JP5079417B2 - Manufacturing method of high temperature corrosion resistant wear resistant sintered parts - Google Patents

Manufacturing method of high temperature corrosion resistant wear resistant sintered parts Download PDF

Info

Publication number
JP5079417B2
JP5079417B2 JP2007202238A JP2007202238A JP5079417B2 JP 5079417 B2 JP5079417 B2 JP 5079417B2 JP 2007202238 A JP2007202238 A JP 2007202238A JP 2007202238 A JP2007202238 A JP 2007202238A JP 5079417 B2 JP5079417 B2 JP 5079417B2
Authority
JP
Japan
Prior art keywords
amount
powder
stainless steel
mass
wear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007202238A
Other languages
Japanese (ja)
Other versions
JP2009035785A (en
Inventor
辰明 吉弘
英昭 河田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Powdered Metals Co Ltd
Original Assignee
Hitachi Powdered Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Powdered Metals Co Ltd filed Critical Hitachi Powdered Metals Co Ltd
Priority to JP2007202238A priority Critical patent/JP5079417B2/en
Publication of JP2009035785A publication Critical patent/JP2009035785A/en
Application granted granted Critical
Publication of JP5079417B2 publication Critical patent/JP5079417B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Powder Metallurgy (AREA)

Description

本発明は、高温環境下において耐蝕性とともに耐摩耗性が要求される部品、特に内燃機関に付設されるターボチャージャーの各種構成部品や、内燃機関のバルブシート等に好適な高温耐蝕耐摩耗性焼結部品の製造方法に関する。   The present invention provides a high-temperature corrosion-resistant and wear-resistant ceramic suitable for components that require corrosion resistance and wear resistance in a high-temperature environment, particularly various components of turbochargers attached to internal combustion engines and valve seats of internal combustion engines. The present invention relates to a method for manufacturing a bonded part.

ターボチャージャーの構成部品や内燃機関のバルブシートは、高温の腐食性ガスである排気ガスと接触することから耐熱性及び耐蝕・耐摩耗性が要求される。また、ターボチャージャーの構成部品はノズルベーンと摺接し、内燃機関のバルブシートはバルブと摺接する。このため、これらの部品には高温下での耐摩耗性が要求される。そこで、ターボチャージャーの構成部品においては、従来より、例えば高Cr鋳鋼やJIS規格で規定されているSCH22種に耐蝕・耐摩耗性向上の目的でCr表面処理を施した材料等が使用されている。近年では、焼結材料(特許文献1、2等)の適用も行われている。また、内燃機関のバルブシートにおいては、従来より各種焼結材料(特許文献3等)が使用され、耐食性を向上させたもの(特許文献4等)も提案されている。   The components of the turbocharger and the valve seat of the internal combustion engine are required to have heat resistance, corrosion resistance, and wear resistance because they are in contact with exhaust gas that is high temperature corrosive gas. Further, the components of the turbocharger are in sliding contact with the nozzle vane, and the valve seat of the internal combustion engine is in sliding contact with the valve. For this reason, these parts are required to have wear resistance at high temperatures. Therefore, in turbocharger components, conventionally, for example, high Cr cast steel or a material obtained by applying Cr surface treatment to improve corrosion resistance and wear resistance to SCH22 class stipulated in JIS standards has been used. . In recent years, application of sintered materials (Patent Documents 1 and 2, etc.) has also been performed. Further, in the valve seat of an internal combustion engine, various sintered materials (Patent Document 3 etc.) have been conventionally used, and those with improved corrosion resistance (Patent Document 4 etc.) have been proposed.

特許文献1では、金属炭化物が分散したニッケル・クロム系ステンレス鋼基地中にSi、Cr、Moを含有するコバルト合金粒子と遊離炭素が分散する焼結合金が提案されている。基地をオーステナイト系ステンレス鋼として耐熱性を付与し、その基地中にクロムを主とする金属炭化物を分散させて基地の強度を上げている。さらに、硬質のコバルト系金属間化合物粒子を分散させて、凝着摩耗に対する抵抗を増加させ、遊離黒鉛の固体潤滑作用によって耐摩耗性の強度を図っている。   Patent Document 1 proposes a sintered alloy in which cobalt alloy particles containing Si, Cr, and Mo and free carbon are dispersed in a nickel-chromium stainless steel base in which metal carbide is dispersed. The base is made of austenitic stainless steel to provide heat resistance, and metal carbides mainly composed of chromium are dispersed in the base to increase the strength of the base. Furthermore, hard cobalt intermetallic compound particles are dispersed to increase the resistance to adhesive wear, and the strength of wear resistance is achieved by the solid lubricating action of free graphite.

特許文献2では、質量比で、Cr:25〜45%、Mo:1〜3%、Si:1〜3%、C:0.5〜1.5%、残部Feおよび不可避不純物よりなる組成のFe合金粉末に、P:10〜30質量%のFe−P粉末を1.0〜3.3質量%、黒鉛粉末を0.5〜1.5質量%を添加して混合した混合粉末が用いられている。この混合粉末を成形した後、焼結することにより、質量比でCr:23.8〜44.3%、Mo:1.0〜3.0%、Si:1.0〜3.0%、P:0.1〜1.0%、C:1.0〜3.0%、残部Feおよび不可避不純物からなる組成が得られる。これは、Fe−Cr系の基地中にMo炭化物およびCr炭化物が分散するターボチャージャー用ターボ部品として用いることができる。   In Patent Document 2, the composition is composed of Cr: 25 to 45%, Mo: 1 to 3%, Si: 1 to 3%, C: 0.5 to 1.5%, the balance Fe and inevitable impurities by mass ratio. A mixed powder obtained by adding 1.0 to 3.3% by mass of Fe: P to 10 to 30% by mass of Fe—P powder and 0.5 to 1.5% by mass of graphite powder to the Fe alloy powder is used. It has been. After molding this mixed powder, by sintering, Cr: 23.8 to 44.3%, Mo: 1.0 to 3.0%, Si: 1.0 to 3.0% by mass ratio, A composition comprising P: 0.1 to 1.0%, C: 1.0 to 3.0%, the balance Fe and inevitable impurities is obtained. This can be used as a turbocharger turbo part in which Mo carbide and Cr carbide are dispersed in a Fe-Cr base.

特公平05−041693号公報Japanese Examined Patent Publication No. 05-041693 特許第3784003号公報Japanese Patent No. 3784003 特許第3661823号公報Japanese Patent No. 3661823 特許第3354401号公報Japanese Patent No. 3354401

近年、環境問題、省エネルギー問題等により、従来以上の内燃機関の高効率化が求められている。これに対応するため、内燃機関の超希薄燃焼化が進んでおり、それにともなって、排気ガスがより高温になってきている。このため、ターボチャージャーの構成部品や内燃機関のバルブシートについても、より一層の高温環境下における耐蝕性および耐摩耗性の向上が要求されている。このような状況の下、特許文献1に記載のターボチャージャーの構成部品は、基地中にクロム炭化物が析出分散したものである。しかし、この場合、クロム炭化物は粒界に沿って析出するため、強度が低下する。さらに、クロム炭化物が析出することによって粒界付近のCr量が低下し、粒界腐食が生じ易くなる。また、特許文献2に記載のターボチャージャーの構成部品は、液相焼結により作製されている。これは、比較的大きなCr炭化物やMo炭化物が多量に分散するもので、機械加工し難い。さらに、特許文献3に記載のバルブシート用焼結合金は、基地が高速度工具鋼系であるため、上記の特許文献1、2に比して耐蝕性が低いと考えられる。そこで、本発明は、高温環境下における耐蝕性および耐摩耗性をより一層向上させるとともに、機械加工が容易な高温耐蝕耐摩耗性焼結部品の製造方法を提供することを目的とする。   In recent years, due to environmental problems, energy saving problems, and the like, higher efficiency of internal combustion engines than ever is required. In order to cope with this, the ultra lean combustion of the internal combustion engine has been advanced, and accordingly, the exhaust gas has become higher temperature. Therefore, turbocharger components and internal combustion engine valve seats are also required to be improved in corrosion resistance and wear resistance in a higher temperature environment. Under such circumstances, the components of the turbocharger described in Patent Document 1 are ones in which chromium carbide is precipitated and dispersed in the base. However, in this case, chromium carbide precipitates along the grain boundary, so that the strength decreases. Further, the precipitation of chromium carbide reduces the amount of Cr in the vicinity of the grain boundary, which easily causes grain boundary corrosion. Moreover, the components of the turbocharger described in Patent Document 2 are manufactured by liquid phase sintering. This is because a relatively large amount of Cr carbide or Mo carbide is dispersed in a large amount and is difficult to machine. Furthermore, the sintered alloy for valve seats described in Patent Document 3 is considered to have lower corrosion resistance than the above-mentioned Patent Documents 1 and 2 because the base is a high-speed tool steel system. SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a method for producing a high-temperature corrosion-resistant and wear-resistant sintered part that is further improved in corrosion resistance and wear resistance in a high-temperature environment and that can be easily machined.

