JPH0655942B2 - Working fluid - Google Patents

Working fluid

Info

Publication number
JPH0655942B2
JPH0655942B2 JP1311154A JP31115489A JPH0655942B2 JP H0655942 B2 JPH0655942 B2 JP H0655942B2 JP 1311154 A JP1311154 A JP 1311154A JP 31115489 A JP31115489 A JP 31115489A JP H0655942 B2 JPH0655942 B2 JP H0655942B2
Authority
JP
Japan
Prior art keywords
temperature
working fluid
weight
liquid equilibrium
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1311154A
Other languages
Japanese (ja)
Other versions
JPH03170585A (en
Inventor
雄二 吉田
正三 船倉
浩二 有田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1311154A priority Critical patent/JPH0655942B2/en
Priority to DE69011632T priority patent/DE69011632T2/en
Priority to SG1995903605A priority patent/SG28336G/en
Priority to EP90122652A priority patent/EP0430169B1/en
Priority to KR1019900019596A priority patent/KR930010516B1/en
Publication of JPH03170585A publication Critical patent/JPH03170585A/en
Priority to US07/832,649 priority patent/US5370811A/en
Publication of JPH0655942B2 publication Critical patent/JPH0655942B2/en
Priority to US08/305,320 priority patent/US5438849A/en
Priority to HK42495A priority patent/HK42495A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Lubricants (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、エアコン・冷凍機等のヒートポンプ装置に使
用される作動流体に関する。
TECHNICAL FIELD The present invention relates to a working fluid used in a heat pump device such as an air conditioner and a refrigerator.

従来の技術 従来、エアコン・冷凍機等のヒートポンプ装置において
は、作動流体としてフロン類(以下R○○またはR○○
○と記す)と呼ばれるハロゲン化炭化水素が知られてお
り、利用温度としては凝縮温度および/または蒸発温度
が略0〜略50℃の範囲において通常使用される。中で
もクロロジフルオロメタン(CHClF2、R22)は
家庭用エアコン、ビル用エアコンや大型冷凍機等の作動
流体として幅広く用いられている。
2. Description of the Related Art Conventionally, in heat pump devices such as air conditioners and refrigerators, CFCs (hereinafter R ○○ or R ○○) are used as working fluids.
Halogenated hydrocarbons referred to as ◯) are known, and they are usually used as utilization temperatures in the range of condensation temperature and / or evaporation temperature of about 0 to about 50 ° C. Among them, chlorodifluoromethane (CHClF 2 , R22) is widely used as a working fluid for home air conditioners, building air conditioners, large refrigerators and the like.

発明が解決しようとする課題 しかしながら、近年フロンによる成層圏オゾン層破壊が
地球規模の環境問題となっており、成層圏オゾン破壊能
力が大であるフロン類(以下、特定フロンと記す)につ
いては、すでに国際条約によって使用量及び生産量の規
制がなされ、さらに将来的には特定フロンの使用・生産
を廃止しようという動きがある。さて、R22はオゾン
破壊係数(トリクロロフルオロメタン(CCl3F)の
成層圏オゾン破壊能力を1としたときの成層圏オゾン破
壊能力、以下ODPと記す)が0.05と微少であり、
特定フロンではないものの将来的に使用量の増大が予想
され、冷凍・空調機器が広く普及した現在、R22の使
用量及び生産量の増大が人類の生活環境に与える影響も
大きくなるものと予想されている。従って、成層圏オゾ
ン破壊能力が小であるものの、若干の破壊能力があると
されるR22の代替となる作動流体の早期開発も強く要
望されている。
Problems to be Solved by the Invention However, in recent years, the depletion of the stratospheric ozone layer by CFCs has become a global environmental problem, and the CFCs that have a large ozone depletion ability in the stratosphere (hereinafter referred to as “specific CFCs”) have already been The treaty regulates the amount used and the amount produced, and there is a movement to abolish the use and production of specified CFCs in the future. By the way, R22 has a very small ozone depletion coefficient (stratospheric ozone depletion capacity when the stratospheric ozone depletion capacity of trichlorofluoromethane (CCl 3 F) is 1, hereinafter referred to as ODP), which is as small as 0.05,
Although it is not a specified CFC, its usage is expected to increase in the future, and with the widespread use of refrigeration and air-conditioning equipment, it is expected that the increase in usage and production of R22 will have a large impact on the human living environment. ing. Therefore, there is a strong demand for early development of a working fluid that is a substitute for R22, which has a small ozone depletion ability in the stratosphere but is said to have some depletion ability.

