JPH03168261A - Working fluid - Google Patents

Working fluid

Info

Publication number
JPH03168261A
JPH03168261A JP1309640A JP30964089A JPH03168261A JP H03168261 A JPH03168261 A JP H03168261A JP 1309640 A JP1309640 A JP 1309640A JP 30964089 A JP30964089 A JP 30964089A JP H03168261 A JPH03168261 A JP H03168261A
Authority
JP
Japan
Prior art keywords
working fluid
approximately
weight
vapor
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1309640A
Other languages
Japanese (ja)
Inventor
Koji Arita
浩二 有田
Takeshi Tomizawa
猛 富澤
Yuji Yoshida
雄二 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1309640A priority Critical patent/JPH03168261A/en
Publication of JPH03168261A publication Critical patent/JPH03168261A/en
Pending legal-status Critical Current

Links

Landscapes

  • Lubricants (AREA)

Abstract

PURPOSE:To obtain a working fluid containing specific amounts of chlorodifluoromethane, difluoroethane and chlorodifluoroethane, hardly affecting the stractospheric ozonosphere and used for refrigerators, heat pumps, etc. CONSTITUTION:The objective working fluid containing at least three kinds of fluorocarbons of 5-75wt.%, 45-65wt.% chlorodifluoromethane (R22), <=95wt.%, preferably <=40wt.% difluoroethane (R152a) and <=55wt.%, preferably 20-50wt.% chlorodifluoroethane (R142b).

Description

【発明の詳細な説明】 産業上の利用分野 本発明は 冷凍機・ヒートボンブ等に使用される作動流
体に関すん 従来の技術 従来 冷凍機・ヒートボンブ等において{よ 作動流体
としてフロン類(以下R○○またはROOOと記す)と
呼ばれるハロゲン化炭化水素が知られており、利用温度
としては凝縮温度および/または蒸発温度が略O〜略5
0℃の範囲において通常使用される。中でもジクロロジ
フルオロメタン(CC12F2、R12)は冷蔵限 カ
ーエアコンや大型冷凍機等の作動流体として幅広く用い
られている。
[Detailed Description of the Invention] Industrial Field of Application The present invention relates to working fluids used in refrigerators, heat bombs, etc. A halogenated hydrocarbon called ○ or ROOO is known, and its usage temperature ranges from approximately 0 to approximately 5.
Usually used in the 0°C range. Among them, dichlorodifluoromethane (CC12F2, R12) is widely used as a working fluid in refrigerated car air conditioners and large refrigerators.

発明が解決しようとする課題 しかしなか板 近年フロンによる戊層圏オゾン層破壊が
地球規模の環境問題となっており、戊層圏オゾン破壊能
力が大であるフロン類(以下、特定フロンと記す)につ
いてCヨ  すでに国際条約によって使用量及び生産量
の規制がなされ さらに将来的には特定フロンの使用・
生産を廃止しようという動きがある。さて、R12はオ
ゾン破壊係数(トリクロロフルオロメタン(CC1sF
)の底層圏オゾン破壊能力を1としたときの戊層圏オゾ
ン破壊能九 以下○DPと記す)が1.0の特定フロン
であり、冷凍・空調機器が広く普及した現在 R12の
使用量及び生産量の削減が人類の生活環境に与える影響
は甚だ太き(℃ 従って、底層圏オゾン破壊能力が小で
あり、R12の代替となる作動流体の早期開発が強く要
望されている。
Problems to be Solved by the Invention In recent years, depletion of the stratospheric ozone layer by fluorocarbons has become a global environmental problem, and fluorocarbons (hereinafter referred to as specified fluorocarbons) have a large ability to deplete the stratospheric ozone. Regarding the use and production of specific fluorocarbons, which have already been regulated by international treaties,
There is a movement to abolish production. Now, R12 is the ozone depletion coefficient (trichlorofluoromethane (CC1sF)
) is a specific fluorocarbon with a stratospheric ozone depletion capacity 9 (hereinafter referred to as ○DP) of 1.0, and the amount of R12 used and The impact that a reduction in production would have on the human living environment would be enormous (°C).Therefore, the ability to deplete the ozone in the lower strata is small, and there is a strong demand for the early development of a working fluid that can replace R12.