本発明の高温耐蝕耐摩耗性焼結部品の製造方法は、質量比で、Cr:15〜35%と、Ni:3.5〜22%と、Mo:5%以下、Nb0.1〜1.0%、残部がFeおよび不可避不純物であるステンレス鋼粉末に、硬質相形成粉末を15〜50%と、数1で示される量の黒鉛粉末とを配合し混合した原料粉末を用い、前記原料粉末を所望の形状に圧粉成形し、得られた成形体を焼結し、前記硬質相形成粉末は、質量比で、Mo:20〜60%、Cr:3〜12%、Si:1〜12%、および残部:Coと不可避不純物からなることを特徴とする高温耐蝕耐摩耗性焼結部品の製造方法。

Figure 0005079417
The manufacturing method of the high-temperature corrosion-resistant wear-resistant sintered part of the present invention is, by mass ratio, Cr: 15 to 35%, Ni: 3.5 to 22%, Mo : 5% or less, Nb : 0.1 to 0.1 1.0% , using a raw material powder obtained by mixing and mixing 15-50% of the hard phase forming powder with the stainless steel powder having the balance of Fe and inevitable impurities, and the graphite powder in the amount represented by Equation 1, The raw material powder is compacted into a desired shape, and the obtained molded body is sintered . The hard phase forming powder is, by mass ratio, Mo: 20 to 60%, Cr: 3 to 12%, Si: 1 A method for producing a high-temperature, corrosion-resistant, wear-resistant sintered part, comprising ˜12% and the balance: Co and inevitable impurities .
Figure 0005079417

本発明の高温耐蝕耐摩耗性焼結部品の製造方法においては、前記硬質相形成粉末として、質量比で、Mo:20〜60%、Cr:3〜12%、Si:1〜12%、および残部:Coと不可避不純物からなるものを用いることが好ましい。   In the method for producing a high-temperature corrosion-resistant wear-resistant sintered part of the present invention, as the hard phase forming powder, by mass ratio, Mo: 20 to 60%, Cr: 3 to 12%, Si: 1 to 12%, and The balance: It is preferable to use a material comprising Co and inevitable impurities.

本発明の製造方法により得られる高温耐蝕耐摩耗性焼結部品は、ステンレス鋼組成の基地中に、耐熱性硬質相とともに炭化物が析出分散することで優れた耐摩耗性を示す。また炭化物の大部分がMoおよびNbのうち少なくともNbの炭化物からなり、Crの炭化物はごく僅かである。このため、基地に含有されるCr量の低下がほとんどなく、部品の各部で良好な耐食性が得られる。さらに、上記炭化物は基地中に微細に析出するため、機械加工が容易である。 The high-temperature corrosion-resistant wear-resistant sintered part obtained by the production method of the present invention exhibits excellent wear resistance due to precipitation and dispersion of carbides together with a heat-resistant hard phase in a stainless steel composition base. Further, most of the carbides are composed of at least Nb carbides of Mo and Nb, and there are very few carbides of Cr. For this reason, there is almost no fall of the amount of Cr contained in a base, and good corrosion resistance is obtained in each part of parts. Furthermore, since the carbide precipitates finely in the matrix, machining is easy.

(原料粉末の構成)
本発明の高温耐蝕耐摩耗性焼結部品の製造方法の骨子は以下の通りである。まず、ステンレス鋼組成の基地に耐熱性硬質相を分散させる。さらに、Crより炭化物の形成能が高いMoおよびNbのうち少なくともNbを固溶させて与えるとともに、このMo、Nbと結合させるCを与える。こうして得られたステンレス鋼組成の基地中には、金属炭化物としてMo炭化物やNb炭化物が優先的に析出分散している。これによって、Cr炭化物の析出を抑制することができる。
(Composition of raw material powder)
The outline of the manufacturing method of the high-temperature corrosion-resistant wear-resistant sintered part of the present invention is as follows. First, a heat-resistant hard phase is dispersed in a base having a stainless steel composition. Furthermore, at least Nb is provided as a solid solution of Mo and Nb, which have higher carbide forming ability than Cr, and C that is bonded to Mo and Nb is provided. In the base of the stainless steel composition thus obtained, Mo carbide and Nb carbide are preferentially precipitated and dispersed as metal carbide. Thereby, precipitation of Cr carbide can be suppressed.

焼結後の焼結部品の基地に耐食性を付与する観点より、硝酸のような酸化性の酸に対して有効な元素であるCrと、塩酸や硫酸のような非酸化性の酸に対して有効な元素であるNiの両者を併用する。また、上記のCrおよびNiの作用を基地全体に均一に与える必要があることから、CrとNiの両者を鉄粉末に固溶させて与えたステンレス鋼粉末を用いる。   From the viewpoint of imparting corrosion resistance to the base of sintered parts after sintering, it is effective against Cr, which is an effective element for oxidizing acids such as nitric acid, and non-oxidizing acids such as hydrochloric acid and sulfuric acid. Both Ni which is an effective element are used together. In addition, since it is necessary to uniformly apply the effects of Cr and Ni to the entire base, stainless steel powder provided by dissolving both Cr and Ni in iron powder is used.

焼結後の焼結体の基地は、Cr量を12質量%以上とすることで良好な酸化性の酸に対する耐蝕性を示す。このことから、上記のステンレス鋼粉末に含有されるCrのごく一部が焼結時に炭化物として析出しても焼結後の焼結体の基地に十分なCr量が残留するように、本発明においては基地のCr量を15質量%以上とする。一方、ステンレス鋼粉末中のCr量が35質量%を超えると脆いσ相が形成されるようになり、ステンレス鋼粉末の圧縮性を著しく損なう。これらのことから、本発明においては、主原料粉末として用いるステンレス鋼粉末のCr量を15〜35質量%とする。   The base of the sintered body after sintering exhibits good corrosion resistance against oxidizing acids by setting the Cr amount to 12% by mass or more. Therefore, even if a small part of Cr contained in the stainless steel powder is precipitated as a carbide during sintering, the present invention ensures that a sufficient amount of Cr remains at the base of the sintered body after sintering. The base Cr content is set to 15 mass% or more. On the other hand, when the amount of Cr in the stainless steel powder exceeds 35% by mass, a brittle σ phase is formed, and the compressibility of the stainless steel powder is significantly impaired. From these things, in this invention, the amount of Cr of the stainless steel powder used as a main raw material powder shall be 15-35 mass%.

焼結後の焼結体の基地は、Ni量を3.5質量%以上とすることで非酸化性の酸に対する耐蝕性を改善でき、10質量%以上でCr量とは無関係に非酸化性の酸に対する良好な耐蝕性が得られる。一方、焼結体の基地にNiを22質量%を超えて含有させても耐蝕性向上の効果は変わらないこと、およびNiは高価な元素であることからステンレス鋼粉末に含有させるNi量の上限を22質量%とした。これらのことから本発明においては、ステンレス鋼粉末のNi量を3.5〜22質量%、好ましくは10〜22質量%とする。   The base of the sintered body after sintering can improve the corrosion resistance against non-oxidizing acid by setting the Ni amount to 3.5% by mass or more, and non-oxidizing at 10% by mass or more regardless of the Cr amount. Good corrosion resistance to acid can be obtained. On the other hand, even if Ni exceeds 22% by mass in the base of the sintered body, the effect of improving corrosion resistance does not change, and since Ni is an expensive element, the upper limit of the amount of Ni contained in the stainless steel powder Was 22 mass%. Therefore, in the present invention, the amount of Ni in the stainless steel powder is 3.5 to 22% by mass, preferably 10 to 22% by mass.

