JPH03182059A - Secondary battery with non-aqueous electrolytic solution - Google Patents

Secondary battery with non-aqueous electrolytic solution

Info

Publication number
JPH03182059A
JPH03182059A JP1321809A JP32180989A JPH03182059A JP H03182059 A JPH03182059 A JP H03182059A JP 1321809 A JP1321809 A JP 1321809A JP 32180989 A JP32180989 A JP 32180989A JP H03182059 A JPH03182059 A JP H03182059A
Authority
JP
Japan
Prior art keywords
plate
base metal
battery
lithium
metal plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1321809A
Other languages
Japanese (ja)
Other versions
JP2798753B2 (en
Inventor
Yasuhiro Fujita
泰浩 藤田
Ikurou Nakane
育朗 中根
Sanehiro Furukawa
古川 修弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP1321809A priority Critical patent/JP2798753B2/en
Publication of JPH03182059A publication Critical patent/JPH03182059A/en
Application granted granted Critical
Publication of JP2798753B2 publication Critical patent/JP2798753B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To enhance the cycle characteristic of a battery, in which a neg. electrode is formed through shortcircuiting of a metal Li plate to a base metal plate, by making these base metal plate and metal Li plate in respective specified forms. CONSTITUTION:A battery concerned is composed of a pos. electrode 1 consisting of rechargeable active substance, a separator 3 incl. non-aqueous electrolytic solution, a base metal plate 9 consisting for ex. of Al, and a Li plate 10. The base metal plate 9 is shortcircuited to the Li plate 10 via the electrolyte to form a neg. electrode consisting of Li-Al alloy, while the base metal plate 9 is formed non-porous. Accordingly the capacity is large compared with the porous form, and the amount of initially being turned into alloy is large, and there is no edge effect. Also there is no Li locally. The Li plate 10 is porous to provide easy permeation of electrolyte. This allows achievement of a negative electrode which has large vol. energy density and has a less Li missing.

Description

【発明の詳細な説明】 皮栗上少赴里光竪 本発明は二酸化モリブデン、五酸化バナジウム、二酸化
マンガン、硫化チタンなどのような再充電可能な活物質
よりなる正極と、リチウムを活物質とする負極と、非水
電解液とを備えた非水電解液二次電池に関するものであ
る。
[Detailed Description of the Invention] The present invention comprises a positive electrode made of a rechargeable active material such as molybdenum dioxide, vanadium pentoxide, manganese dioxide, titanium sulfide, etc., and lithium as the active material. The present invention relates to a non-aqueous electrolyte secondary battery including a negative electrode and a non-aqueous electrolyte.

罠来夏技歪 この種の電池の問題は負極活物質であるリチウムが、充
電の際に負極表面に樹枝状に成長し正極に接して内部短
絡を引起したり、モツシー状に析出して脱落が生じるた
め充放電サイクルが極めて短いことである。
The problem with this type of battery is that during charging, lithium, which is the negative electrode active material, grows like a tree on the surface of the negative electrode and comes into contact with the positive electrode, causing an internal short circuit, or it precipitates in a motu-like shape and falls off. This is because the charge/discharge cycle is extremely short.

そこで、特開昭52−5423号公報に示すように、負
極をリチウム−アルミニウム合金で構成することが提案
されている。
Therefore, as shown in Japanese Unexamined Patent Publication No. 52-5423, it has been proposed that the negative electrode be made of a lithium-aluminum alloy.

これはリチウム単独の場合、放電によってリチウムがイ
オンとなって溶出すると負極表面が凹凸状となり、その
後の充電の際、リチウムが凸部に集中的に電析して樹枝
状いに成長するのに対し、リチウム−アルミニウム合金
の場合には充電時にリチウムが負極の基体となるアルミ
ニウムと合金を形成するように復元するためリチウムの
樹枝状成長が抑制されるという利点を奏するためである
This is because in the case of lithium alone, when lithium is ionized and eluted during discharge, the negative electrode surface becomes uneven, and during subsequent charging, lithium is deposited intensively on the protrusions and grows in a dendritic shape. On the other hand, in the case of a lithium-aluminum alloy, lithium restores itself to form an alloy with aluminum, which serves as the base of the negative electrode, during charging, so that the dendritic growth of lithium is suppressed, which is an advantage.