本発明は 上述の問題に鑑みて試されたもので、戊層圏
オゾン層に及ぼす影響が小さ(\ R12の代替となる
作動流体を提供するものである。
The present invention was attempted in view of the above-mentioned problems, and is intended to provide a working fluid that has a small effect on the stratospheric ozone layer (as an alternative to R12).

課題を解決するための手段 本発明は上述の課題を解決するたべ 少なくとL クロ
ロジフルオロメタン(CHCIF2>とジフルオロエタ
ン(C2H4F2)とクロロジフルオロエタン(C28
3C I F2)からの3種のフロン類を含へ クロロ
ジフルオ口メタン略5〜略75重量米 ジフルオロエタ
ンO〜略95重量基 クロロジフルオロエタン0〜略5
5重量%の組戊範囲であることを特徴とするものであり
、′lIニ  クロロジフルオロメタン略45〜略65
重量米 ジフルオロエタンO〜略40重量抵 クロロジ
フルオロエタン略20〜略50重量%の組戒範囲が望ま
しいものである。
Means for Solving the Problems The present invention aims to solve the above problems.
Contains three types of fluorocarbons from 3C I F2) Chlorodifluoromethane approximately 5 to approximately 75 weight groups Difluoroethane O to approximately 95 weight groups Chlorodifluoroethane 0 to approximately 5 weight groups
It is characterized by a composition range of 5% by weight, and 'lI dichlorodifluoromethane from approximately 45 to approximately 65% by weight.
A range of about 20 to about 50% by weight of difluoroethane O to about 40% by weight of chlorodifluoroethane is desirable.