なお、鋼の耐蝕性はオーステナイト組織の方が結晶学的に原子密度が高いため、フェライト組織よりも優れる。このため、焼結後に得られる焼結体の基地組織をオーステナイト組織となるよう、Cr量とNi量を調整してステンレス鋼粉末に含有させることがより好ましい。例えば、Fe−Cr−Ni系合金の焼鈍し組織図において、横軸をCr量、縦軸をNi量、A点:Cr量が15質量%でNi量が7.5質量%、B点:Cr量が18質量%でNi量が6.5質量%、C点:Cr量が24質量%でNi量が18質量%とする。このA点−B点−C点を結ぶ折れ線よりNi量が多い領域でオーステナイト組織が得られるから、Cr量とNi量がこの領域に含まれるよう調整すればよい。   In addition, the corrosion resistance of steel is superior to the ferrite structure because the austenite structure has a crystallographically higher atomic density. For this reason, it is more preferable to adjust the amount of Cr and the amount of Ni so that the base structure of the sintered body obtained after sintering becomes an austenite structure and to make it contain in the stainless steel powder. For example, in the annealed structure diagram of an Fe—Cr—Ni alloy, the horizontal axis represents the Cr content, the vertical axis represents the Ni content, point A: the Cr content is 15 mass%, the Ni content is 7.5 mass%, and the B point: Cr amount is 18% by mass, Ni amount is 6.5% by mass, point C: Cr amount is 24% by mass and Ni amount is 18% by mass. Since an austenite structure is obtained in a region where the amount of Ni is larger than the polygonal line connecting point A, point B, and point C, adjustment may be made so that the amount of Cr and the amount of Ni are included in this region.

上記のステンレス鋼組成の基地としては従来より行われているように、Cu,Al,Mn,Si,Se,P,S,N等の元素を追加して含有させても良い。すなわち、上記のステンレス鋼組成の基地には、耐酸性、耐食性、耐点食性向上もしくは析出硬化性付与の目的でCuを1〜4%含有することができる。また、溶接性向上、耐熱性向上、もしくは析出硬化性付与の目的でAlを0.1〜5%含有することができる。さらに、結晶粒調整、Ni量低減の目的でNを0.3%以下含有することができ、Ni量低減の目的でMnを5.5〜10%含有することができる。耐酸化性、耐熱性、耐硫酸性向上の目的でSiを0.15〜5%、耐粒界腐食性の向上、快削性向上の目的でSe、P、Sを含有することができる。
(金属炭化物の形成)
As the base of the above-mentioned stainless steel composition, elements such as Cu, Al, Mn, Si, Se, P, S, and N may be additionally contained as conventionally performed. That is, the base of the above stainless steel composition can contain 1 to 4% of Cu for the purpose of improving acid resistance, corrosion resistance, spot corrosion resistance or imparting precipitation hardenability. Moreover, 0.1-5% of Al can be contained for the purpose of improving weldability, improving heat resistance, or imparting precipitation curability. Furthermore, 0.3% or less of N can be contained for the purpose of adjusting crystal grains and reducing the amount of Ni, and 5.5 to 10% of Mn can be contained for the purpose of reducing the amount of Ni. Si can be contained in an amount of 0.15 to 5% for the purpose of improving oxidation resistance, heat resistance, and sulfuric acid resistance, and Se, P, and S can be contained for the purpose of improving intergranular corrosion resistance and improving free cutting properties.
(Formation of metal carbide)

本発明においては、上記の基地組織中に耐熱性を有する硬質相と金属炭化物を分散させることで高温耐摩耗性の向上を図る。これらのうち金属炭化物については、クロムの炭化物が多量に析出すると基地の耐蝕性が低下することになるため、ステンレス鋼粉末にCrより炭化物形成能が高いMoやNbを固溶させて与える。このMoやNbは、焼結時、黒鉛粉末の形態で原料粉末に添加されたCと選択的に結合するため、焼結部品のステンレス鋼組成の基地中にCr炭化物が形成されることを抑制出来る。またMoやNbの炭化物はCr炭化物と異なり、粒界に沿って析出せず粒内に析出するため強度の低下も抑制できる。このようなMo,Nbによる炭化物形成の効果を焼結部品全体に均一に及ぼすためには、Mo,Nbを上記のステンレス鋼粉末に固溶させて与える必要がある。また、Cをステンレス鋼粉末に固溶して与えると粉末が硬くなって圧縮性が損なわれるため、Cは黒鉛粉末の形態で与え、上記のステンレス鋼粉末と黒鉛粉を混合する必要がある。   In the present invention, high temperature wear resistance is improved by dispersing a hard phase having heat resistance and a metal carbide in the base structure. Among these metal carbides, when a large amount of chromium carbide precipitates, the corrosion resistance of the base is lowered. Therefore, Mo and Nb, which have higher carbide forming ability than Cr, are dissolved in the stainless steel powder. Since Mo and Nb are selectively combined with C added to the raw material powder in the form of graphite powder during sintering, it suppresses the formation of Cr carbide in the base of the stainless steel composition of the sintered part I can do it. Further, unlike Cr carbide, Mo and Nb carbides do not precipitate along the grain boundaries, but precipitate in the grains, so that a decrease in strength can be suppressed. In order to uniformly apply the effect of carbide formation by Mo and Nb to the entire sintered part, it is necessary to dissolve Mo and Nb in the above-mentioned stainless steel powder. Further, when C is given as a solid solution in a stainless steel powder, the powder becomes hard and compressibility is impaired. Therefore, it is necessary to provide C in the form of graphite powder and to mix the above stainless steel powder and graphite powder.

上記のMo,Nbについて、MoはMoC,MoC等、NbはNbC,Nb等の形態の炭化物を析出すると考えられる。また、それらの一部は、(Fe,Mo)C等のMC型,(Fe,Mo)23等のM23型等の形態で析出すると考えられる。これらの炭化物の比率については制御が困難であるため、添加するC量すなわち黒鉛粉末の添加量についてはある程度幅を持たせて設定する必要がある。このような観点から、Mo量に対する黒鉛粉末の添加量を(0.05〜0.25)×Mo量、Nb量に対する黒鉛粉末の添加量を(0.12〜0.25)×Nb量として設定した。ここで、黒鉛粉末の添加量が各々の元素に対する上記設定量より下回ると、析出する金属炭化物の量が少なくなり、耐摩耗性向上の効果が乏しくなる。一方、黒鉛粉末の添加量が各々の元素に対する上記設定量より上回ると、余剰のCが基地のCrと炭化物を形成し、局所的なCr濃度低下部分が形成される。これは、耐食性の低下を招くこととなる。 The above Mo, the Nb, Mo is MoC, Mo 2 C, etc., Nb is NbC, believed to precipitate carbides in the form of such Nb 4 C 3. Some of them are considered to precipitate in the form of M 6 C type such as (Fe, Mo) 6 C and M 23 C 6 type such as (Fe, Mo) 23 C 6 . Since it is difficult to control the ratio of these carbides, it is necessary to set the amount of C to be added, that is, the amount of graphite powder added, with a certain range. From such a viewpoint, the amount of graphite powder added to the Mo amount is (0.05 to 0.25) × Mo amount, and the amount of graphite powder added to the Nb amount is (0.12 to 0.25) × Nb amount. Set. Here, when the addition amount of graphite powder is less than the set amount with respect to each element, the amount of precipitated metal carbide decreases and the effect of improving the wear resistance becomes poor. On the other hand, if the amount of graphite powder added exceeds the set amount for each element, excess C forms carbides with the base Cr, and a local Cr concentration lowering portion is formed. This leads to a decrease in corrosion resistance.

なおステンレス鋼粉末への黒鉛粉末の添加量については、上記の金属炭化物形成に費やされる量よりも、余分に加える必要がある。焼結中、ステンレス鋼粉末表面の酸化被膜や、粉末表面に吸着する水分等をCOガスとして還元するために、黒鉛粉末が消費されるからである。この追加分のC量としては0.3質量%以下とすればよい。このため、ステンレス鋼粉末に添加する黒鉛粉末の量は、以下のように表すことが出来る。

Figure 0005079417
In addition, about the addition amount of the graphite powder to a stainless steel powder, it is necessary to add more than the amount spent for said metal carbide formation. This is because graphite powder is consumed to reduce the oxide film on the surface of the stainless steel powder, moisture adsorbed on the powder surface, and the like as CO gas during sintering. The amount of additional C may be 0.3% by mass or less. For this reason, the amount of graphite powder added to the stainless steel powder can be expressed as follows.
Figure 0005079417

なお、Mo,Nbに対するC量(黒鉛粉末の添加量)を上記のようにある程度幅を持たせて設定したため、基地のCrのごく一部は炭化物として析出する場合がある。しかし、基地のCr量を上記のように15質量%以上と設定しているため、ごく一部にCr炭化物もしくはMoまたはNbとの複合炭化物が析出しても基地のCr量が12質量%を下回ることはなく、良好な耐蝕性を維持できる。   In addition, since the amount of C (addition amount of graphite powder) with respect to Mo and Nb is set with a certain width as described above, a small portion of the base Cr may precipitate as carbide. However, since the Cr amount of the base is set to 15% by mass or more as described above, the Cr amount of the base is 12% by mass even if Cr carbide or a composite carbide with Mo or Nb is precipitated in a small part. It does not fall below and good corrosion resistance can be maintained.