本発明は、上述の問題に鑑みて試されたもので、成層圏
オゾン層に及ぼす影響がほとんどない、R22の代替と
なる作動流体を提供するものである。
The present invention has been tried in view of the above problems, and provides a working fluid that is an alternative to R22 and has almost no effect on the stratospheric ozone layer.

課題を解決するための手段 本発明は上述の課題を解決するため、少なくとも、ジフ
ルオロメタン(CH22)とペンタフルオロエタン(C
2HF5)とテトラフルオロエタン(C224)の三種
のフロン類を含み、ジフルオロエタン0〜略60重量
%、ペンタフルオロエタン0〜略85重量%、テトラフ
ルオロエタン略15〜略80重量%の組成範囲であこと
を特徴とするものであり、特に、ジフルオロメタン0〜
略50重量%、ペンタフルオロエタン0〜略80重量
%、テトラフルオロエタン略20〜略75重量%の組成
範囲が望ましいものである。
Means for Solving the Problems To solve the above problems, the present invention provides at least difluoromethane (CH 2 F 2 ) and pentafluoroethane (C
2 HF 5 ) and tetrafluoroethane (C 2 H 2 F 4 ), three types of CFCs are included, and difluoroethane is 0 to about 60% by weight, pentafluoroethane is 0 to about 85% by weight, and tetrafluoroethane is about 15 to about 80. It is characterized in that the composition range is wt%, and particularly, difluoromethane 0 to
A composition range of about 50% by weight, pentafluoroethane 0 to about 80% by weight, and tetrafluoroethane about 20 to about 75% by weight is desirable.

作用 本発明は、上述の組合せによって、作動流体を、オゾン
破壊能力のほとんどない、分子構造中に塩素を含まない
フロン類であるジフルオロメタン(ODP=0)、ペン
タフルオロエタン(ODP=0)およびテトラフルオロ
エタ(ODP=0)の混合物となすことにより、成層圏
オゾン層に及ぼす影響をR22よりもさらに小さく、ほ
とんどなくすることを可能とするものである。又、本発
明は上述の組成範囲とすることによって、エアコン・冷
凍機等のヒートポンプ装置の利用温度である略0〜略5
0℃においてR22と同程度の蒸気圧を有し、R22の
代替として現行機器で使用可能な作動流体を提供するこ
とを可能とするものである。従って上述の組合せおよび
組成範囲におけるODPも0と予想され、R22の代替
として極めて有望な作動流体となるものである。またか
かる混合物は非共沸混合物となり、凝縮過程および蒸発
過程において温度勾配をもつため、熱源流体との温度差
を近接させたロレンツサイクルを構成することにより、
R22よりも高い成績係数を期待できるものである。
Effect The present invention uses the above-mentioned combination to convert the working fluid into difluoromethane (ODP = 0), pentafluoroethane (ODP = 0), and fluorocarbons that have almost no ozone depleting ability and are fluorocarbons having no chlorine in the molecular structure. By using a mixture of tetrafluoroethane (ODP = 0), the influence on the stratospheric ozone layer is smaller than that of R22, and it is possible to almost eliminate it. Further, according to the present invention, by setting the composition range as described above, the use temperature of a heat pump device such as an air conditioner or a refrigerator is about 0 to about 5.
It has a vapor pressure similar to that of R22 at 0 ° C., and makes it possible to provide a working fluid that can be used in existing equipment as an alternative to R22. Therefore, the ODP in the above-mentioned combination and composition range is also expected to be 0, which is a very promising working fluid as an alternative to R22. Further, since such a mixture becomes a non-azeotropic mixture and has a temperature gradient in the condensation process and the evaporation process, by configuring a Lorenz cycle in which the temperature difference with the heat source fluid is close,
A higher coefficient of performance than R22 can be expected.

