JPH03168293A - Working fluid - Google Patents

Working fluid

Info

Publication number
JPH03168293A
JPH03168293A JP1309675A JP30967589A JPH03168293A JP H03168293 A JPH03168293 A JP H03168293A JP 1309675 A JP1309675 A JP 1309675A JP 30967589 A JP30967589 A JP 30967589A JP H03168293 A JPH03168293 A JP H03168293A
Authority
JP
Japan
Prior art keywords
working fluid
temperature
weight
vapor
fluorocarbons
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1309675A
Other languages
Japanese (ja)
Inventor
Koji Arita
浩二 有田
Takeshi Tomizawa
猛 富澤
Yuji Yoshida
雄二 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1309675A priority Critical patent/JPH03168293A/en
Publication of JPH03168293A publication Critical patent/JPH03168293A/en
Pending legal-status Critical Current

Links

Landscapes

  • Lubricants (AREA)

Abstract

PURPOSE:To provide a working fluid having only small effects on the stratospheric ozone layer, alternative to dichlorodifluoromethane (R12), comprising a trifluorethane, chlorodifluoromethane and a dichlorofluorethane at specified proportion. CONSTITUTION:The objective working fluid comprising (A) <=90 (pref. <=85)wt.% of 1,1,1-trifluorethane (R143a), (B) <=95 (pref. <=90)wt.% of chlorodifluoromethane (R22), and (C) 5-65 (pref. 10-60)wt.% of 1,1-dichloro-1-fluorethane (R141b). The working fluid is used in refrigerating machines, heat pumps, etc.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は 冷凍機・ヒートポンブ等に使用される作動流
体に関すん 従来の技術 従来 冷凍機・ヒートポンプ等において(よ 作動流体
としてフロン類(以下ROOまたはR○○○と記す)と
呼ばれるハロゲン化炭化水素が知られており、利用温度
としては凝縮温度および/または蒸発温度が0〜50℃
の範囲において通常使用されも 中でもジクロ口ジフル
オ口メタン(CCleFa、Rl2)は冷蔵凧 カーエ
アコンや大型冷凍機等の作動流体として幅広く用いられ
ていも 発明が解決しようとする課題 しかしなが転 近年フロンによる成層圏オゾン層破壊が
地球規模の環境問題となっており、戒層圏オゾン破壊能
力が大であるフロン類(以下、特定フロンと記す)につ
いては すでに国際条約によって使用量及び生産量の規
制がなされ さらに将来的には特定フロンの使用・生産
を・廃止しようという動きがあも さて、R12はオゾ
ン破壊係数(トリクロロフルオロメタン(CCl*F)
の戒層圏オゾン破壊能力を1としたときの底層圏オゾン
破壊能九 以下ODPと記す)が1.  0の特定フロ
ンであり、冷凍・空調機器が広く普及した現&  Rl
2の使用量及び生産量の削減が人類の生活環境に与える
影響は甚だ太き(1 従って、或層圏オゾン破壊能力が
小であり、R12の代替となる作動流体の早期開発が強
く要望されていも本発明は 上述の問題に鑑みて試され
たちの玄或層圏オゾン層に及ぼす影響が小さl,tR1
2の代替となる作動流体を提供するものであも課題を解
決するための手段 本発明は上述の課題を解決するた吹 少なくと叡 トリ
フルオロエタン(C2HsF!)とクロロジフルオ口メ
タン(CHCIFa)とジクロ口フルオロエタン(C2
HsC lsF)の三種のフロン類を含へ トリフルオ
口エタンO〜90重量瓢 クロロジフルオロメタン0〜
95重量% ジクロロフルオロエタン5〜65重量%の
組戊範囲であることを特徴とするものであり、特に ト
リフルオロエタンO〜85重量κ クロロジフルオロメ
タンO〜90重量% ジクロロフルオロエタン10〜6
0重量%の組戊範囲が望ましいものであん作用 本発明;よ 作動流体を、オゾン破壊能力のほとんどな
い分子構造中に塩素を含まないフロン類であるトリフル
オ口エタン(○DP=O)と、オゾン破壊能力の極めて
低い分子構造中に塩素・水素を共に含むフロン類である
クロロジフルオロメタン(ODP=0.  05)およ
びジクロロフルオロエタン(○D P = 0.  1
 )の少なくとも三種の混合物となすことにより、戒層
圏オゾン層に及ぼす影響をR12よりもはるかに小さく
することを可能とするものであん 又 本発明は上述の
組或範囲とすることによって、冷凍機・ヒートボンプ等
の利用温度であるO〜50℃においてR12と同程度の
蒸気圧を有L,R12の代替として現行機器で使用可能
な作動流体を提供することを可能とするものであも 特
に上述の組合せおよび組戊範囲におけるODPは0. 
01〜0. 07となり、R12の代替として極めて有
望な作動流体となるものであも またかかる混合物は非
共沸混合物となり、凝縮過程および蒸発過程において温
度勾配をもったべ 熱源流体との温度差を近接させたロ
レンッサイクルを構或することにより、Rl2よりも高
い或績係数を期待できるものであも実施例 以王 本発明による作動流体の実施例について、図を用
いて説明すも 第1図?友1,  1.  1−トリフルオロエタン(
Rl43a)、クooジフルオロメタン(R22)1,
1−ジクロローl−フルオロエタン(Rl4 l b)
の三種のフロン類の混合物によって構威される作動流体
Q 一定温度・一定圧力における平衡状態を三角座標を
用いて示したものであも本三角座標において(上 三角
形の各頂点に 上側頂点を基点として反時計回りに沸点
の低い順に単一物質を配置しており、座標平面上のある
点における各成分の組或比(重量比)(ヨ  点と三角
形の各辺との距離の比で表されも またこのとき、点と