作用 本発明(上 上述の組合せによって、作動流体を、オゾ
ン破壊能力のほとんどない分子構造中に塩素を含まない
フロン類であるジフルオロエタン(○DP=O)と、オ
ゾン破壊能力の極めて低い分子構造中に塩素・水素を共
に含むフロン類でおるクロロジフルオロメタン(○DP
=0.  05)およびクロロジフルオロエタン(OD
P=0.  06)から3種の混合物となすことにより
、戊層圏オゾン層に及ぼす影響をR12よりもはるかに
小さくすることを可能とするものである。又 本発明は
上述の組戊範囲とすることによって、冷凍機・ヒートポ
ンプ等の利用温度である賂O〜略50℃においてR12
と同程度の蒸気圧を有L,R12の代替として現行機器
で使用可能な作動流体を提供することを可能とするもの
である。特に上述の組合せおよび組或範囲における○D
Pは0. 03〜O.Oaと予想さ11,R12の代替
として極めて有望な作動流体となるものであも またか
かる混合物は非共沸混合物となり、凝縮過程および蒸発
過程において温度勾配をもった吹 熱源流体との温度差
を近接させたロレンツサイクルを構戊することにより、
Rl2よりも高い戒績係数を期待できるものであも 実施例 以下、本発明による作動流体の実施例について、図を用
いて説明すも 第1図(よ クロロジフルオ口メタン(R22)、1.
  1−ジフルオロエタン(R152a)、 l−クロ
ロ−1,1−ジフルオロエタン(R 1 4 2 b)
の3種のフロン類の混合物によって構戒される作動流体
α 一定温度・一定圧力における平衡状態を三角座標を
用いて示したものである。本三角座標において!よ 三
角形の各頂点に 上側頂点を基点として反時計回りに沸
点の低い順に単一物質を配置しており、座標平面上のあ
る点における各戊分の組或比(重量比)(ヨ  点と三
角形の各辺との距離の比で表されも またこのとき、点
と三角形の辺との距離は 辺に相対する側にある三角座
標の頂点に記された物質の組或比に対応する。第1図に
おいてlは 温度0℃・圧力2.116kg/cm2G
における混合物の気液平衡線であり、この温度・圧力は
R12の飽和状態に相当する。気液平衡線(R120℃
相当)1の上側の線は飽和気相撒 気液平衡線(R12
0℃相当)1の下側の線は飽和液相線を表わレ この両
線で挟まれた範囲においては気液平衡状態となる。また
2ζよ 温度50℃・圧力11.  373kg/cm
2Gにおける混合物の気液平衡線であり、この温度・圧
力もR12の飽和状態に相当すん 図からわかるように
 R22、R152a及びR142bがそれぞれ略5〜
略75重量OA.0〜略95重量触0〜略55重量%と
なるような組或範囲!よ 略0〜略50℃の利用温度に
おいてR12とほぼ同等の蒸気圧を有するため望ましし
1 さらl:R22、R152a及びRl42bがそれ
ぞれ略45〜略65重量9lll1.O〜略40重量米
 略20〜略50重量%となるような組戒範囲CヨO℃
と50℃の間のすべての利用温度においてR12とほぼ
同等の蒸気圧を有するため特に望ましl,%  特に上
述の組合せおよび組或範囲における○DPは0.03〜
0. 06と予想さt’s  Rl2の代替として極め
て有望な作動流体となるものである。
Effect of the present invention (above) By the above-mentioned combination, the working fluid is difluoroethane (○DP=O), which is a fluorocarbon that does not contain chlorine in its molecular structure, which has almost no ozone-depleting ability, and Chlorodifluoromethane (○DP) is a fluorocarbon containing both chlorine and hydrogen.
=0. 05) and chlorodifluoroethane (OD
P=0. By forming a mixture of three types from R12, it is possible to make the effect on the stratospheric ozone layer much smaller than that of R12. Furthermore, by using the above-mentioned assembly range, the present invention achieves R12 at temperatures ranging from 0 to about 50 degrees Celsius, which is the operating temperature of refrigerators, heat pumps, etc.
This makes it possible to provide a working fluid that can be used in current equipment as an alternative to L and R12, and has a vapor pressure comparable to that of L and R12. ○D especially in the above-mentioned combinations and ranges
P is 0. 03~O. This mixture is expected to be a very promising working fluid as an alternative to Oa, 11, and R12.In addition, such a mixture will be a non-azeotropic mixture, and will have a temperature gradient during the condensation and evaporation processes. By arranging Lorenz cycles in close proximity,
Examples of working fluids according to the present invention, which can be expected to have a higher performance coefficient than Rl2, will be described below with reference to figures.
1-difluoroethane (R152a), 1-chloro-1,1-difluoroethane (R 142b)
The equilibrium state of a working fluid α controlled by a mixture of three types of fluorocarbons at constant temperature and constant pressure is shown using triangular coordinates. In this triangular coordinate! At each vertex of the triangle, single substances are placed counterclockwise from the upper vertex in descending order of boiling point, and the ratio (weight ratio) of each component at a certain point on the coordinate plane It is expressed as the ratio of the distance to each side of the triangle. In this case, the distance between a point and the side of the triangle corresponds to the composition ratio of the substance written at the vertex of the triangular coordinates on the side opposite the side. In Figure 1, l is temperature 0℃ and pressure 2.116kg/cm2G.
This temperature and pressure correspond to the saturated state of R12. Gas-liquid equilibrium line (R120℃
The upper line of 1 is the saturated vapor phase vapor-liquid equilibrium line (R12
The line below 1 (equivalent to 0°C) represents the saturated liquidus line.The range between these two lines is in vapor-liquid equilibrium. 2ζ again, temperature 50℃, pressure 11. 373kg/cm
This is the vapor-liquid equilibrium line of the mixture at 2G, and this temperature and pressure also correspond to the saturated state of R12.As can be seen from the figure, R22, R152a and R142b are each approximately 5 to 5
Approximately 75 weight OA. 0 to about 95% by weight and 0 to about 55% by weight! It is desirable because it has almost the same vapor pressure as R12 at the usage temperature of about 0 to about 50°C.1 Further: R22, R152a and R152b each have a weight of about 45 to about 65 9l1. O to approximately 40% by weight Approximately 20 to approximately 50% by weight CyoO℃
It is particularly desirable because it has almost the same vapor pressure as R12 at all operating temperatures between
0. It is predicted that t's Rl2 will be a very promising working fluid as a substitute for 06 and t's Rl2.