また一般に、成層圏オゾン破壊能力があるフロン類は、
そのODPの値の大きさにつれて地球温暖化の効果も大
きい傾向があるが、本発明による作動流体はODPが0
であるフロン類のみの三種以上から成る混合物によって
構成されているため、地球温暖化の効果はR22と同程
度あるいはR22未満と推定され、最近世界的問題とな
っている地球温暖化への寄与を小とすることをも可能と
するものである。
In general, CFCs with ozone depletion potential in the stratosphere are
Although the effect of global warming tends to increase as the value of the ODP increases, the working fluid according to the present invention has an ODP of 0.
It is estimated that the effect of global warming is the same as R22 or less than R22 because it is composed of a mixture of three or more kinds of CFCs. It is also possible to make it small.

実施例 以下、本発明による作動流体の実施例について、図を用
いて説明する。
Example Hereinafter, an example of the working fluid according to the present invention will be described with reference to the drawings.

第1図は、ジフルオロメタン(R32)、ペンタフルオ
ロエタン(R125)、1,1,1,2−テトラフルオ
ロエタン(R134a)の三種のフロン類の混合物によ
って構成される作動流体の、一定温度・一定圧力におけ
る平衡状態を三角座標を用いて示したものである。本三
角座標においては、三角形の各頂点に、上側頂点を基点
として反時計回りに沸点の低い順に単一物質を配置して
おり、座標平面上にある点における各成分の組成比(重
量比)は、点と三角形の各辺との距離の比で表される。
またこのとき、点と三角形の辺との距離は、辺に相対す
る側にある三角座標の頂点に記された物質の組成比に対
応する。第1図において1は、温度0℃・圧力4.04
4kg/cm2Gにおける混合物の気液平衡線であり、
この温度・圧力はR22の飽和状態に相当する。気液平
衡線(R22 0℃相当)1の上側の線は飽和気相線、
気液平衡線(R22 0℃相当)1の下側の線は飽和液
相線を表わし、この両線で挟まれた範囲においては気液
平衡状態となる。また2は、温度50℃・圧力18.7
82kg/cm2Gにおける混合物の気液平衡線であ
り、この温度・圧力もR22の飽和状態に相当する。図
からわかるように、R32、R125及びR134aが
それぞれ0〜略45重量%、0〜略75重量%、略25
〜略80重量%となるような組成範囲は、略0〜略50
℃の利用温度においてR22とほぼ同等の蒸気圧を有す
るため望ましい。さらに、R32、R125及びR13
4aがそれぞれ0〜略35重量%、0〜略65重量%、
略35〜略75重量%となるような組成範囲は、0℃と
50℃の間のすべての利用温度においてR22とほぼ同
等の蒸気圧を有するため特に望ましい。
FIG. 1 shows a constant temperature of a working fluid composed of a mixture of three fluorocarbons of difluoromethane (R32), pentafluoroethane (R125) and 1,1,1,2-tetrafluoroethane (R134a). The equilibrium state at a constant pressure is shown using triangular coordinates. In this triangular coordinate, a single substance is arranged at each vertex of the triangle counterclockwise from the upper vertex in the ascending order of boiling point, and the composition ratio (weight ratio) of each component at the point on the coordinate plane. Is represented by the ratio of the distance between the point and each side of the triangle.
At this time, the distance between the point and the side of the triangle corresponds to the composition ratio of the substance described at the apex of the triangular coordinate on the side opposite to the side. In FIG. 1, 1 indicates a temperature of 0 ° C. and a pressure of 4.04.
Is a vapor-liquid equilibrium line of the mixture at 4 kg / cm 2 G,
This temperature and pressure correspond to the saturated state of R22. The upper line of the vapor-liquid equilibrium line (corresponding to R220 0 ° C) 1 is the saturated vapor phase line,
The lower line of the gas-liquid equilibrium line (corresponding to R220 ° C.) 1 represents the saturated liquidus line, and the gas-liquid equilibrium state is established in the range sandwiched by these lines. Also, 2 is a temperature of 50 ° C and a pressure of 18.7.
It is a vapor-liquid equilibrium line of the mixture at 82 kg / cm 2 G, and this temperature / pressure also corresponds to the saturated state of R22. As can be seen from the figure, R32, R125, and R134a are 0 to approximately 45% by weight, 0 to approximately 75% by weight, and approximately 25%, respectively.
To about 80% by weight, the composition range is about 0 to about 50.
It is desirable because it has a vapor pressure almost equal to that of R22 at a use temperature of ° C. In addition, R32, R125 and R13
4a is 0 to about 35% by weight, 0 to about 65% by weight,
A composition range of about 35 to about 75% by weight is particularly desirable because it has a vapor pressure almost equal to that of R22 at all use temperatures between 0 ° C and 50 ° C.