三角形の辺との距離Git  辺に相対する側にある三
角座標の頂点に記された物質の組或比に対応すん 第1
図において1は 温度0℃・圧力2.  116kg/
cm’Gにおける混合物の気液平衡線であり、この温度
・圧力はR12の飽和状態に相当すん 気液平衡線(R
120℃相当)1の上側の線は飽和気相亀 気液平衡線
(R120℃相当)lの下側の線は飽和液相線を表わし
 この画線で挟まれた範囲においては気液平衡状態とな
んまた2【上 温度50℃・圧力11.  373kg
/cm”Gにおける混合物の気液平衡線であり、この温
度・圧力もR12の飽和状態に相当すん 図からわかる
ように R143a,R22及びR14lbがそれぞれ
O〜90重量%.0〜95重量基5〜65重量%となる
ような組或範囲CヨO〜50℃の利用温度においてR1
2とほぼ同等の蒸気圧を有するため望まし(1 さらj
QR143a、R22及びRl4lbがそれぞれ0〜8
5重量瓢O〜90重量KID〜60重量%となるような
組或範囲(よ 0℃と50℃の間のすべての利用温度に
おいてRl2とほぼ同等の蒸気圧を有するため特に望ま
しt.%  特に上述の組合せおよび組或範囲における
ODPは0.01〜0. 07となり、R12の代替と
して極めて有望な作動流体となるものであも 第1図中の点A1〜点F1における作動流体の第1表 組或及びODPを第1表に示す。点Al〜点CIは気液
平衡線(Rl2  50℃相当)2の飽和気相線上に 
また点D1〜点Flは気液平衡線(Rl2 50℃相当
)2の飽和液線上にあると共に気液平衡線(R12  
0℃相当)lの飽和気相線及び気液平衡線(R120℃
相当)lの飽和液相線の画線で挟まれた範囲にあること
か収 温度0℃・圧力2.  1 1 6 kg/ c
m’G (R 1 2の飽和状態に相当)においては気
液平衡状態となん従って、第1表に示された&Il或を
有する作動流体{友 0℃・50℃におけるR12の飽
和蒸気圧の条件下で飽和状態あるいは気液平衡状態を実
現し略0〜略50℃の利用温度において、同温度におけ
るR12の飽和蒸気圧で操作することにより、R12と
ほぼ等しい凝縮温度・蒸発温度を得ることが可能となる
ものであも ここでは 気液平衡線(R12  50℃相当)2上の
点についてのみ説明した力交 点Al〜点Flの内側に
ある戊 すなわ板 温度O℃・圧力2.1 1 6kg
/cm”G及び温度50t−圧力1 1.3 7 3k
g/cm2G (両者ともR12の飽和状態に相当)に
おいて気液平衡状態となる組戒を有する作動流体につい
ても同様に操作することにより、0〜50℃の利用温度
においてR12とほぼ等しい凝縮温度・蒸発温度を得る
ことが可能となるものであも 本実施例においては作動流体は三種のフロン類の混合物
によって構威されている力丈 構造異性体を含めて四種
以上のフロンの混合物によって作動流体を構或すること
も勿論可能であも またかかる混合物は非共沸混合物と
なり、凝縮過程および蒸発過程において温度勾配をもっ
た吹 熱源流体との温度差を近接させたロレンツサイク
ルを構戊することにより、R12よりも高い戊績係数を
期待できるものであも 発明の効果 以上の説明から明らかなよう阪 本発明GA  作動流
体を、分子構造中に塩素を含まないフロン類と、分子構
造中に塩素・水素を共に含むフロン類の三種以上から成
る混合物となし その組成範囲を特定したことにより、 (1)戒層圏オゾン層に及ぼす影響をR12よりもはる
かに小さくするためQ 作動流体の選択の幅を拡大する
ことが可能であも (2)機器の利用温度においてRl2と同程度の蒸気圧
を有L.R12の代替として現行機器で使用可能であも (3)非共沸混合物の温度勾配の性質を利用して、Rl
2よりも高い戊績係数を期待できる等の効果を有するも
のであム
[Detailed Description of the Invention] Industrial Field of Application The present invention relates to working fluids used in refrigerators, heat pumps, etc. A halogenated hydrocarbon called R○○○ is known, and the usage temperature is 0 to 50℃ for condensation temperature and/or evaporation temperature.
In particular, dichlorofluorocarbon methane (CCleFa, Rl2) is widely used as a working fluid for refrigeration kites, car air conditioners, large refrigerators, etc., but the problem that the invention is trying to solve has recently changed. The depletion of the stratospheric ozone layer by carbon dioxide has become a global environmental issue, and international treaties have already regulated the use and production of fluorocarbons (hereinafter referred to as specified fluorocarbons), which have a large ability to deplete the stratospheric ozone. Furthermore, there is a movement to abolish the use and production of specific fluorocarbons in the future.Now, R12 is the ozone depletion coefficient (trichlorofluoromethane (CCl*F)).
When the stratospheric ozone depletion potential of the stratospheric ozone depleting potential is 1, the bottom stratum ozone depletion potential 9 (hereinafter referred to as ODP) is 1. 0 specified fluorocarbons, which is now widely used in refrigeration and air conditioning equipment.
Reductions in the amount of R12 used and produced will have an enormous impact on the human living environment. However, the present invention has been tested in view of the above-mentioned problems, and has a small effect on the stratospheric ozone layer.