第1図中の点Al〜点Flにおける作動流体の組威及び
○DPを第1表に示す。点Al〜点C1は気液平衡線(
R12  50℃相当)2の飽和気相線上にあると共に
 気液平衡線(R12  0℃相当)1の飽和気相線及
び気液平衡線(R l 20℃相当)1の飽和液相線の
画線で挟まれた範囲にあることか転 温度O℃・圧力2
.116kg/cm2G(R12の飽和状態に相当)に
おいては気液平衡状態となも また 点D1〜点F1は
気液平衡線(R12  0℃相当)1の飽和液線上にあ
ると共に 気液平衡線(R12  50℃相当)2の飽
和気相線及び気液平衡線(R12  50℃相当)2の
飽和液相線の両線で挟まれた範囲にあることか板 温度
50℃・圧力11.  373kg/cm”G(R12
の飽和状態に相当)においては第1表 気液平衡状態となん 従って、第1表に示された組或を
有する作動流体は O℃・50℃におけるR12の飽和
蒸気圧の条件下で飽和状態あるいは気液平衡状態を実現
し 略O〜略50℃の利用温度において、同温度におけ
るR12の飽和蒸気圧で操作することにより、R12と
ほぼ等しい凝縮温度・蒸発温度を得ることが可能となる
ものであも ここで4友 気液平衡線(Rl2  0℃相当)1ある
いは気液平衡線(Rl2  50℃相当)2上の点につ
いてのみ説明した力交 点A1〜点Flの内側にある戊
 すなわ板 温度O℃・圧力2.  116kg/cm
”G及び温度50℃・圧力11.37 3 kg/cm
”G (両者ともR12の飽和状態に相当)において気
液平衡状態となる組戒を有する作動流体についても同様
に操作することにより、略O〜略50℃の利用温度にお
いてR12とほぼ等しい凝縮温度・蒸発温度を得ること
が可能となるものであも 本実施例においては作動流体は3種のフロン類の混合物
によって構戊されている爪 構造異性体を含めて4種以
上のフロンの混合物によって作動流体を構戒することも
勿論可能である。またかかる混合物は非共沸混合物とな
り、凝縮過程および蒸発過程において温度勾配をもった
吹 熱源流体との温度差を近接させたロレンッサイクル
を構或することにより、 R12よりも高い或績係数を
期待できるものであも 発明の効果 以上の説明から明らかなよう砿 本発明GEL  作動
流体を、分子構造中に塩素を含まないフロン類と、分子
構造中に塩素・水素を共に含むフロン類の3種以上から
或る混合物となし その組或範囲を特定したことにより
、 (1)戒層圏オゾン層に及ぼす影響をRl2よりもはる
かに小さくするためα 作動流体の選択の幅を拡大する
ことが可能であも (2)機器の利用温度においてR12と同程度の蒸気圧
を有L,R12の代替として現行機器で使用可能であも (3)非共沸混合物の温度勾配の性質を利用して、R1
2よりも高い或績係数を期待できる等の効果を有するも
のである。
Table 1 shows the working fluid strength and DP at points Al to Fl in FIG. Points Al to C1 are the vapor-liquid equilibrium line (
R12 is on the saturated vapor phase line of 2 (R12 equivalent to 50°C) 2, and the image of the saturated vapor line of the vapor-liquid equilibrium line (R12 equivalent to 0°C) 1 and the saturated liquidus line of the vapor-liquid equilibrium line (R1 equivalent to 20°C) 1 It must be within the range between the lines.Temperature 0℃・Pressure 2
.. At 116 kg/cm2G (corresponding to the saturated state of R12), there is a vapor-liquid equilibrium state. Also, points D1 to F1 are on the saturated liquid line of the vapor-liquid equilibrium line (corresponding to R12 0°C) 1, and the vapor-liquid equilibrium line ( Temperature: 50°C, Pressure: 11. 373kg/cm”G (R12
Therefore, the working fluid having the composition shown in Table 1 is saturated under the condition of R12's saturated vapor pressure at 0°C and 50°C. Alternatively, by realizing a vapor-liquid equilibrium state and operating at the saturated vapor pressure of R12 at the operating temperature of approximately 0 to approximately 50°C, it is possible to obtain condensation and evaporation temperatures approximately equal to that of R12. However, here are the four points: Force intersection explained only about points on the vapor-liquid equilibrium line (Rl2, equivalent to 0°C) 1 or the vapor-liquid equilibrium line (Rl2, equivalent to 50°C) 2. Rope board Temperature 0°C/Pressure 2. 116kg/cm
”G and temperature 50℃・pressure 11.37 3 kg/cm
By performing the same operation on a working fluid that has a gas-liquid equilibrium state at ``G'' (both correspond to the saturated state of R12), the condensation temperature is almost equal to R12 at a usage temperature of approximately 0 to approximately 50℃.・Although it is possible to obtain the evaporation temperature, in this example, the working fluid is composed of a mixture of three types of fluorocarbons. Of course, it is also possible to control the working fluid.Also, such a mixture becomes a non-azeotropic mixture, and a Lorene cycle is constructed in which the temperature difference between the blowing fluid and the heat source fluid is kept close to each other. Although it is possible to expect a higher coefficient of performance than that of R12, it is clear from the above explanation that the present invention's GEL working fluid is composed of fluorocarbons that do not contain chlorine in their molecular structure, and A mixture of three or more types of fluorocarbons that contain both chlorine and hydrogen in their structure. By specifying the range of the combination, (1) the effect on the stratospheric ozone layer is much smaller than that of Rl2. (2) Even if it is possible to expand the range of selection of working fluids, (2) it has a vapor pressure similar to that of R12 at the operating temperature of the equipment, and can be used in current equipment as a substitute for L and R12 (3) ) Using the temperature gradient properties of non-azeotropic mixtures, R1
This has the effect that a performance coefficient higher than that of 2 can be expected.