第1図中の点A1〜点F1における作動流体の組成を第1
表に示す。点A1〜点C1は気液平衡線(R22 50℃
相当)2の飽和気相線上にあると共に、気液平衡線(R
22 0℃相当)1の飽和気相線及び気液平衡線(R2
2 0℃相当)1の飽和液相線の両線で挟まれた範囲に
あることから、温度0℃・圧力4.044kg/cm2
G(R22の飽和状態に相当)においては気液平衡状態
となる。また、点D1〜点F1は気液平衡線(R22 0
℃相当)1の飽和液相線上にあると共に、気液平衡線
(R22 50℃相当)2の飽和気相線及び気液平衡線
(R22 50℃相当)2の飽和液相線の両線で挟まれ
た範囲にあることから、温度 50℃・圧力18.782kg/cm2G(R22の飽
和状態に相当)においては気液平衡状態となる。従っ
て、第1表に示された組成を有する作動流体は、0℃・
50℃におけるR22の飽和蒸気圧の条件下で飽和状態
あるいは気液平衡状態を実現し、略0〜略50℃の利用
温度において、同温度におけるR22の飽和蒸気圧で操
作することにより、R22とほぼ等しい凝縮温度・蒸発
温度を得ることが可能となるものである。
The composition of the working fluid at points A 1 to F 1 in FIG.
Shown in the table. Points A 1 to C 1 are gas-liquid equilibrium lines (R22 50 ° C.
Equivalent) 2 on the saturated vapor phase line and the vapor-liquid equilibrium line (R
Saturated vapor phase line and vapor-liquid equilibrium line (R2
The temperature is 0 ° C and the pressure is 4.044 kg / cm 2 because it is in the range between both saturated liquidus lines of 20 ° C).
At G (corresponding to the saturated state of R22), a gas-liquid equilibrium state is established. Further, points D 1 to F 1 are gas-liquid equilibrium lines (R220
(Equivalent to ℃) on the saturated liquidus line of 1, and the saturated liquidus line of gas-liquid equilibrium line (R22 50 ° C) 2 and the saturated liquidus line of gas-liquid equilibrium line (R22 50 ° C) 2 Since it is in the sandwiched range, the temperature At 50 ° C. and a pressure of 18.782 kg / cm 2 G (corresponding to the saturated state of R22), a gas-liquid equilibrium state is reached. Therefore, the working fluid having the composition shown in Table 1 is 0 ° C.
By realizing a saturated state or a vapor-liquid equilibrium state under the condition of the saturated vapor pressure of R22 at 50 ° C. and operating at the saturated vapor pressure of R22 at the same temperature at a use temperature of approximately 0 to approximately 50 ° C., R22 and It is possible to obtain substantially the same condensation temperature and evaporation temperature.

ここでは、気液平衡線(R22 0℃相当)1あるいは
気液平衡線(R22 50℃相当)2上の点についての
み説明したが、点A1〜点F1の内側にある点、すなわ
ち、温度0℃・圧力4.044kg/cm2G及び温度
50℃・圧力18.782kg/cm2G(両者ともR
22の飽和状態に相当)において気液平衡状態となる組
成を有する作動流体についても同様に操作することによ
り、略0〜略50℃の利用温度においてR22とほぼ等
しい凝縮温度・蒸発温度を得ることが可能となるもので
ある。
Here, only the points on the gas-liquid equilibrium line (corresponding to R22 0 ° C.) 1 or the gas-liquid equilibrium line (R22 at 50 ° C.) 2 are described, but points inside the points A 1 to F 1 , that is, Temperature 0 ° C, pressure 4.044 kg / cm 2 G and temperature 50 ° C, pressure 18.782 kg / cm 2 G (both R
22) (corresponding to the saturated state of 22), a working fluid having a composition in a gas-liquid equilibrium state is similarly operated to obtain a condensation temperature / evaporation temperature almost equal to R22 at a use temperature of about 0 to about 50 ° C. Is possible.

第2図は、R32、R125、1,1,2,2−テトラ
フルオロエタン(R134)の三種のフロン類の混合物
によって構成される作動流体の、一定温度・一定圧力に
おける平衡状態を三角座標を用いて示したものである。
第2図において3は、温度0℃・圧力4.044kg/
cm2Gにおける混合物の気液平衡線であり、また4
は、温度50℃・圧力18.782kg/cm2Gにお
ける混合物の気液平衡線である。この場合には、R3
2、R125及びR134がそれぞれ0〜略60重量
%、0〜略85重量%、略15〜略70重量%となるよ
うな組成範囲が、R22とほぼ同等の蒸気圧を有するた
め望ましく、R32、R125及びR134がそれぞれ
0〜略50重量%、0〜略80重量%、略20〜略65
重量%となるような組成範囲が、特に望ましい。
FIG. 2 shows the equilibrium state of a working fluid composed of a mixture of three fluorocarbons of R32, R125, 1,1,2,2-tetrafluoroethane (R134) at a constant temperature and a constant pressure in triangular coordinates. It is shown by using.
In Fig. 2, 3 indicates temperature 0 ° C and pressure 4.044 kg /
is the vapor-liquid equilibrium line of the mixture at cm 2 G and is 4
Is a vapor-liquid equilibrium line of the mixture at a temperature of 50 ° C. and a pressure of 18.782 kg / cm 2 G. In this case, R3
2, composition ranges such that R125 and R134 are 0 to about 60% by weight, 0 to about 85% by weight, and about 15 to about 70% by weight, respectively, are desirable because they have a vapor pressure almost equal to that of R22. R125 and R134 are 0 to about 50% by weight, 0 to about 80% by weight, and about 20 to about 65%, respectively.
A composition range such as weight% is particularly desirable.

第2図中の点A2〜点F2における作動流体の組成を第2
表に示す。点A2〜点C2は気液平衡線(R22 50℃
相当)4の飽和気相線上に、点D2〜点F2は気液平衡線
(R22 50℃相当)4 の飽和液相線上にあり、共に気液平衡線(R22 0℃
相当)3の飽和気相線及び気液平衡線(R22 0℃相
当)3の飽和液相線の両線で挟まれた範囲にあることか
ら、温度0℃・圧力4.044kg/cm2G(R22
の飽和状態に相当)においては気液平衡状態となる。従
って、第2表に示された組成を有する作動流体は、0℃
・50℃におけるR22の飽和蒸気圧の条件下で飽和状
態あるいは気液平衡状態を実現し、略0〜略50℃の利
用温度において、同温度におけるR22の飽和蒸気圧で
操作することにより、R22とほぼ等しい凝縮温度・蒸
発温度を得ることが可能となるものである。
The composition of the working fluid at points A 2 to F 2 in FIG.
Shown in the table. Points A 2 to C 2 are gas-liquid equilibrium lines (R22 50 ° C.
On the saturated vapor phase line 4), points D 2 to F 2 are gas-liquid equilibrium lines (R22 50 ° C equivalent) 4 On the saturated liquidus line of the
(Equivalent) 3 saturated vapor phase line and vapor-liquid equilibrium line (equivalent to R22 0 ° C) 3 saturated liquidus line, the temperature is 0 ° C and the pressure is 4.044 kg / cm 2 G. (R22
(Corresponding to the saturated state of), it becomes a vapor-liquid equilibrium state. Therefore, the working fluid having the composition shown in Table 2 is 0 ° C.
A saturated state or a vapor-liquid equilibrium state is realized under the condition of the saturated vapor pressure of R22 at 50 ° C., and the saturated vapor pressure of R22 at the same temperature is used at the operating temperature of approximately 0 to approximately 50 ° C. It is possible to obtain a condensation temperature and an evaporation temperature almost equal to.