Means for Solving the Problems The present invention provides an alternative working fluid for the above-mentioned problems. Dichlorofluoroethane (C2
Contains three types of fluorocarbons (HsCl IsF) Trifluoroethane 0 ~ 90 weight gourd Chlorodifluoromethane 0 ~
It is characterized by a composition range of 95% by weight dichlorofluoroethane 5 to 65% by weight, particularly trifluoroethane O to 85% by weight κ chlorodifluoromethane O to 90% by weight dichlorofluoroethane 10 to 6
A composition range of 0% by weight is desirable, and the present invention uses trifluoroethane (○DP=O), which is a fluorocarbon that does not contain chlorine in its molecular structure and has almost no ozone depletion ability, as the working fluid. Chlorodifluoromethane (ODP = 0.05) and dichlorofluoroethane (○D P = 0.1), which are fluorocarbons containing both chlorine and hydrogen in their molecular structures, have extremely low ozone depletion ability.
), it is possible to make the effect on the stratospheric ozone layer much smaller than that of R12. In particular, it is possible to provide a working fluid that can be used in current equipment as an alternative to L and R12, which has a vapor pressure similar to that of R12 at temperatures ranging from 0 to 50 °C, which is the operating temperature of machines, heat pumps, etc. The ODP in the above combinations and ranges is 0.
01~0. 07, making it an extremely promising working fluid as an alternative to R12.In addition, such a mixture is a non-azeotropic mixture, with a temperature gradient in the condensation and evaporation processes. Although a higher coefficient of performance than Rl2 can be expected by constructing a cycle, an embodiment of the working fluid according to the present invention will be described with reference to the drawings. Friend 1, 1. 1-trifluoroethane (
Rl43a), oo difluoromethane (R22) 1,
1-dichloro-l-fluoroethane (Rl4 l b)
The working fluid Q is composed of a mixture of three types of fluorocarbons.The equilibrium state at constant temperature and constant pressure is shown using triangular coordinates. Single substances are arranged counterclockwise in descending order of boiling point, and the composition ratio (weight ratio) of each component at a certain point on the coordinate plane (y) Also, in this case, the distance between the point and the side of the triangle Git corresponds to the ratio of the substances written at the vertex of the triangular coordinates on the side opposite to the side.
In the figure, 1 is temperature 0℃ and pressure 2. 116kg/
This is the vapor-liquid equilibrium line of the mixture at cm'G, and this temperature and pressure correspond to the saturated state of R12.
The upper line of 1 (equivalent to 120°C) represents the saturated gas phase. The lower line of the vapor-liquid equilibrium line (equivalent to R120°C) 1 represents the saturated liquidus line. The area between these lines is in a state of vapor-liquid equilibrium. Tonanmata 2 [Top Temperature 50℃/Pressure 11. 373kg