ところで、上記合金の製造方法としては、特公昭61−
46947に示すように、電気化学的に合金化したもの
の特性が良好である。但し、上記の如く合金を作成する
場合、電池外で大量な合金を−度に作成することは工程
上難しい。
By the way, as a method for manufacturing the above alloy,
As shown in No. 46947, the electrochemically alloyed material has good properties. However, when creating the alloy as described above, it is difficult to create a large amount of the alloy at once outside the battery due to the process.

このようなことを考慮して、特開昭50−195337
号公報や特開昭61−208748号公報に示すように
、電池内の電解液存在下で基体金属板とリチウム板とを
接触させて合金化させるような方法が提案されている。
Considering this, Japanese Patent Application Laid-Open No. 50-195337
As shown in Japanese Patent Application Laid-Open No. 61-208748, a method has been proposed in which a base metal plate and a lithium plate are brought into contact with each other in the presence of an electrolyte in a battery to form an alloy.

しかしながら、リチウム板と基体金属板とを完全に接触
させた場合には、リチウム板と基体金属板との間に電解
液が浸入し難くなるため合金化が進まない。
However, when the lithium plate and the base metal plate are brought into complete contact, the electrolyte becomes difficult to penetrate between the lithium plate and the base metal plate, so that alloying does not proceed.

そこで、基体金属板とリチウム板と間に電解液を容易に
侵入させるべく、特開昭61−46947号公報に示す
ように、基体金属板に孔が形成されたものを使用するよ
うな電池が提案されている。
Therefore, in order to allow the electrolyte to easily penetrate between the base metal plate and the lithium plate, a battery using a base metal plate with holes formed therein is proposed, as shown in Japanese Patent Application Laid-Open No. 61-46947. Proposed.

゛しよ゛と る しかしながら、上記従来の構造では、基体金属板に孔が
形成されていないものと比べて、孔の分だけ基体金属板
の重量が小さくなるため、最初に合金化する量が少なく
なる。このため、リチウム合金の体積エネルギー密度が
小さくなって、サイクル特性が低下する。加えて、基体
金属板に孔を形成するとすると、エツジ効果により孔縁
にリチウムが集中して反応する。このため、孔縁でリチ
ウムの欠落を生じ、これによってもサイクル特性が低下
するという課題を有していた。
However, in the conventional structure described above, the weight of the base metal plate is reduced by the amount of holes, compared to one in which holes are not formed in the base metal plate, so the amount of alloying initially is reduced. It becomes less. For this reason, the volumetric energy density of the lithium alloy decreases, and the cycle characteristics deteriorate. In addition, when holes are formed in the base metal plate, lithium is concentrated and reacts at the edges of the holes due to the edge effect. For this reason, lithium is missing at the pore edges, which also causes a problem in that the cycle characteristics deteriorate.

本発明はかかる現状に鑑みてなされたものであり、上記
諸欠点を解消してサイクル特性を飛躍的に向上させるこ
とができる非水電解液二次電池を提供することを目的と
する。
The present invention has been made in view of the current situation, and it is an object of the present invention to provide a non-aqueous electrolyte secondary battery that can eliminate the above-mentioned drawbacks and dramatically improve cycle characteristics.

i   nXするための 本発明は上記目的を達成するために、再充電可能な活物
質から成る正極と、非水電解液と、非水電解液の存在下
で基体金属板とリチウム板とを短絡させることにより電
気化学的に合金化された合金から成る負極とを有する非
水電解液二次電池において、前記リチウム板は有孔形状
を成し、前記基体金属板は無孔形状を成すことを特徴と
する。
In order to achieve the above-mentioned object, the present invention for i n In the non-aqueous electrolyte secondary battery having a negative electrode made of an alloy electrochemically alloyed by Features.