上記の金属炭化物は、基地中に分散することで基地の塑性流動を抑制し、耐摩耗性を向上させる。この金属炭化物を形成するため、Moは1.5質量%以上、Nbは0.1質量%以上が必要となる。ところで、金属炭化物形成のためのMo,Nbはその効果を基地全体に均一に及ぼす必要からステンレス鋼粉末に固溶させて与えることとしたが、Mo,Nbを多量にステンレス鋼粉末に固溶させるとステンレス鋼粉末の硬さが増加して圧縮性の低下が著しくなり、成形体密度が上がらない。その結果、焼結後の焼結体密度が低下して、強度、耐摩耗性が著しく低下する。このため、ステンレス鋼粉末に固溶させて与えるMo量の上限を5質量%、Nbの上限を1質量%とする。これらの金属炭化物は微細な形態(φ10μm以下)で基地中に分散するため、切削加工等の機械加工性にも優れる。
(硬質相の形成)
By dispersing the metal carbide in the matrix, the plastic flow of the matrix is suppressed and the wear resistance is improved. In order to form this metal carbide, Mo needs to be 1.5% by mass or more, and Nb needs to be 0.1% by mass or more. By the way, Mo and Nb for forming metal carbides are given as a solid solution in stainless steel powder because it is necessary to exert the effect uniformly on the whole base, but a large amount of Mo and Nb is dissolved in stainless steel powder. And the hardness of the stainless steel powder is increased, the compressibility is significantly lowered, and the compact density is not increased. As a result, the density of the sintered body after sintering is lowered, and the strength and wear resistance are significantly lowered. For this reason, the upper limit of the amount of Mo given by dissolving in a stainless steel powder is 5 mass%, and the upper limit of Nb is 1 mass%. Since these metal carbides are dispersed in the matrix in a fine form (φ10 μm or less), they are excellent in machinability such as cutting.
(Formation of hard phase)

本願発明の高温耐蝕耐摩耗性焼結部品においては、上記の金属炭化物に加えて硬質相を基地中に分散させるため、上記のステンレス鋼粉末と黒鉛粉末に、さらに、硬質相形成用の粉末を添加し、原料粉末を作製する。原料粉末に添加する硬質相形成用粉末の量は、15質量%を下回ると、基地中に分散する硬質相が乏しく、耐摩耗性向上の効果が乏しくなる。一方、50質量%を超えると、原料粉末の圧縮性が低下し、成形体の密度が低下する。その結果、得られる焼結体の密度が低下して、焼結体の強度および耐摩耗性が損なわれる。また、焼結体の密度が低下することにより気孔量が増加するため、孔食腐食が進行し易くなり、耐蝕性も損なわれることとなる。   In the high-temperature corrosion-resistant wear-resistant sintered part of the present invention, in order to disperse the hard phase in the matrix in addition to the metal carbide, the powder for forming the hard phase is further added to the stainless steel powder and the graphite powder. Add the raw material powder. When the amount of the hard phase forming powder added to the raw material powder is less than 15% by mass, the hard phase dispersed in the matrix is scarce and the effect of improving the wear resistance is poor. On the other hand, when it exceeds 50 mass%, the compressibility of the raw material powder is lowered, and the density of the molded body is lowered. As a result, the density of the obtained sintered body is lowered, and the strength and wear resistance of the sintered body are impaired. Moreover, since the amount of pores increases due to a decrease in the density of the sintered body, pitting corrosion is likely to proceed, and corrosion resistance is also impaired.

高温耐蝕耐摩耗性焼結部品の硬質相は、高温環境下において硬さと耐食性を有する必要がある。この点から、Fe−Mo金属間化合物や、コバルト基合金基地中にモリブデン珪化物が分散する硬質相や、特許文献4のNi−Cr系合金基地中にCr炭化物が分散する硬質相等を用いることができる。これらの中でも、モリブデン珪化物が分散するものは耐摩耗性と潤滑性を兼ね備えており、特に好適なものである。このコバルト基硬質相は、上記ステンレス鋼粉末と黒鉛粉を混合した粉末に、硬質相形成粉末を15〜50質量%添加して、成形、焼結することにより形成される。具体的には、硬質相形成粉末として、質量比で、Mo:20〜60%、Cr:3〜12%、Si:1〜12%、残部がCoおよび不可避不純物からなる組成のコバルト基合金粉末が挙げられる。このコバルト基合金粉末においては、Mo量およびSi量が上記範囲より少ないと、耐熱性硬質相の合金基地中に析出するモリブデン珪化物の量が少なくなり、耐摩耗性向上の効果が小さくなる。また、MoおよびSi量が上記範囲を超えると、硬質相形成粉末中に固溶される合金元素量が過多となり、粉末の硬さが著しく増加して原料粉末の圧縮性が損なわれる。一方、Crは硬質相のコバルト基地の強化に寄与し、Cr量が上記範囲に満たないとその効果は小さくなる。逆に、Cr量が上記範囲を超えると、粉末の硬さが著しく増加して原料粉末の圧縮性が損なわれる。
(高温耐蝕耐磨耗性焼結部品の製造方法)
The hard phase of the high-temperature corrosion-resistant wear-resistant sintered part needs to have hardness and corrosion resistance in a high-temperature environment. From this point, use a Fe-Mo intermetallic compound, a hard phase in which molybdenum silicide is dispersed in the cobalt-based alloy matrix, a hard phase in which Cr carbide is dispersed in the Ni-Cr-based alloy matrix of Patent Document 4, or the like. Can do. Among these, those in which molybdenum silicide is dispersed have both wear resistance and lubricity, and are particularly suitable. The cobalt-based hard phase is formed by adding 15 to 50% by mass of a hard phase forming powder to a powder obtained by mixing the stainless steel powder and the graphite powder, and molding and sintering the powder. Specifically, as a hard phase forming powder, a cobalt-based alloy powder having a composition of Mo: 20 to 60%, Cr: 3 to 12%, Si: 1 to 12%, and the balance of Co and inevitable impurities. Is mentioned. In this cobalt-based alloy powder, if the amount of Mo and the amount of Si are less than the above ranges, the amount of molybdenum silicide precipitated in the alloy base of the heat-resistant hard phase is reduced, and the effect of improving the wear resistance is reduced. Moreover, when the amount of Mo and Si exceeds the above range, the amount of alloy elements dissolved in the hard phase forming powder becomes excessive, the hardness of the powder is remarkably increased, and the compressibility of the raw material powder is impaired. On the other hand, Cr contributes to strengthening of the hard phase cobalt base, and the effect is reduced when the Cr content is not within the above range. On the other hand, if the Cr amount exceeds the above range, the hardness of the powder is remarkably increased and the compressibility of the raw material powder is impaired.
(Method for manufacturing high-temperature corrosion-resistant and wear-resistant sintered parts)

上記のMoとNbのうち少なくともNbを0.1〜1.0%含有するステンレス鋼粉末と、硬質相形成粉末及び黒鉛粉末からなる原料粉末を用いる。従来と同じく、この原料粉末は、所望の形状の型孔を有する金型の型孔に充填され、上下パンチにより圧粉成形されて所望の形状の成形体とされる。得られた成形体は、焼結されて高温耐蝕耐摩耗性焼結部品となる。得られた成形体の組織の一例として、図1のように表すことが出来る。成形体の組織においては、硬質相を含んだステンレス鋼基地中に金属炭化物が析出分散しており、気孔が含まれている。ここで、焼結温度が1000℃に満たないと、焼結による粉末どうしの結合が不充分となり強度が乏しくなるとともに、十分な量の金属炭化物が形成されず耐摩耗性も乏しくなる。一方、焼結温度が1300℃を超えると、焼結による収縮量が大きくなるとともに変形し易くなって寸法精度が低下する。このため焼結温度は1000〜1300℃の範囲が適当である。 A raw material powder composed of a stainless steel powder containing at least 0.1 to 1.0% of Nb of Mo and Nb, a hard phase forming powder, and a graphite powder is used. As in the past, this raw material powder is filled in a mold hole of a mold having a mold hole of a desired shape, and compacted by an upper and lower punch to form a molded body of a desired shape. The obtained molded body is sintered to become a high-temperature corrosion-resistant wear-resistant sintered part. As an example of the structure of the obtained molded body, it can be represented as shown in FIG. In the structure of the molded body, metal carbide is precipitated and dispersed in a stainless steel matrix containing a hard phase, and pores are included. Here, if the sintering temperature is less than 1000 ° C., the bonding between the powders due to sintering becomes insufficient and the strength becomes poor, and a sufficient amount of metal carbide is not formed, resulting in poor wear resistance. On the other hand, when the sintering temperature exceeds 1300 ° C., the amount of shrinkage due to sintering becomes large and the film is easily deformed, and the dimensional accuracy is lowered. For this reason, the range of 1000-1300 degreeC is suitable for sintering temperature.

上記の高温耐蝕耐摩耗性焼結部品においては、被削性改善のため、従来の被削性改善物質添加法を併用して製造することができる。その方法としては、上記の耐摩耗性焼結部品の気孔中または粉末粒界に、珪酸マグネシウム系鉱物、窒化硼素、硫化マンガン、カルシウム弗化物、硫化クロムのうち少なくとも1種を分散させる方法である。これらの被削性改善物質は高温でも安定であり、粉末の形態で原料粉末に添加しても焼結過程で分解せず、被削性改善物質として上記の箇所に分散して被削性を改善できる。この被削性改善物質添加法の併用により、より一層の耐摩耗性焼結部材の被削性改善を行うことができる。また、被削性改善物質粉末は、過剰に添加すると耐摩耗性焼結部材の強度を損ない、耐摩耗性の低下を招く。このため、被削性改善物質添加法を併用する場合、その添加量の上限を5.0質量%に止めるべきである。   The above high-temperature corrosion-resistant wear-resistant sintered parts can be manufactured by using a conventional machinability-improving substance addition method in combination for improving machinability. The method is a method in which at least one of magnesium silicate mineral, boron nitride, manganese sulfide, calcium fluoride, and chromium sulfide is dispersed in the pores or powder grain boundaries of the above wear-resistant sintered part. . These machinability improving materials are stable even at high temperatures, and even when added to the raw powder in the form of powder, they do not decompose during the sintering process, and are dispersed in the above locations as machinability improving materials to improve machinability. Can improve. By using this machinability improving substance addition method in combination, the machinability of the wear-resistant sintered member can be further improved. Further, if the machinability improving substance powder is added excessively, the strength of the wear-resistant sintered member is impaired, and the wear resistance is reduced. For this reason, when using the machinability improving substance addition method in combination, the upper limit of the addition amount should be limited to 5.0% by mass.

[第1実施例]
表1に示す組成のステンレス鋼粉末と、質量比で、Mo:28%、Si:2.5%、Cr:8%および残部がCoと不可避不純物からなる硬質相形成粉末と黒鉛粉末を原料粉末として用いた。これらの粉末を表1に示す割合で添加、混合し、成形圧力1.2GPaで直径:30mm、厚さ10mmの円板形状に圧粉成形を行った。こうして得られた圧粉体を、分解アンモニアガス雰囲気中1200℃×1Hrで焼結し、試料番号01〜13の試料を作製した。これらの試料につき、炭素分析装置(株式会社堀場製作所製)を用いて試料と結合した炭素量(結合C量)の測定を行った。そして、黒鉛粉末の添加量から上記結合C量を引いて、焼結によって失われた炭素量(損失C量)を求めた。また、ステンレス鋼粉末中のMo量またはNb量に対する上記結合C量の比(C比率)を算出した。これらの試料について、酸化試験と往復摺動摩擦試験を行い、試験後の摩耗量を測定した。これらの結果を表2及び図2、3に示す。
[First embodiment]
The raw material powder is a stainless steel powder having the composition shown in Table 1 and a hard phase-forming powder and graphite powder consisting of Mo: 28%, Si: 2.5%, Cr: 8% and the balance of Co and inevitable impurities. Used as. These powders were added and mixed at a ratio shown in Table 1, and compacted into a disk shape having a diameter of 30 mm and a thickness of 10 mm at a molding pressure of 1.2 GPa. The green compact thus obtained was sintered at 1200 ° C. × 1 Hr in a decomposed ammonia gas atmosphere to prepare samples Nos. 01-13. About these samples, the carbon amount (bonding C amount) couple | bonded with the sample was measured using the carbon analyzer (made by Horiba, Ltd.). Then, the amount of carbon lost by sintering (the amount of loss C) was determined by subtracting the amount of bonded C from the amount of graphite powder added. Moreover, the ratio (C ratio) of the amount of bonded C to the amount of Mo or Nb in the stainless steel powder was calculated. These samples were subjected to an oxidation test and a reciprocating sliding friction test, and the amount of wear after the test was measured. These results are shown in Table 2 and FIGS.

酸化試験は、各試験片毎にアルミナ製るつぼに配置して、これをマッフル炉に入れて大気雰囲気中900℃の温度で100時間加熱して行った。そして、試験前後の重量差を測定し、これを幾何表面積で除した値を酸化増量(g/m)として評価を行った。 The oxidation test was carried out by placing each test piece in an alumina crucible, placing it in a muffle furnace, and heating it in an air atmosphere at a temperature of 900 ° C. for 100 hours. And the weight difference before and behind a test was measured, and the value which remove | divided this by the geometric surface area was evaluated as oxidation increase (g / m < 2 >).

往復摺動摩擦試験は、上記の円板形状試験片に、直径:15mm、厚さ22mmのロール(相手材)の側面を所定の荷重で押圧しながら往復摺動させる摩擦試験である。本試験においては、ロール材としてJIS規格SUS316相当の溶製鋼の表面にクロマイズ処理(表面にクロムを被覆するとともに硬質な鉄クロム金属間化合物層を形成して耐摩耗性、耐焼き付き性および耐食性等を向上させる処理)を施したものを用いた。そして、荷重:40N、往復摺動の周波数:20Hz、往復摺動の振幅:1.5mm、試験時間:20min、試験温度:室温の試験条件の下で往復摺動摩擦試験を行った。   The reciprocating sliding friction test is a friction test in which the disk-shaped test piece is slid back and forth while pressing the side surface of a roll (counter member) having a diameter of 15 mm and a thickness of 22 mm with a predetermined load. In this test, the surface of molten steel equivalent to JIS standard SUS316 is chromized as a roll material (the surface is coated with chromium and a hard iron-chromium intermetallic compound layer is formed to provide wear resistance, seizure resistance, corrosion resistance, etc. Used to improve the process. A reciprocating sliding friction test was performed under the test conditions of load: 40 N, reciprocating sliding frequency: 20 Hz, reciprocating sliding amplitude: 1.5 mm, test time: 20 min, test temperature: room temperature.

Figure 0005079417
Figure 0005079417

Figure 0005079417
Figure 0005079417

表1及び2の試料番号01〜07より、ステンレス鋼粉末中のMo量に対する結合C量の比(C比率)の影響について調べることが出来る。これらより、酸化増量はC比率の増加(黒鉛粉末の添加量の増加)とともに増加する傾向を示す。C比率が増加するに従い黒鉛粉末の添加量が増加するため、Mo炭化物が形成されるだけでなく、添加したCが基地中のCrと結合し、Cr炭化物を徐々に形成していくと考えられる。このため、基地中の一部のCr濃度が低下し、耐食性が低下したと考えられる。特に、C比率が0.25を超える試料番号07では、酸化増量の増加率が大きい。また、試料番号01では、摩耗量が大きい値を示す。これは、結合C量が認められないことから、Mo炭化物がほとんど生成していないためと考えられる。一方、摩耗量はC比率の増加(黒鉛粉末の添加量の増加)に従い減少する傾向を示す。これは、C比率の増加につれて黒鉛粉末の添加量が増加し、析出するMo炭化物の量が増加するためである。これらより、ステンレス鋼粉末中のMo量に対するC比率が0.05〜0.25の範囲において良好な耐食性及び耐摩耗性が得られるとわかる。   From the sample numbers 01 to 07 in Tables 1 and 2, it is possible to examine the influence of the ratio (C ratio) of the bond C amount to the Mo amount in the stainless steel powder. From these, the oxidation increase shows a tendency to increase with an increase in the C ratio (an increase in the amount of graphite powder added). Since the addition amount of graphite powder increases as the C ratio increases, it is considered that not only Mo carbides are formed, but also the added C is combined with Cr in the matrix, and Cr carbides are gradually formed. . For this reason, it is thought that some Cr density | concentrations in a base fell and corrosion resistance fell. In particular, in the sample number 07 in which the C ratio exceeds 0.25, the increase rate of the oxidation increase is large. Sample number 01 shows a large wear amount. This is presumably because Mo carbides are hardly generated since the amount of bond C is not recognized. On the other hand, the amount of wear tends to decrease as the C ratio increases (the amount of added graphite powder increases). This is because the amount of graphite powder added increases as the C ratio increases, and the amount of precipitated Mo carbide increases. From these, it can be seen that good corrosion resistance and wear resistance can be obtained when the C ratio to the Mo content in the stainless steel powder is in the range of 0.05 to 0.25.