ここでは、気液平衡線(R22 50℃相当)4上の点
についてのみ説明したが、点A2〜点F2の内側にある
点、すなわち、温度0℃・圧力4.044kg/cm2
G及び温度50℃・圧力18.782kg/cm2
(両者ともR22の飽和状態に相当)において気液平衡
状態となる組成を有する作動流体についても同様に操作
することにより、略0〜略50℃の利用温度においてR
22とほぼ等しい凝縮温度・蒸発温度を得ることが可能
となるものである。
Although only the point on the gas-liquid equilibrium line (R22 50 ° C equivalent) 4 is described here, a point inside the points A 2 to F 2 , that is, a temperature of 0 ° C and a pressure of 4.044 kg / cm 2.
G and temperature 50 ° C, pressure 18.782 kg / cm 2 G
By similarly operating a working fluid having a composition in a gas-liquid equilibrium state (both correspond to the saturated state of R22), R at a use temperature of approximately 0 to approximately 50 ° C.
It is possible to obtain a condensation temperature / evaporation temperature almost equal to 22.

以上の実施例においては作動流体は三種のフロン類の混
合物によって構成されているが、構造異性体を含めて四
種以上のフロンの混合物によって作動流体を構成するこ
とも勿論可能であり、この場合、ジフルオロメタン0〜
略60重量%、ペンタフルオロエタン0〜略85重量
%、テトラフルオロエタン略15〜略80重量%となる
ような組成範囲は、略0〜略50℃の利用温度において
R22とほぼ同等の蒸気圧を有するため望ましい。さら
に、ジフルオロメタン0〜略50重量%、ペンタフルオ
ロエタン0〜略80重量%、テトラフルオロエタン略2
0〜略75重量%となるような組成範囲は、0℃と50
℃の間のすべての利用温度においてR22とほぼ同等の
蒸気圧を有するため特に望ましい。特に上述の組合せお
よび組成範囲におけるODPも0と予想され、R22の
代替として極めて有望な作動流体となるものである。ま
たかかる混合物は非共沸混合物となり、凝縮過程および
蒸発過程において温度勾配をもつため、熱源流体との温
度差を近接させたロレンツサイクルを構成することによ
り、R22よりも高い成績係数を期待できるものであ
る。
In the above examples, the working fluid is composed of a mixture of three types of freons, but it is of course possible to form the working fluid by a mixture of four or more types of freon including structural isomers. , Difluoromethane 0
The composition range of about 60% by weight, pentafluoroethane 0 to about 85% by weight, and tetrafluoroethane about 15 to about 80% by weight has a vapor pressure almost equal to that of R22 at a use temperature of about 0 to about 50 ° C. Desirable because it has Furthermore, difluoromethane 0 to approximately 50% by weight, pentafluoroethane 0 to approximately 80% by weight, tetrafluoroethane approximately 2
The composition range of 0 to about 75% by weight is 0 ° C and 50%.
It is particularly desirable because it has a vapor pressure almost equal to R22 at all utilization temperatures between ° C. In particular, the ODP in the above-mentioned combination and composition range is also expected to be 0, which is a very promising working fluid as a substitute for R22. Further, since such a mixture becomes a non-azeotropic mixture and has a temperature gradient in the condensation process and the evaporation process, a coefficient of performance higher than that of R22 can be expected by constructing a Lorentz cycle in which the temperature difference with the heat source fluid is close. Is.

発明の効果 以上の説明から明らかなように、本発明は、作動流体
を、分子構造中に塩素を含まないフロン類のみの三種以
上から成る混合物となし、その組成範囲を特定したこと
により、 (1)成層圏オゾン層に及ぼす影響をR22よりもさら
に小さく、ほとんどなしとする作動流体の選択の幅を拡
大することが可能である。
EFFECTS OF THE INVENTION As is clear from the above description, the present invention provides a working fluid as a mixture of three or more kinds of only CFCs containing no chlorine in the molecular structure, and by specifying the composition range thereof, 1) The influence on the stratospheric ozone layer is smaller than that of R22, and it is possible to expand the range of selection of the working fluid with almost no effect.

(2)機器の利用温度においてR22と同程度の蒸気圧
を有し、R22の代替として現行機器で使用可能であ
る。
(2) It has a vapor pressure similar to that of R22 at the operating temperature of the equipment, and can be used in existing equipment as an alternative to R22.

(3)非共沸混合物の温度勾配の性質を利用して、R2
2よりも高い成績係数を期待できる等の効果を有するも
のである。
(3) Utilizing the property of the temperature gradient of the non-azeotropic mixture, R2
It has the effect of expecting a coefficient of performance higher than 2.

【図面の簡単な説明】[Brief description of drawings]

第1図〜第2図は、三種のフロン類の混合物によって構
成される作動流体の、一定温度・一定圧力における平衡
状態を三角座標を用いて示した図である。 1、3……気液平衡線(R22 0℃相当)、 2、4……気液平衡線(R22 50℃相当)。
1 and 2 are diagrams showing, using triangular coordinates, an equilibrium state of a working fluid composed of a mixture of three types of freons at a constant temperature and a constant pressure. 1, 3 ... gas-liquid equilibrium line (R22 equivalent to 0 ° C), 2, 4 ... gas-liquid equilibrium line (R22 equivalent to 50 ° C).

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】ジフルオロメタン60重量%以下、ペンタ
フルオロエタン85重量%以下、テトラフルオロエタン
15〜80重量%以下の少なくとも三種のフロン類を含
む作動流体。
1. A working fluid containing at least three types of CFCs in an amount of 60% by weight or less of difluoromethane, 85% by weight or less of pentafluoroethane, and 15 to 80% by weight or less of tetrafluoroethane.
【請求項2】ジフルオロメタン50重量%以下、ペンタ
フルオロエタン80重量%以下、テトラフルオロエタン
20〜75重量%以下であることを特徴とする作動流
体。
2. A working fluid comprising difluoromethane of 50% by weight or less, pentafluoroethane of 80% by weight or less, and tetrafluoroethane of 20 to 75% by weight or less.
JP1311154A 1989-11-30 1989-11-30 Working fluid Expired - Lifetime JPH0655942B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP1311154A JPH0655942B2 (en) 1989-11-30 1989-11-30 Working fluid
DE69011632T DE69011632T2 (en) 1989-11-30 1990-11-27 Work equipment.
SG1995903605A SG28336G (en) 1989-11-30 1990-11-27 Working fluid
EP90122652A EP0430169B1 (en) 1989-11-30 1990-11-27 Working fluid
KR1019900019596A KR930010516B1 (en) 1989-11-30 1990-11-30 Working fluid
US07/832,649 US5370811A (en) 1989-11-30 1992-02-11 Working fluid containing tetrafluoroethane
US08/305,320 US5438849A (en) 1989-11-30 1994-09-15 Air conditioner and heat pump with tetra fluoroethane-containing working fluid
HK42495A HK42495A (en) 1989-11-30 1995-03-23 Working fluid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1311154A JPH0655942B2 (en) 1989-11-30 1989-11-30 Working fluid

Publications (2)

Publication Number Publication Date
JPH03170585A JPH03170585A (en) 1991-07-24
JPH0655942B2 true JPH0655942B2 (en) 1994-07-27

Family

ID=18013755

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1311154A Expired - Lifetime JPH0655942B2 (en) 1989-11-30 1989-11-30 Working fluid

Country Status (1)

Country Link
JP (1) JPH0655942B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998030651A1 (en) * 1997-01-13 1998-07-16 Daikin Industries, Ltd. Method for filling mixed refrigerant