立−一一里 上記構成であれば、基体金属板には孔が形成されていな
いので、基体金属板に孔が形成されたものと比べて、最
初に合金化する量が多くなる。したがって、リチウム合
金の体積エネルギー密度が大きくなる。
With the above configuration, since no holes are formed in the base metal plate, the amount of alloying initially increases compared to a case where holes are formed in the base metal plate. Therefore, the volumetric energy density of the lithium alloy increases.

加えて、基体金属板に孔が形成されていなければ、エツ
ジ効果を生じないので、リチウムが一部に集中して反応
せず全面で均一に反応を生じる。
In addition, if no holes are formed in the base metal plate, no edge effect will occur, so lithium will not concentrate in one part and react, but will react uniformly over the entire surface.

したがって、リチウムの欠落を生じることもない。Therefore, no shortage of lithium occurs.

更に、リチウム板には孔が形成されているので、リチウ
ム板と基体金属板との間に電解液を容易に浸透させるこ
とが可能である。
Furthermore, since holes are formed in the lithium plate, it is possible to easily infiltrate the electrolyte between the lithium plate and the base metal plate.

夫−一施一一班 本発明の実施例を、第1図〜第4図に基づいて、以下に
説明する。
Embodiments of the present invention will be described below with reference to FIGS. 1 to 4.

〔実施例1] 第1図に示すように、リチウム−アルミニウム合金から
成る負極2は負極集電体7の内面に圧着されており、こ
の負極集電体7はステンレスから成る断面略コ字状の負
極缶5の内底面に固着されている。上記負極缶5の周端
はポリプロピレン製の絶縁バッキング8の内部に固定さ
れており、絶縁バッキング8の外周にはステンレスから
成り上記負極缶5とは反対方向に断面略コ字状を威す正
極缶4が固定されている。この正極缶4の内底面には正
極集電体6が固定されており、この正極集電体6の内面
には正極lが固定されている。この正極lと前記負極2
との間には、非水電解液が含浸されポリプロピレン性多
孔膜から成るセパレータ3が介装されている。尚、上記
非水電解液としては、プロピレンカーボネートと1.2
−ジメトキシエタンとの混合溶媒に過塩素酸リチウムを
1モル/lの割合で溶解したものを用いている。また、
電池寸法は直径24.0+m、厚み3.0mである。
[Example 1] As shown in FIG. 1, a negative electrode 2 made of a lithium-aluminum alloy is crimped onto the inner surface of a negative electrode current collector 7, and this negative electrode current collector 7 is made of stainless steel and has a substantially U-shaped cross section. is fixed to the inner bottom surface of the negative electrode can 5. The peripheral end of the negative electrode can 5 is fixed inside an insulating backing 8 made of polypropylene, and the outer periphery of the insulating backing 8 is covered with a positive electrode made of stainless steel and having a substantially U-shaped cross section in the opposite direction to the negative electrode can 5. Can 4 is fixed. A positive electrode current collector 6 is fixed to the inner bottom surface of the positive electrode can 4, and a positive electrode 1 is fixed to the inner surface of this positive electrode current collector 6. This positive electrode 1 and the negative electrode 2
A separator 3 made of a polypropylene porous membrane impregnated with a non-aqueous electrolyte is interposed between the two. In addition, as the above-mentioned non-aqueous electrolyte, propylene carbonate and 1.2
- Lithium perchlorate dissolved in a mixed solvent with dimethoxyethane at a ratio of 1 mol/l is used. Also,
The battery dimensions are 24.0+m in diameter and 3.0m in thickness.

ところで、上記構造の非水電解液二次電池は、以下のよ
うにして作製した。
By the way, the non-aqueous electrolyte secondary battery having the above structure was produced as follows.

先ず、正極lを以下のようにして作成する。First, the positive electrode l is created as follows.