表1及び2の試料番号08〜13より、ステンレス鋼粉末中のNb量に対する結合C量の比(C比率)の影響について調べることが出来る。Nb量に対するC比率の影響は、上記Mo量に対するC比率の影響と同様な傾向を示し、ステンレス鋼粉末中のNb量に対するC比率が0.12〜0.25の範囲において良好な耐食性及び耐摩耗性が得られることがわかる。   From the sample numbers 08 to 13 in Tables 1 and 2, the influence of the ratio (C ratio) of the bond C amount to the Nb amount in the stainless steel powder can be examined. The influence of the C ratio on the amount of Nb shows the same tendency as the influence of the C ratio on the amount of Mo, and good corrosion resistance and resistance in the range where the C ratio with respect to the amount of Nb in the stainless steel powder is 0.12 to 0.25. It can be seen that wear is obtained.

[第2実施例]
次に、Cr量およびNi量が一定であり、Mo量とNb量が表3のように異なるステンレス鋼粉末を用意した。これに第1実施例で用いた硬質相形成粉末:25質量%と、ステンレス鋼中のMo量またはNb量に対するC比率が0.2となる量の黒鉛粉末を添加、混合した。こうして得られた原料粉末は、第1実施例と同様の条件で成形、焼結し、表3に示す試料番号14〜26の試料を作製した。これらの試料について、第1実施例と同様の条件で耐食性試験と耐摩耗性試験を行った。その結果を表4及び図4、5に示す。なお、表3および4には、第1実施例の試料番号05と11の値を併記した。また、図4には試料番号05の値、図5には試料番号11の値を併記した。
[Second Embodiment]
Next, stainless steel powders having different amounts of Cr and Ni and different amounts of Mo and Nb as shown in Table 3 were prepared. To this, 25% by mass of the hard phase forming powder used in the first example and graphite powder in an amount such that the C ratio to the Mo amount or Nb amount in the stainless steel was 0.2 were added and mixed. The raw material powder thus obtained was molded and sintered under the same conditions as in the first example, and samples Nos. 14 to 26 shown in Table 3 were produced. These samples were subjected to a corrosion resistance test and an abrasion resistance test under the same conditions as in the first example. The results are shown in Table 4 and FIGS. In Tables 3 and 4, the values of sample numbers 05 and 11 of the first example are shown together. Further, the value of sample number 05 is shown in FIG. 4, and the value of sample number 11 is shown in FIG.

Figure 0005079417
Figure 0005079417

Figure 0005079417
Figure 0005079417

表3および4の試料番号05および14〜20によりステンレス鋼粉末中のMo量の影響を調べることができる。試料番号14、15の試料では、酸化増量とともに摩耗量も多く、耐食性及び耐摩耗性は低い。これは、試料中の結合C量がほとんどなく、金属炭化物が析出していないためと考えられる。一方、ステンレス鋼粉末中に1.5〜5質量%のMoを含有する試料番号05、16〜19では、Mo炭化物が析出して良好な耐食性とともに良好な耐摩耗性を示す。しかし、Mo量が5質量%を超える試料番号20の試料では、耐食性、耐摩耗性ともに低下する傾向を示す。これは、ステンレス鋼粉末中に固溶するMo量が過多となって原料粉末の圧縮性が損なわれ、成形体密度が低下するとともに焼結体密度が低下したためと考えられる。   The influence of the amount of Mo in the stainless steel powder can be examined by the sample numbers 05 and 14 to 20 in Tables 3 and 4. Samples Nos. 14 and 15 have a large amount of wear as well as an increased amount of oxidation, and have low corrosion resistance and wear resistance. This is considered because there is almost no amount of bond C in the sample and no metal carbide is precipitated. On the other hand, in sample numbers 05 and 16 to 19 containing 1.5 to 5% by mass of Mo in the stainless steel powder, Mo carbide precipitates and exhibits good wear resistance as well as good corrosion resistance. However, in the sample of sample number 20 in which the Mo amount exceeds 5 mass%, both corrosion resistance and wear resistance tend to decrease. This is presumably because the amount of Mo dissolved in the stainless steel powder is excessive, the compressibility of the raw material powder is impaired, the compact density is lowered, and the sintered density is lowered.

表3および4の試料番号11、21〜26によりステンレス鋼粉末中のNbの影響を調べることができる。Nbについても上記のMoと同様の傾向を示し、ステンレス鋼粉末中のNb量が0.1〜1質量%の範囲で良好な耐食性と耐摩耗性を示すが、Nb量が1質量%を超えると原料粉末の圧縮性が損なわれる結果、耐食性と耐摩耗性がともに低下する傾向を示す。これらのことから、ステンレス鋼粉末中のMo量は、1.5〜5質量%、Nb量は0.1〜1質量%であることが好ましいとわかる。   According to sample numbers 11 and 21 to 26 in Tables 3 and 4, the influence of Nb in the stainless steel powder can be examined. Nb also shows the same tendency as Mo described above, and shows good corrosion resistance and wear resistance when the amount of Nb in the stainless steel powder is 0.1 to 1% by mass, but the amount of Nb exceeds 1% by mass. As a result of the loss of compressibility of the raw material powder, both the corrosion resistance and the wear resistance tend to decrease. From these facts, it is understood that the Mo amount in the stainless steel powder is preferably 1.5 to 5% by mass and the Nb amount is preferably 0.1 to 1% by mass.

[第3実施例]
Mo量およびNb量が一定であり、Cr量とNi量が表5のように異なるステンレス鋼粉末を用意した。これに第1実施例で用いた硬質相形成粉末:25質量%と黒鉛粉末:0.8質量%とを添加し、混合を行った。こうして得られた原料粉末を第1実施例と同様の条件で成形、焼結して、表5に示す試料番号27〜41の試料を作製した。これらの試料について、第1実施例と同様の条件で耐食性試験と耐摩耗性試験を行った。その結果について表5及び図6、7に併せて示す。
[Third embodiment]
Stainless steel powders having different amounts of Mo and Nb and different amounts of Cr and Ni as shown in Table 5 were prepared. The hard phase forming powder used in the first example: 25% by mass and graphite powder: 0.8% by mass were added thereto and mixed. The raw material powder thus obtained was molded and sintered under the same conditions as in the first example, and samples Nos. 27 to 41 shown in Table 5 were produced. These samples were subjected to a corrosion resistance test and an abrasion resistance test under the same conditions as in the first example. The results are also shown in Table 5 and FIGS.

Figure 0005079417
Figure 0005079417

表5の試料番号27〜33によりステンレス鋼粉末中のCr量の影響を調べることができる。ステンレス鋼粉末中のCr量が15質量%に満たない試料番号27の試料では、Cr量が乏しいため、酸化増量が大きい値を示している。一方、ステンレス鋼粉末中のCr量が15質量%の試料番号28の試料では試料番号27に比して酸化増量が著しく抑制されており、耐食性向上の効果が認められる。試料番号28〜32においては、ステンレス鋼粉末中のCr量を増加させると、酸化増量が低下し、耐食性の向上が認められる。また、ステンレス鋼粉末中のCr量の増加にともない、摩耗量も低下傾向にあり、耐摩耗性向上の効果も認められる。これは、基地中のCr量が増加することにより、基地中の一部のCrが炭化物として析出したためと考えられる。耐食性試験の結果から、基地中のCrが炭化物として析出する量は、基地中のCr量を大幅に低減するものではないことも併せて確認された。一方、ステンレス鋼粉末中のCr量が35質量%を超える試料番号33の試料では、耐食性が低下している。これは、ステンレス鋼粉末中に硬いσ相が生じ、原料粉末の圧縮性を損ねたためと考えられる。これにより、成形体の密度が低下し、焼結体の密度が低下して気孔量が増加し、その結果、耐食性が低下したと考えられる。これらのことから、良好な耐食性と耐摩耗性を得るためには、ステンレス鋼粉末中のCr量は15〜35質量%の範囲であれば良いとわかる。   According to the sample numbers 27 to 33 in Table 5, the influence of the Cr amount in the stainless steel powder can be examined. In the sample No. 27 in which the Cr amount in the stainless steel powder is less than 15% by mass, since the Cr amount is small, the oxidation increase is large. On the other hand, in the sample of sample number 28 in which the amount of Cr in the stainless steel powder is 15% by mass, the increase in oxidation is remarkably suppressed as compared with sample number 27, and the effect of improving corrosion resistance is recognized. In Sample Nos. 28 to 32, when the amount of Cr in the stainless steel powder is increased, the increase in oxidation is reduced, and an improvement in corrosion resistance is observed. In addition, as the amount of Cr in the stainless steel powder increases, the amount of wear tends to decrease, and the effect of improving wear resistance is recognized. This is presumably because a part of Cr in the base was precipitated as carbides due to an increase in the amount of Cr in the base. From the results of the corrosion resistance test, it was also confirmed that the amount of Cr deposited in the base as carbides does not significantly reduce the amount of Cr in the base. On the other hand, in the sample of sample number 33 in which the Cr amount in the stainless steel powder exceeds 35% by mass, the corrosion resistance is lowered. This is presumably because a hard σ phase was generated in the stainless steel powder and the compressibility of the raw material powder was impaired. Thereby, the density of a molded object falls, the density of a sintered compact falls, the amount of pores increases, and as a result, it is thought that corrosion resistance fell. From these facts, it is understood that the Cr content in the stainless steel powder should be in the range of 15 to 35% by mass in order to obtain good corrosion resistance and wear resistance.