【図面の簡単な説明】[Brief explanation of the drawing]

第l図は 3種のフロン類の混合物によって構l・・・
気液平衡線(R12  0℃相当)、2・・・気液平衡
線(R12  50℃相当)。
Figure 1 shows a structure made of a mixture of three types of fluorocarbons...
Gas-liquid equilibrium line (R12 equivalent to 0°C), 2... Gas-liquid equilibrium line (R12 equivalent to 50°C).

Claims (2)

【特許請求の範囲】[Claims] (1)クロロジフルオロメタン5〜75重量%以下、ジ
フルオロエタン95重量%以下、クロロジフルオロエタ
ン55重量%以下の少なくとも3種のフロン類を含む作
動流体。
(1) A working fluid containing at least three types of fluorocarbons: 5 to 75% by weight of chlorodifluoromethane, 95% by weight or less of difluoroethane, and 55% by weight or less of chlorodifluoroethane.
(2)クロロジフルオロメタン45〜65重量%以下、
ジフルオロエタン40重量%以下、クロロジフルオロエ
タン20〜50重量%以下の少なくとも3種のフロン類
を含む作動流体。
(2) 45 to 65% by weight of chlorodifluoromethane,
A working fluid containing at least three types of fluorocarbons, 40% by weight or less of difluoroethane and 20 to 50% by weight of chlorodifluoroethane.
JP1309640A 1989-11-29 1989-11-29 Working fluid Pending JPH03168261A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1309640A JPH03168261A (en) 1989-11-29 1989-11-29 Working fluid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1309640A JPH03168261A (en) 1989-11-29 1989-11-29 Working fluid

Publications (1)

Publication Number Publication Date
JPH03168261A true JPH03168261A (en) 1991-07-22

Family

ID=17995476

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1309640A Pending JPH03168261A (en) 1989-11-29 1989-11-29 Working fluid

Country Status (1)

Country Link
JP (1) JPH03168261A (en)

Similar Documents

Publication Publication Date Title
JPH03170585A (en) Working fluid
JPH03170594A (en) Working fluid
JPH03170588A (en) Working fluid
JPH03170591A (en) Working fluid
EP0430171A1 (en) Working fluid
JPH03168261A (en) Working fluid
JPH03170593A (en) Working fluid
JPH0665561A (en) Working fluid
JPH03172386A (en) Working fluid
JPH03172384A (en) Working fluid
JPH03170584A (en) Working fluid
JPH03170590A (en) Working fluid
JP2579000B2 (en) Working fluid
JPH03168278A (en) Working fluid
JPH03170592A (en) Working fluid
JPH03168287A (en) Working fluid
JPH03168269A (en) Working fluid
JPH03168288A (en) Working fluid
JPH03168283A (en) Working fluid
JPH03168284A (en) Working fluid
JPH03168285A (en) Working fluid
JPH03168293A (en) Working fluid
JPH03172385A (en) Working fluid
JPH03168289A (en) Working fluid
JPH03168281A (en) Working fluid