/cm''G, and this temperature and pressure also correspond to the saturated state of R12.As can be seen from the figure, R143a, R22 and R14lb are each O ~ 90% by weight.0 ~ 95% by weight 5 R1 at a service temperature of ~50°C in a range Cyo~65% by weight
It is desirable because it has almost the same vapor pressure as 2 (1
QR143a, R22 and Rl4lb are each 0 to 8
A range of 5% by weight O to 90% by weight KID to 60% by weight (t.%) is particularly desirable because it has a vapor pressure almost equivalent to Rl2 at all operating temperatures between 0°C and 50°C. In particular, the ODP in the above-mentioned combination and set range is 0.01 to 0.07, and even though it is a very promising working fluid as an alternative to R12, the working fluid at points A1 to F1 in FIG. Table 1 and ODP are shown in Table 1. Points Al to CI are on the saturated vapor phase line of vapor liquid equilibrium line (Rl2 equivalent to 50°C) 2.
In addition, points D1 to Fl are on the saturated liquid line of the vapor-liquid equilibrium line (Rl2 equivalent to 50°C) 2, and the vapor-liquid equilibrium line (R12
saturated gas phase line and vapor-liquid equilibrium line (R120℃ equivalent)
(equivalent) The temperature is 0°C and the pressure is 2. 1 1 6 kg/c
m'G (corresponding to the saturated state of R12) is in a vapor-liquid equilibrium state. Therefore, the saturated vapor pressure of R12 at 0°C and 50°C is By realizing a saturated state or a vapor-liquid equilibrium state under the conditions and operating at a usage temperature of approximately 0 to approximately 50°C, the condensation temperature and evaporation temperature are approximately equal to those of R12 by operating at the saturated vapor pressure of R12 at the same temperature. Here, only the points on the vapor-liquid equilibrium line (R12, equivalent to 50°C) 2 are explained. The force intersection between points Al and Fl is the plate that is inside the temperature O°C and pressure 2. 1 1 6kg
/cm”G and temperature 50t-pressure 1 1.3 7 3k
By performing the same operation on a working fluid that has a gas-liquid equilibrium state at g/cm2G (both correspond to the saturated state of R12), the condensation temperature and Although it is possible to obtain the evaporation temperature, in this example, the working fluid is composed of a mixture of three types of fluorocarbons. Although it is of course possible to construct a fluid, such a mixture becomes a non-azeotropic mixture, and in the condensation and evaporation processes, a Lorenz cycle is constructed in which the temperature difference between the blowing fluid and the heat source fluid is close to each other, with a temperature gradient. Therefore, it is possible to expect a higher performance coefficient than that of R12. By specifying the composition range of fluorocarbons, which contain both chlorine and hydrogen, we have determined that (1) the influence on the stratospheric ozone layer is much smaller than that of R12; Although it is possible to expand the range of selection, (2) L. Although it can be used as a substitute for R12 with current equipment, (3) Rl
It has the effect of being expected to have a higher performance coefficient than 2.

【図面の簡単な説明】[Brief explanation of the drawing]

第l図C上  三種のフロン類の混合物によって構或さ
れる作動流体双 一定温度・一定圧力における平衡状態
を三角座標を用いて示した図であも1・・・気液平衡線
(R12  0t:相当)、 2・・・気液平衡線(R
12  50℃相当)。
Figure 1.C top This is a diagram showing the equilibrium state of a working fluid composed of a mixture of three types of fluorocarbons using triangular coordinates at a constant temperature and constant pressure. : equivalent), 2...vapor-liquid equilibrium line (R
12 50℃ equivalent).

Claims (2)

【特許請求の範囲】[Claims] (1)トリフルオロエタン90重量%以下、クロロジフ
ルオロメタン95重量%以下、ジクロロフルオロエタン
5〜65重量%以下の少なくとも三種のフロン類を含む
作動流体。
(1) A working fluid containing at least three types of fluorocarbons: 90% by weight or less of trifluoroethane, 95% by weight or less of chlorodifluoromethane, and 5 to 65% by weight of dichlorofluoroethane.
(2)トリフルオロエタン85重量%以下、クロロジフ
ルオロメタン90重量%以下、ジクロロフルオロエタン
10〜60重量%以下の少なくとも三種のフロン類を含
む作動流体。
(2) A working fluid containing at least three types of fluorocarbons: 85% by weight or less of trifluoroethane, 90% by weight or less of chlorodifluoromethane, and 10 to 60% by weight of dichlorofluoroethane.
JP1309675A 1989-11-29 1989-11-29 Working fluid Pending JPH03168293A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1309675A JPH03168293A (en) 1989-11-29 1989-11-29 Working fluid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1309675A JPH03168293A (en) 1989-11-29 1989-11-29 Working fluid

Publications (1)

Publication Number Publication Date
JPH03168293A true JPH03168293A (en) 1991-07-22

Family

ID=17995920

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1309675A Pending JPH03168293A (en) 1989-11-29 1989-11-29 Working fluid

Country Status (1)

Country Link
JP (1) JPH03168293A (en)

Similar Documents

Publication Publication Date Title
JPH0655942B2 (en) Working fluid
JPH03170594A (en) Working fluid
JP2548411B2 (en) Working fluid
JPH03170583A (en) Working fluid
JPH03170591A (en) Working fluid
JPH03168293A (en) Working fluid
JPH0665561A (en) Working fluid
JPH03170586A (en) Working fluid
JPH03170593A (en) Working fluid
JPH03170584A (en) Working fluid
JPH03170590A (en) Working fluid
JPH03172384A (en) Working fluid
JPH03172386A (en) Working fluid
JPH03168262A (en) Working fluid
JPH03170592A (en) Working fluid
JPH03168288A (en) Working fluid
JPH03168278A (en) Working fluid
JPH03168269A (en) Working fluid
JPH03168291A (en) Working fluid
JPH03168287A (en) Working fluid
JPH03168277A (en) Working fluid
JPH03168276A (en) Working fluid
JPH03168265A (en) Working fluid
JPH03168266A (en) Working fluid
JPH03168272A (en) Working fluid