表5の試料番号34〜41によりステンレス鋼粉末中のNi量の影響を調べることができる。試料番号34はNiを含有しないフェライト系ステンレスの例であり、酸化増量は小さく、耐食性は良い。3.5質量%のNiを含有する試料番号35では、さらに酸化増量が抑制され、Ni含有による耐食性向上の効果が認められる。ただし、Ni含有量が22質量%を超えてもそれ以上の耐食性向上の効果は見られない。このため、コストの観点から、Ni含有量は22質量%までで十分であるといえる。また、Niの含有により基地組織はフェライトからオーステナイトに変わる。このオーステナイト基地はフェライト基地よりもCの固溶限が大きい。このため、オーステナイト基地となる試料番号35では、金属炭化物の析出量が減少し、摩耗量が若干増加している。ただし、この耐摩耗性の低下はごく僅かであり、問題のない程度である。これらのことから、3.5〜22質量%のNiの含有は、耐食性の向上に有効であることが確認された。   The influence of the amount of Ni in the stainless steel powder can be examined by sample numbers 34 to 41 in Table 5. Sample No. 34 is an example of ferritic stainless steel containing no Ni, and the oxidation increase is small and the corrosion resistance is good. In Sample No. 35 containing 3.5% by mass of Ni, the increase in oxidation was further suppressed, and the effect of improving corrosion resistance due to the Ni content was recognized. However, even if Ni content exceeds 22 mass%, the effect of the further corrosion resistance improvement is not seen. For this reason, it can be said that the Ni content is sufficient up to 22% by mass from the viewpoint of cost. In addition, the inclusion of Ni changes the base structure from ferrite to austenite. This austenite base has a larger solid solubility limit of C than the ferrite base. For this reason, in the sample number 35 used as an austenite base, the precipitation amount of the metal carbide is decreased and the wear amount is slightly increased. However, this decrease in wear resistance is negligible and is not problematic. From these facts, it was confirmed that the inclusion of 3.5 to 22% by mass of Ni is effective in improving the corrosion resistance.

[第4実施例]
組成が、質量比で、Cr:25%、Ni:20%、Mo:1.5%、Nb:0.2%、および残部がFeと不可避不純物からなるステンレス鋼粉末を用意した。これに黒鉛粉末:0.4質量%と、第1実施例で用いた硬質相形成粉末を表6のように割合を変えて添加、混合を行った。こうして得られた原料粉末を第1実施例と同様の条件で成形、焼結し、表6に示す試料番号42〜51の試料を作製した。これらの試料について、第1実施例と同様の条件で耐食性試験及び耐摩耗性試験を行った。その結果について表6及び図8に併せて示す。
[Fourth embodiment]
A stainless steel powder having a composition by mass ratio of Cr: 25%, Ni: 20%, Mo: 1.5%, Nb: 0.2%, and the balance of Fe and inevitable impurities was prepared. Graphite powder: 0.4% by mass, and the hard phase forming powder used in the first example were added at different ratios as shown in Table 6 and mixed. The raw material powder thus obtained was molded and sintered under the same conditions as in the first example, and samples Nos. 42 to 51 shown in Table 6 were produced. These samples were subjected to a corrosion resistance test and an abrasion resistance test under the same conditions as in the first example. The results are also shown in Table 6 and FIG.

Figure 0005079417
Figure 0005079417

表6より、硬質相形成合金粉末の添加量、すなわち焼結後に基地中に分散する硬質相の量の影響を調べることができる。硬質相形成合金粉末の添加量が15質量%に満たない試料番号42〜44の試料では、焼結後に形成される硬質相の分散量が乏しいため、摩耗量が大きい値を示す。一方、硬質相形成合金粉末の添加量が15質量%の試料番号45の試料では摩耗量が著しく減少しており、硬質相形成合金粉末の添加量の増加に従って、摩耗量の減少する傾向が見れらる。そして、硬質相形成合金粉末の添加量が40質量%以上(試料番号49〜51)では摩耗量が極めて小さく、一定の値となる。   From Table 6, the influence of the addition amount of the hard phase forming alloy powder, that is, the amount of the hard phase dispersed in the matrix after sintering can be examined. In the samples of sample numbers 42 to 44 in which the addition amount of the hard phase forming alloy powder is less than 15% by mass, the amount of wear is large because the amount of dispersion of the hard phase formed after sintering is poor. On the other hand, in the sample of Sample No. 45 with the addition amount of the hard phase forming alloy powder 15%, the wear amount is remarkably reduced, and as the addition amount of the hard phase forming alloy powder increases, the wear amount tends to decrease. Raru. When the addition amount of the hard phase forming alloy powder is 40% by mass or more (sample numbers 49 to 51), the wear amount is extremely small and becomes a constant value.

一方、酸化増量は、硬質相形成合金粉末の添加量が増加するにつれて増加する傾向を示している。これは、硬質相形成合金粉末の添加量が増加するにつれて、原料粉末の圧縮性が低下し、これにともない成形体密度が低下して、試料の気孔が増加(比表面積が増加)することによる。また、硬質相形成合金粉末の添加量が増加するにつれて、基地を形成するステンレス鋼粉末の添加量が減少する。しかし、黒鉛粉末の添加量は一定であるため、試料の基地中に含有されるMo、Nbの炭化物だけでなく、基地中のCrが炭化物として析出し始めると考えられる。それゆえ、基地の耐食性が低下する傾向を示すといえる。この酸化増量は、硬質相形成合金粉末の添加量が50質量%まではほぼ一定の割合で増加の傾向を示している。一方、硬質相形成合金粉末の添加量が50質量%を超える試料番号51の試料では、酸化増量の増加率が大きくなっている。これらのことから、硬質相形成合金粉末の添加量は、15〜50質量%とすべきであるとわかる。   On the other hand, the oxidation increase shows a tendency to increase as the addition amount of the hard phase forming alloy powder increases. This is because the compressibility of the raw material powder decreases as the addition amount of the hard phase forming alloy powder increases, and the compact density decreases accordingly, and the pores of the sample increase (specific surface area increases). . Further, as the addition amount of the hard phase forming alloy powder increases, the addition amount of the stainless steel powder forming the base decreases. However, since the amount of graphite powder added is constant, it is considered that not only the carbides of Mo and Nb contained in the matrix of the sample but also Cr in the matrix starts to precipitate as carbides. Therefore, it can be said that the corrosion resistance of the base tends to decrease. This increase in oxidation shows a tendency to increase at a substantially constant rate until the addition amount of the hard phase forming alloy powder is 50% by mass. On the other hand, in the sample of sample number 51 in which the addition amount of the hard phase forming alloy powder exceeds 50% by mass, the increase rate of the oxidation increase is large. From these facts, it is understood that the addition amount of the hard phase forming alloy powder should be 15 to 50% by mass.

本発明の高温耐蝕耐摩耗性焼結部品の製造方法により得られる高温耐蝕耐摩耗性焼結部品は、優れた耐摩耗性と耐食性を示すとともに機械加工も容易であり、ターボチャージャーの構成部品や内燃機関のバルブシート等の高温環境下において耐蝕・耐摩耗性とともに耐摩耗性が要求される部品に好適なものである。   The high-temperature corrosion-resistant and wear-resistant sintered part obtained by the manufacturing method of the high-temperature corrosion-resistant and wear-resistant sintered part of the present invention exhibits excellent wear resistance and corrosion resistance, and is easy to machine. It is suitable for parts that require wear resistance as well as corrosion resistance and wear resistance in a high temperature environment such as a valve seat of an internal combustion engine.