活物質である二酸化マンガン80fi量部に、導電剤と
してのアセチレンブランク10重量部と、結着剤として
のフン素樹脂粉末10重量部とを加えて充分に混合した
後、この正極合剤を加圧成型することにより作製する。
After adding 10 parts by weight of acetylene blank as a conductive agent and 10 parts by weight of fluorine resin powder as a binder to 80 parts of manganese dioxide as an active material and thoroughly mixing the mixture, this positive electrode mixture was added. Manufactured by pressure molding.

これと並行して、第3図に示すように、シート状のアル
ミニウムとリチウムとを所定寸法に打ち抜いてアルミニ
ウム板9とリチウム板10とを作製すると共に、リチウ
ム板10に孔12を形成する。尚、この場合の空孔率〔
(空孔部の面積の合計/全面積) X100)は30%
である。
In parallel with this, as shown in FIG. 3, sheet-like aluminum and lithium are punched out to predetermined dimensions to produce an aluminum plate 9 and a lithium plate 10, and holes 12 are formed in the lithium plate 10. In addition, the porosity in this case [
(Total area of pores/total area) X100) is 30%
It is.

しかる後、第2図に示すように、正極缶4と負極毎5と
から構成される空間内に、負極毎5側から順に、アルミ
ニウム板9と、リチウム板10と、セパレータ3と、正
極1とを装着する。この後、このようにして作製した予
備電池を1週間放置して、アルミニウムとリチウムとを
合金化を行うことにより電池を作製した。
Thereafter, as shown in FIG. 2, an aluminum plate 9, a lithium plate 10, a separator 3, and a positive electrode 1 are placed in the space formed by the positive electrode can 4 and the negative electrode 5 in this order from the negative electrode 5 side. Attach. Thereafter, the spare battery thus produced was left for one week, and a battery was produced by alloying aluminum and lithium.

このようにして作製した電池を、以下(A1)電池と称
する。
The battery thus produced is hereinafter referred to as (A1) battery.

〔実施例■〜■〕[Examples ■~■]

下記第1表に示すように、リチウム板10の空孔率を変
える他は、上記実施例Iと同様にして電池を作製した。
As shown in Table 1 below, a battery was produced in the same manner as in Example I above, except that the porosity of the lithium plate 10 was changed.

このようにして作製した電池を、以下(A2〉電池〜 (A6 ) 電池と称する。The batteries produced in this way are shown below (A2> Battery ~ (A6 ) It is called a battery.

第1表 〔比較列I〜■〕 リチウム板10に孔を形成せず、且つ下記第2表の空孔
率となるよにうアルミニウム板9に孔を形成する他は、
上記実施例Iと同様にして電池を作製した。
Table 1 [Comparison rows I to ■] Except that no holes were formed in the lithium plate 10 and holes were formed in the aluminum plate 9 so as to have the porosity shown in Table 2 below,
A battery was produced in the same manner as in Example I above.

このようにして作製した電池を、以下(xl〉電池〜(
X6)電池と称する。
The batteries produced in this way are shown below (xl〉battery~(
X6) It is called a battery.

第2表 〔実験〕 上記本発明の(A1)電池〜(A6)電池及び比較例の
(X+ )電池〜(X&)電池のサイクル特性を調べた
ので、その結果を第4図に示す。尚、実験条件は、充電
電流3mAで6時間充電した後、放電電流3mAで6時
間放電するという条件であり、放電時間内に2vに達し
た時点で電池寿命とした。
Table 2 [Experiment] The cycle characteristics of the (A1) to (A6) batteries of the present invention and the (X+) to (X&) batteries of the comparative examples were investigated, and the results are shown in FIG. The experimental conditions were to charge for 6 hours at a charging current of 3 mA and then discharge for 6 hours at a discharging current of 3 mA, and the battery life was determined to be the end of the battery life when the voltage reached 2 V within the discharge time.

第4図より明らかに、(A1)電池〜(A、)電池は(
Xl)電池〜(X6)電池と比べて、サイクル特性が向
上していることが認められる。
It is clear from Figure 4 that (A1) battery ~ (A,) battery is (
It is recognized that the cycle characteristics are improved compared to the batteries Xl) to (X6).