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1029625C (en) * 1990-12-17 1995-08-30 纳幕尔杜邦公司 Constant boiling compositions of fluorinated hydrocarbons
US5290466A (en) * 1991-10-31 1994-03-01 E. I. Du Pont De Nemours And Company Compositions of difluoromethane and tetrafluoroethane
TW322527B (en) 1994-09-16 1997-12-11 Sanyo Electric Co
JPH10259898A (en) * 1997-01-14 1998-09-29 Daikin Ind Ltd Method for transferring and filling liquefied gas
KR100340275B1 (en) 1999-11-02 2002-06-12 박호군 Refrigerant Mixtures Containing Difluoromethane (HFC-32), Pentafluoroethane (HFC-125) and 1,1,1,2-tetrafluoroethane (HFC-134a)
KR100405189B1 (en) 2001-02-16 2003-11-12 한국과학기술연구원 A composition of Refrigerant Mixtures
US6841087B2 (en) 2002-04-19 2005-01-11 Korea Institute Of Science And Technology Refrigerant composition comprising difluoromethane, 1,1,1-trifluoroethane and 1,1,1,2-tetrafluoroethane
US6776922B2 (en) 2002-07-24 2004-08-17 Korea Institute Of Science And Technology Refrigerant composition comprising difluoromethane, 1,1,1-trifluoroethane and 1,1-difluoroethane
US6800216B2 (en) 2002-07-24 2004-10-05 Korea Institute Of Science And Technology Refrigerant composition for replacing chlorodifluoromethane
US8444873B2 (en) 2009-06-12 2013-05-21 Solvay Fluor Gmbh Refrigerant composition
JP2011084652A (en) * 2009-10-15 2011-04-28 Honeywell Internatl Inc Refrigerant composition and use thereof in low-temperature refrigeration system
WO2015083834A1 (en) * 2013-12-06 2015-06-11 ダイキン工業株式会社 Composition including difluoromethane (hfc-32), pentafluoroethane (hfc-125), and 1,1,1,2-tetrafluoroethane (hfc-134a)
JP6841066B2 (en) * 2017-02-03 2021-03-10 ダイキン工業株式会社 A method of using a mixture of fluorinated hydrocarbons as a refrigerant, and a refrigerating device using the mixture as a refrigerant.
JP6504298B2 (en) * 2017-04-21 2019-04-24 ダイキン工業株式会社 Composition containing refrigerant and application thereof
JP2017197767A (en) * 2017-06-14 2017-11-02 ハネウェル・インターナショナル・インコーポレーテッドHoneywell International Inc. Refrigerant composition and use thereof in low-temperature refrigeration system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998030651A1 (en) * 1997-01-13 1998-07-16 Daikin Industries, Ltd. Method for filling mixed refrigerant

Also Published As

Publication number Publication date
JPH03170585A (en) 1991-07-24

Similar Documents

Publication Publication Date Title
JP2568774B2 (en) Working fluid
JPH0655942B2 (en) Working fluid
JP2580350B2 (en) Working fluid
JP2548411B2 (en) Working fluid
JP2579002B2 (en) Working fluid
JP2580349B2 (en) Working fluid
JP2579001B2 (en) Working fluid
JP2532695B2 (en) Working fluid
JP2532697B2 (en) Working fluid
JP2548412B2 (en) Working fluid
JP2568775B2 (en) Working fluid
JPH0665561A (en) Working fluid
JPH0655943B2 (en) Working fluid
JP2532696B2 (en) Working fluid
JP2532736B2 (en) Working fluid
JP2579000B2 (en) Working fluid
JPH03170593A (en) Working fluid
JPH0517753A (en) Working fluid
JPH0517755A (en) Working fluid
JPH0517747A (en) Working fluid
JPH0517746A (en) Working fluid
JPH0517750A (en) Working fluid
JPH05117649A (en) Working fluid
JPH0517743A (en) Working fluid
JPH05117648A (en) Working fluid

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070727

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080727

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090727

Year of fee payment: 15

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090727

Year of fee payment: 15

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100727

Year of fee payment: 16

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100727

Year of fee payment: 16