本発明の高温耐蝕耐摩耗性焼結部品の製造方法により得られる成形体の組織の一例を示す概略図である。It is the schematic which shows an example of the structure | tissue of the molded object obtained by the manufacturing method of the high temperature corrosion-resistant abrasion-resistant sintered part of this invention. 第1実施例で用いた試料(試料番号01〜07)の酸化増量又は摩耗量とC比率との関係を示すグラフである。It is a graph which shows the relationship between the oxidation increase of the sample (sample number 01-07) used in 1st Example, or the abrasion loss, and C ratio. 第1実施例で用いた試料(試料番号08〜13)の酸化増量又は摩耗量とC比率との関係を示すグラフである。It is a graph which shows the relationship between the oxidation increase of the sample (sample number 08-13) used in 1st Example, or the abrasion loss, and C ratio. 第2実施例で用いた試料(試料番号05、14〜20)の酸化増量又は摩耗量とステンレス鋼粉末中のMo量との関係を示すグラフである。It is a graph which shows the relationship between the oxidation increase amount or abrasion amount of the sample (sample number 05, 14-20) used in 2nd Example, and the amount of Mo in stainless steel powder. 第2実施例で用いた試料(試料番号11、21〜26)の酸化増量又は摩耗量とステンレス鋼粉末中のNb量との関係を示すグラフである。It is a graph which shows the relationship between the oxidation increase amount or abrasion amount of the sample (sample number 11,21-26) used in 2nd Example, and the amount of Nb in stainless steel powder. 第3実施例で用いた試料(試料番号27〜33)の酸化増量又は摩耗量とステンレス鋼粉末中のCr量との関係を示すグラフである。It is a graph which shows the relationship between the oxidation increase amount or abrasion amount of the sample (sample number 27-33) used in 3rd Example, and the Cr amount in a stainless steel powder. 第3実施例で用いた試料(試料番号34〜41)の酸化増量又は摩耗量とステンレス鋼粉末中のNi量との関係を示すグラフである。It is a graph which shows the relationship between the oxidation increase amount or abrasion amount of the sample (sample number 34-41) used in 3rd Example, and the amount of Ni in a stainless steel powder. 第4実施例で用いた試料の酸化増量又は摩耗量と硬質相形成合金粉末の添加量との関係を示すグラフである。It is a graph which shows the relationship between the oxidation increase amount or abrasion amount of the sample used in 4th Example, and the addition amount of hard phase formation alloy powder.

Claims (3)

質量比で、Cr:15〜35%と、Ni:3.5〜22%と、Mo:5%以下、Nb0.1〜1.0%、残部がFeおよび不可避不純物であるステンレス鋼粉末に、硬質相形成粉末を15〜50%と、数1で示される量の黒鉛粉末とを配合し混合した原料粉末を用い、前記原料粉末を所望の形状に圧粉成形して得られた成形体を焼結し、前記硬質相形成粉末は、質量比で、Mo:20〜60%、Cr:3〜12%、Si:1〜12%、および残部:Coと不可避不純物からなることを特徴とする高温耐蝕耐摩耗性焼結部品の製造方法。
Figure 0005079417
Stainless steel powder with a mass ratio of Cr: 15-35%, Ni: 3.5-22%, Mo : 5% or less, Nb : 0.1-1.0% , the balance being Fe and inevitable impurities A molding obtained by compacting the raw material powder into a desired shape using a raw material powder obtained by mixing 15-50% of the hard phase forming powder and the graphite powder in the amount represented by Equation 1 The hard phase-forming powder is composed of Mo: 20 to 60%, Cr: 3 to 12%, Si: 1 to 12%, and the balance: Co and inevitable impurities. A method for producing high-temperature corrosion-resistant wear-resistant sintered parts.
Figure 0005079417
前記ステンレス鋼粉末中のMo量が1.5〜5質量%であることを特徴とする請求項1に記載の高温耐蝕耐摩耗性焼結部品の製造方法。   The method for producing a high-temperature corrosion-resistant wear-resistant sintered part according to claim 1, wherein the amount of Mo in the stainless steel powder is 1.5 to 5% by mass. 前記原料粉末に、さらに、5質量%以下の硫化マンガン粉末、硫化クロム粉末、弗化カルシウム粉末、珪酸マグネシウム系鉱物粉末のうち少なくとも1種を添加し混合したことを特徴とする請求項1または2に記載の高温耐蝕耐摩耗性焼結部品の製造方法。 The raw material powder further 5 mass% of manganese sulfide powder, chromium sulfide powder, according to claim 1 or 2 calcium fluoride powder, characterized in that adding and mixing at least one of magnesium silicate mineral powder A method for producing a high-temperature corrosion-resistant wear-resistant sintered part as described in 1.
JP2007202238A 2007-08-02 2007-08-02 Manufacturing method of high temperature corrosion resistant wear resistant sintered parts Active JP5079417B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007202238A JP5079417B2 (en) 2007-08-02 2007-08-02 Manufacturing method of high temperature corrosion resistant wear resistant sintered parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007202238A JP5079417B2 (en) 2007-08-02 2007-08-02 Manufacturing method of high temperature corrosion resistant wear resistant sintered parts

Publications (2)

Publication Number Publication Date
JP2009035785A JP2009035785A (en) 2009-02-19
JP5079417B2 true JP5079417B2 (en) 2012-11-21

Family

ID=40437955

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007202238A Active JP5079417B2 (en) 2007-08-02 2007-08-02 Manufacturing method of high temperature corrosion resistant wear resistant sintered parts

Country Status (1)

Country Link
JP (1) JP5079417B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102242304A (en) * 2011-06-22 2011-11-16 中南大学 Chromium-containing powder metallurgy low alloy steel and preparation method thereof
JP5939384B2 (en) * 2012-03-26 2016-06-22 日立化成株式会社 Sintered alloy and method for producing the same
CN112981231B (en) * 2021-01-20 2022-05-10 广东省高端不锈钢研究院有限公司 High-manganese-nitrogen austenitic stainless steel powder and preparation method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63114945A (en) * 1986-10-31 1988-05-19 Mazda Motor Corp Sintered alloy member excellent in wear resistance and corrosion resistance
JPH02163351A (en) * 1988-12-16 1990-06-22 Mitsubishi Metal Corp Valve seat made of fe-base sintered alloy reduced in attack on mating material
JP3555165B2 (en) * 1994-01-12 2004-08-18 大同特殊鋼株式会社 Stainless steel powder for sintering
JPH0827536A (en) * 1994-07-15 1996-01-30 Sumitomo Metal Mining Co Ltd Production of sintered compact of stainless steel
JP4467013B2 (en) * 2005-06-13 2010-05-26 日立粉末冶金株式会社 Sintered valve seat manufacturing method

Also Published As

Publication number Publication date
JP2009035785A (en) 2009-02-19

Similar Documents

Publication Publication Date Title
US9340857B2 (en) Sintered alloy and production method therefor
US10006111B2 (en) Sintered alloy and manufacturing method thereof
JP5525986B2 (en) Sintered valve guide and manufacturing method thereof
JP4368245B2 (en) Hard particle dispersion type iron-based sintered alloy
KR101607866B1 (en) Sintered alloy and manufacturing method thereof
JP5887374B2 (en) Ferrous sintered alloy valve seat
JP2003268414A (en) Sintered alloy for valve seat, valve seat and its manufacturing method
JP5100487B2 (en) Manufacturing method of sintered machine parts
US10619229B2 (en) Manufacturing method of wear-resistant iron-based sintered alloy and wear-resistant iron-based sintered alloy
EP2511388B1 (en) Sintered sliding member
JP4693170B2 (en) Wear-resistant sintered alloy and method for producing the same
JP6929313B2 (en) Iron-based sintered alloy for high-temperature wear resistance
JP5079417B2 (en) Manufacturing method of high temperature corrosion resistant wear resistant sintered parts
WO2020050211A1 (en) Heat-resistant sintered alloy material
JP2009035786A (en) Method for manufacturing sintered parts having corrosion resistance and abrasion resistance at high temperature
JP6392530B2 (en) Ferrous sintered alloy valve seat
JP2012251245A (en) Method for manufacturing sintered parts having corrosion resistance and abrasion resistance at high temperature
JP3434527B2 (en) Sintered alloy for valve seat
JP6508611B2 (en) Sintered alloy and method of manufacturing the same
CN112368409B (en) Sintered alloy and method for producing same
JPH0116905B2 (en)
JP2009091609A (en) Sintered composite sliding part and production method therefor
JP2018178143A (en) Manufacturing method of abrasion resistant iron-based sintered alloy
JP2010144235A (en) Wear-resistant sintered alloy and method for producing the same
JPH11140603A (en) Wear resistant sintered alloy material for part of compressor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100721

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120604

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120802

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120820

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120829

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150907

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5079417

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350