shown in FIGS. 2 to 4, the samples 1 to 3 represent numerical values having similar densities and hardnesses, and in particular, hard particles and workability improving elements are uniformly distributed in the martensite matrix structure. You can know that you are.

特に、前記マトリックス組織内の気孔に前記銅合金が充填されることによって前記バルブシートの耐摩耗性及び耐熱性が増大することが知られた。 In particular, it has been known that the wear resistance and heat resistance of the valve seat are increased by filling the pores in the matrix structure with the copper alloy.

以上のように、本発明は前述した実施形態に限定されなく、請求範囲で請求される本発明の技術的思想に逸脱しなく、該当発明が属する技術分野で通常の知識を有する者により自明な変形実施ができ、このような変形実施は本発明の範囲に属する。 As described above, the present invention is not limited to the above-described embodiment, does not deviate from the technical idea of the present invention claimed within the scope of the claim, and is obvious to a person having ordinary knowledge in the technical field to which the invention belongs. Deformation can be performed, and such modification is within the scope of the present invention.

Claims (1)

鉄粉末100重量部に対して、コバルト粉末10.0〜14.0重量部、モリブデン粉末5.0〜9.0重量部、クロム粉末1.5〜4.1重量部、カーボン粉末0.7〜1.3重量部、マンガン粉末1.0〜1.8重量部、珪素粉末0.4〜1.2重量部、硫黄粉末0.2〜0.8重量部、バナジウム粉末0.1〜0.7重量部からなる鐵系焼結合金の組成物に溶浸材として、前記鉄粉末100重量部に対して10.0〜20.0重量部の銅粉末が溶浸されることを特徴とする高温耐摩耗性鐵系焼結合金。 With respect to 100 parts by weight of iron powder, 10.0 to 14.0 parts by weight of cobalt powder, 5.0 to 9.0 parts by weight of molybdenum powder, 1.5 to 4.1 parts by weight of chromium powder, 0.7 by weight of carbon powder. ~ 1.3 parts by weight, manganese powder 1.0 to 1.8 parts by weight, silicon powder 0.4 to 1.2 parts by weight, sulfur powder 0.2 to 0.8 parts by weight, vanadium powder 0.1 to 0 A feature of the composition of an iron-based sintered alloy consisting of .7 parts by weight is that 10.0 to 20.0 parts by weight of copper powder is infiltrated into 100 parts by weight of the iron powder as an infiltrating material. High temperature wear resistant iron-based sintered alloy.
JP2019019581A 2018-09-03 2019-02-06 Iron-based sintered alloy for high-temperature wear resistance Active JP6929313B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20180104490 2018-09-03
KR10-2018-0104490 2018-09-03

Publications (2)

Publication Number Publication Date
JP2020037732A JP2020037732A (en) 2020-03-12
JP6929313B2 true JP6929313B2 (en) 2021-09-01

Family

ID=69638993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019019581A Active JP6929313B2 (en) 2018-09-03 2019-02-06 Iron-based sintered alloy for high-temperature wear resistance

Country Status (3)

Country Link
US (1) US20200071803A1 (en)
JP (1) JP6929313B2 (en)
CN (1) CN110872671A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11639672B2 (en) * 2020-11-23 2023-05-02 GM Global Technology Operations LLC Valve seat for automotive cylinder head
CN115386695A (en) * 2022-08-30 2022-11-25 河钢股份有限公司 Rolling and heat treatment method of 30Ni15Cr2Ti2Al alloy

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61243155A (en) * 1985-04-17 1986-10-29 Hitachi Metals Ltd Vane excellent in wear resistance and sliding property and its production
GB8921260D0 (en) * 1989-09-20 1989-11-08 Brico Engineering Company Sintered materials
JP3926320B2 (en) * 2003-01-10 2007-06-06 日本ピストンリング株式会社 Iron-based sintered alloy valve seat and method for manufacturing the same
KR101363024B1 (en) * 2011-05-26 2014-02-14 한국분말야금(주) Sintered steel alloy for wear resistance at high temperatures and fabrication method of valve-seat using the same
KR102199856B1 (en) * 2014-07-30 2021-01-11 두산인프라코어 주식회사 A valve seat
CN106567005A (en) * 2016-11-01 2017-04-19 安徽恒均粉末冶金科技股份有限公司 Powder-metallurgic valve seat ring of CNG engine
JP6736227B2 (en) * 2016-11-28 2020-08-05 日本ピストンリング株式会社 Valve seat made of iron-based sintered alloy for internal combustion engine with excellent wear resistance and combination of valve seat and valve
US20200284173A1 (en) * 2017-03-27 2020-09-10 Nippon Piston Ring Co., Ltd. Sintered ferrous alloy valve seat exhibiting excellent thermal conductivity for use in internal combustion engine

Also Published As

Publication number Publication date
CN110872671A (en) 2020-03-10
US20200071803A1 (en) 2020-03-05
JP2020037732A (en) 2020-03-12

Similar Documents

Publication Publication Date Title
JP3520093B2 (en) Secondary hardening type high temperature wear resistant sintered alloy
US7241327B2 (en) Iron-based sintered alloy with dispersed hard particles
JP5551413B2 (en) Powder metal valve seat insert
RU2280706C2 (en) Iron-based copper-containing sintered article and method of its production
US5859376A (en) Iron base sintered alloy with hard particle dispersion and method for producing same
US20020084004A1 (en) Iron-based sintered alloy material for valve seat and valve seat made of iron-based sintered alloy
JP6929313B2 (en) Iron-based sintered alloy for high-temperature wear resistance
EP1347067B1 (en) Iron-based sintered alloy for use as valve seat
EP1198601B1 (en) Sintered steel material
US20030233910A1 (en) Sintered alloy having wear resistance for valve seat and method for manufacturing the same
JPH1171651A (en) Ferrous sintered alloy for valve seat
JP3763782B2 (en) Method for producing wear-resistant iron-based sintered alloy material for valve seat
KR102180531B1 (en) Sabrication method of valve-seat using sintered steel alloy for wear resistance at high temperatures
JP3434527B2 (en) Sintered alloy for valve seat
JPH05202451A (en) Sintered alloy for valve seat
KR950014353B1 (en) Process for making sintering alloy of valve sheet and article made thereby
KR101363024B1 (en) Sintered steel alloy for wear resistance at high temperatures and fabrication method of valve-seat using the same
JP2009035785A (en) Method for manufacturing sintered parts having corrosion resistance and abrasion resistance at high temperature
JPH0116905B2 (en)
KR101363025B1 (en) Sintered steel alloy for wear resistance at high temperatures and fabrication method of valve-seat using the same
KR101333747B1 (en) Sintered steel alloy for wear resistance at high temperatures and fabrication method of valve-seat using the same
JP2013173961A (en) Valve seat made from iron-based sintered alloy
JP2006193831A (en) Abrasion resistance iron-based sintered alloy material for valve seat and valve seat made of iron-based sintered alloy
JPH05320833A (en) High strength nitrided and sintered member excellent in wear resistant and its manufacture
JPH08311624A (en) Ferrous sintered alloy for valve seat and its production

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200407

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200706

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200903

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210324

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20210324

C11 Written invitation by the commissioner to file amendments

Free format text: JAPANESE INTERMEDIATE CODE: C11

Effective date: 20210413

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20210615

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20210618

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210727

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210810

R150 Certificate of patent or registration of utility model

Ref document number: 6929313

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150