特に、空孔率が10〜50%の(A1)電池。In particular, the (A1) battery has a porosity of 10 to 50%.

(A3)電池〜(A、)電池では、飛躍的にサイクル特
性が向上している。したがって、空孔率は10〜50%
の範囲であることが望ましい。
The cycle characteristics of the (A3) battery to (A,) battery are dramatically improved. Therefore, the porosity is 10-50%
It is desirable that it be within the range of .

尚、上記実施例では基体金属としてアルミニウムを用い
ているが、これに限定するものではなく、鉛、インジウ
ム、ビスマス、スズ、カリウム、珪素、硼素、カドミウ
ム、マグネシウム、亜鉛であってもよく、且つアルミニ
ウムや上記金属の合金であってもよい。更に、基体金属
中に、マンガン。
Although aluminum is used as the base metal in the above examples, it is not limited to this, and lead, indium, bismuth, tin, potassium, silicon, boron, cadmium, magnesium, zinc may also be used. It may also be aluminum or an alloy of the above metals. Furthermore, manganese is included in the base metal.

4゜ クロム、鉄、珪素、タングステン、モリブデン。4゜ Chromium, iron, silicon, tungsten, molybdenum.

コバルト、ニッケル、ジルコニウム、マグネシウム、チ
タン、バナジウムが添加されていてもよい。
Cobalt, nickel, zirconium, magnesium, titanium, and vanadium may be added.

発里坐盆果 以上説明したように本発明によれば、リチウム合金の体
積エネルギー密度が大きくなると共に、リチウムが欠落
するのを防止することができるので、非水電解液二次電
池のサイクル特性を格段に向上させることができる。
As explained above, according to the present invention, the volumetric energy density of the lithium alloy increases and the loss of lithium can be prevented, which improves the cycle characteristics of the non-aqueous electrolyte secondary battery. can be significantly improved.

また、リチウム板と基体金属板との間に電解液を容易に
浸透させることができるので、合金化を電池内で行うこ
とができ、生産性を向上させることが可能となるという
効果を奏する。
Furthermore, since the electrolytic solution can be easily infiltrated between the lithium plate and the base metal plate, alloying can be performed within the battery, and productivity can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の非水電解液二次電池の半断面図、第2
図は上記電池の製造工程を示す半断面図、第3図は本発
明の非水電解液二次電池の作製に用いるリチウム板とア
ルミニウム板との斜視図、第4図は本発明の(AI)電
池〜(A6)電池及び比較例の(X+ )電池〜(X、
)電池のサイクル特性を示すグラフである。 1・・・正極、2・・・負極、3・・・セパレータ、9
・・・アルミニウム板、10・・・リチウム板。
FIG. 1 is a half-sectional view of the non-aqueous electrolyte secondary battery of the present invention, and FIG.
3 is a perspective view of a lithium plate and an aluminum plate used for manufacturing the non-aqueous electrolyte secondary battery of the present invention, and FIG. 4 is a half-sectional view showing the manufacturing process of the above battery. ) battery ~ (A6) battery and comparative example (X+) battery ~ (X,
) is a graph showing the cycle characteristics of the battery. 1...Positive electrode, 2...Negative electrode, 3...Separator, 9
...Aluminum plate, 10...Lithium plate.

Claims (1)

【特許請求の範囲】[Claims] (1)再充電可能な活物質から成る正極と、非水電解液
と、非水電解液の存在下で基体金属板とリチウム板とを
短絡させることにより電気化学的に合金化された合金か
ら成る負極とを有する非水電解液二次電池において、 前記リチウム板は有孔形状を成し、前記基体金属板は無
孔形状を成すことを特徴とする非水電解液二次電池。
(1) A positive electrode consisting of a rechargeable active material, a nonaqueous electrolyte, and an alloy electrochemically alloyed by shorting a base metal plate and a lithium plate in the presence of the nonaqueous electrolyte. A non-aqueous electrolyte secondary battery having a negative electrode comprising: the lithium plate having a perforated shape, and the base metal plate having a non-porous shape.
JP1321809A 1989-12-11 1989-12-11 Non-aqueous electrolyte secondary battery Expired - Fee Related JP2798753B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1321809A JP2798753B2 (en) 1989-12-11 1989-12-11 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1321809A JP2798753B2 (en) 1989-12-11 1989-12-11 Non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JPH03182059A true JPH03182059A (en) 1991-08-08
JP2798753B2 JP2798753B2 (en) 1998-09-17

Family

ID=18136660

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1321809A Expired - Fee Related JP2798753B2 (en) 1989-12-11 1989-12-11 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2798753B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1089782C (en) * 1997-11-11 2002-08-28 中国科学院长春应用化学研究所 Method for preparing positive electrode material of lithium secondary cell
JP2003323885A (en) * 2002-05-02 2003-11-14 Varta Microbattery Gmbh Method for manufacturing rechargeable electrical element
US7138210B2 (en) 2001-02-06 2006-11-21 Lg Chem, Ltd. Punched electrode and rechargeable lithium battery using the same
JP2012022972A (en) * 2010-07-16 2012-02-02 Kobelco Kaken:Kk Material for negative electrode active material, and secondary battery and capacitor using negative electrode active material formed by alloying the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1089782C (en) * 1997-11-11 2002-08-28 中国科学院长春应用化学研究所 Method for preparing positive electrode material of lithium secondary cell
US7138210B2 (en) 2001-02-06 2006-11-21 Lg Chem, Ltd. Punched electrode and rechargeable lithium battery using the same
JP2003323885A (en) * 2002-05-02 2003-11-14 Varta Microbattery Gmbh Method for manufacturing rechargeable electrical element
JP4709476B2 (en) * 2002-05-02 2011-06-22 ヴァルタ マイクロバッテリー ゲゼルシャフト ミット ベシュレンクテル ハフツング Method for manufacturing a rechargeable electrical element
JP2012022972A (en) * 2010-07-16 2012-02-02 Kobelco Kaken:Kk Material for negative electrode active material, and secondary battery and capacitor using negative electrode active material formed by alloying the same

Also Published As

Publication number Publication date
JP2798753B2 (en) 1998-09-17

Similar Documents

Publication Publication Date Title
US4820599A (en) Non-aqueous electrolyte type secondary cell
JP2558519B2 (en) Button type lithium organic secondary battery and method of manufacturing the same
JP3081336B2 (en) Non-aqueous electrolyte secondary battery
JPH03182059A (en) Secondary battery with non-aqueous electrolytic solution
JP2709303B2 (en) Non-aqueous electrolyte secondary battery
JP3177257B2 (en) Non-aqueous electrolyte secondary battery
JPH06310125A (en) Negative electrode for lithium secondary battery
JPS63155552A (en) Enclosed type nickel-cadmium storage battery
JP2989212B2 (en) Non-aqueous electrolyte secondary battery
JPS61158665A (en) Nonaqueous electrolyte secondary battery
JP2798742B2 (en) Non-aqueous electrolyte secondary battery
JPS63285878A (en) Nonaqueous secondary battery
JP2865386B2 (en) Non-aqueous electrolyte secondary battery
JP2798752B2 (en) Manufacturing method of non-aqueous electrolyte secondary battery
JP3025692B2 (en) Rechargeable battery
JP2840357B2 (en) Non-aqueous electrolyte secondary battery
JPH04286864A (en) Secondary battery
JP3133316B2 (en) Rechargeable battery
JP2562651B2 (en) Non-aqueous electrolyte secondary battery
JP2771580B2 (en) Manufacturing method of lithium alloy plate
JP3197658B2 (en) Non-aqueous secondary battery
JPH0636759A (en) Lithium secondary battery
JPH0470744B2 (en)
JP2594035B2 (en) Rechargeable battery
JPS61193360A (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees