JPH03168288A - Working fluid - Google Patents

Working fluid

Info

Publication number
JPH03168288A
JPH03168288A JP1309670A JP30967089A JPH03168288A JP H03168288 A JPH03168288 A JP H03168288A JP 1309670 A JP1309670 A JP 1309670A JP 30967089 A JP30967089 A JP 30967089A JP H03168288 A JPH03168288 A JP H03168288A
Authority
JP
Japan
Prior art keywords
working fluid
vapor
temperature
weight
line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1309670A
Other languages
Japanese (ja)
Inventor
Koji Arita
浩二 有田
Takeshi Tomizawa
猛 富澤
Yuji Yoshida
雄二 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1309670A priority Critical patent/JPH03168288A/en
Priority to EP90122527A priority patent/EP0430130B1/en
Priority to DE69010849T priority patent/DE69010849T2/en
Priority to US07/618,962 priority patent/US5059338A/en
Priority to KR1019900019502A priority patent/KR930009250B1/en
Publication of JPH03168288A publication Critical patent/JPH03168288A/en
Pending legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE:To provide a working fluid reduced in the affection thereof on the ozone layer of the stratosphere and employed as a substitute of dichlorodifluoromethane (R12) by containing trifluoromethane, chlorodifluoromethane and tetrafluoroethane in a specific ratio. CONSTITUTION:The objective working fluid contains at least three kinds of freons comprising (A) <=25wt.% (preferably <=15wt.%) of trifluoromethane (R23), (B) <=45wt.% (preferably <=35wt.%) of chlorodifluoromethane (R22) and (C) 55-95wt.% (preferably 65-95wt.%) of 1,1,2,2-tetrafluoroethane (R134). The working fluid is employed in freezers, heat pumps, etc.

Description

【発明の詳細な説明】 産業上の利用分野 本発明1よ 冷凍機・ヒートボンプ等に使用される作動
流体に関すん 従来の技術 従久 冷凍機・ヒートボンプ等において{よ 作動流体
としてフロン類(以下R○○またはR○○○と記す)と
呼ばれるノ\ロゲン化炭化水素が知られており、利用温
度としては凝縮温度および/または蒸発温度が0〜50
℃の範囲において通常使用されも 中でもジクロロジフ
ルオロメタン(CCleF2、R12)は冷蔵凧 カー
エアコンや大型冷凍機等の作動流体として幅広く用いら
れていも 発明が解決しようとする課題 しかしなが転 近年フロンによる成層圏オゾン層破壊が
地球規模の環境問題となっており、戊層圏オゾン破壊能
力が大であるフロン類(以下、特定フロンと記す)につ
いて(よ すでに国際条約によって使用量及び生産量の
規制がなさ札 さらに将来的には特定フロンの使用・生
産を廃止しようという動きがあも さて、R12はオゾ
ン破壊係数(トリクロロフルオロメタン(CCl$F)
の成層圏オゾン破壊能力をlとしたときの戒層圏オゾン
破壊能九 以下ODPと記す)が1.  0の特定フロ
ンであり、冷凍・空調機器が広く普及した現&  R1
2の使用量及び生産量の削減が人類の生活環境に与える
影響は甚だ大きし1 従って、或層圏オゾン破壊能力が
小であり、R12の代替となる作動流体の早期開発が強
く要望されている。
[Detailed Description of the Invention] Industrial Application Field of the Invention 1 Conventional technology related to working fluids used in refrigerators, heat pumps, etc. A halogenated hydrocarbon called R○○ or R○○○ is known, and its usage temperature ranges from 0 to 50% condensation temperature and/or evaporation temperature.
Among them, dichlorodifluoromethane (CCleF2, R12) is widely used as a working fluid in refrigeration kites, car air conditioners, large refrigerators, etc. However, the problem that the invention aims to solve has recently changed due to fluorocarbons. Depletion of the stratospheric ozone layer has become a global environmental problem, and international treaties have already regulated the amount of fluorocarbons used and produced (hereinafter referred to as specified fluorocarbons), which have a large ability to deplete the stratospheric ozone. Furthermore, there is a movement to abolish the use and production of specific CFCs in the future.Now, R12 is the ozone depletion coefficient (trichlorofluoromethane (CCl$F)).
The stratospheric ozone depletion potential (hereinafter referred to as ODP) is 1. 0 specified fluorocarbons, and is now widely used in refrigeration and air conditioning equipment.
Reducing the amount of R12 used and produced will have a tremendous impact on the human living environment.1 Therefore, its ability to deplete stratospheric ozone is small, and there is a strong demand for the early development of a working fluid that can replace R12. There is.

本発明1よ 上述の問題に鑑みて試されたもので、戒層
圏オゾン層に及ぼす影響が小さI,X,Rl2の代替と
なる作動流体を提供するものである。
Invention 1 This invention was tried in view of the above-mentioned problems, and provides a working fluid that has a small influence on the stratospheric ozone layer and can be used as an alternative to I, X, and Rl2.

課題を解決するための手段 本発明は上述の課題を解決するた取 トリフルオロメタ
ン(CHFs)とクロロジフルオロメタン(CHCIF
a)とテトラフルオロエタン(C2H2F4)のフロン
類の少なくとも三種を含へ トリフルオロメタン0〜2
5重量勉 クロロジフルオロメタン0〜45重量勉 テ
トラフルオロエタン55〜95重量%の組或範囲である
ことを特黴とするものであり、特に、 トリフルオロメ
タンO〜l5重量販 クロロジフルオロメタンθ〜35
重i% テトラフルオロエタン65〜95重量%の組戊
範囲が望ましいものであも 作用 本発明(よ 作動流体を、オゾン破壊.能力のほとんど
ない分子構造中に塩素を含まないフロン類であるトリフ
ルオロメタン(O D P = 0 )およびテトラフ
ルオロエタン(O D P = O )と、オゾン破壊
能力の極めて低い分子構造中に塩素・水素を共に含むフ
ロン類であるクロロジフルオロメタン(ODP=0. 
 05)の少なくとも三種の混合物となすことにより、
戒層圏オゾン層に及ぼす影響をRI2よりもはるかに小
さくすることを可能とするものであ氏 又 本発明は上
述の組或範囲とすることによって、冷凍機・ヒートボン
ブ等の利用温度であるO〜50℃においてR12と同程
度の蒸気圧を有L,,R12の代替として現行機器で使
用可能な作動流体を提供することを可能とするものであ
も 特に上述の組合せおよび組或範囲におけるODPは
O−0.02となり、R12の代替として極めて有望な
作動流体となるものである。
Means for Solving the Problems The present invention is an attempt to solve the above-mentioned problems.
a) and at least three types of fluorocarbons, including tetrafluoroethane (C2H2F4), trifluoromethane 0 to 2
5% by weight Chlorodifluoromethane 0 to 45% by weight Tetrafluoroethane is characterized by a composition range of 55 to 95% by weight, especially trifluoromethane 0 to 15% by weight Chlorodifluoromethane θ to 35% by weight
Although a composition range of 65% to 95% by weight of tetrafluoroethane is desirable, it is possible to use the working fluid of the present invention with trifluorofluorocarbons, which are fluorocarbons that do not contain chlorine in their molecular structure and have little ability to deplete ozone. lomethane (O D P = 0) and tetrafluoroethane (O D P = O), and chlorodifluoromethane (ODP = 0.
By forming a mixture of at least three of 05),
It is possible to make the influence on the stratospheric ozone layer much smaller than that of RI2.The present invention also reduces the operating temperature of refrigerators, heat bombs, etc. by using the above-mentioned range. It is possible to provide a working fluid that has a vapor pressure similar to that of R12 at ~50°C and can be used in current equipment as an alternative to R12, especially ODP in the above combinations and ranges. is O-0.02, making it an extremely promising working fluid as an alternative to R12.

また かかる混合物は非共沸混合物となり、凝縮過程お
よび蒸発過程において温度勾配をもった取熱源流体との
温度差を近接させたロレンツサイクルを構或することに
より、R12よりも高いt績係数を期待できるものであ
も 本発明は特に トリフルオロメタンを含む三種以上のフ
ロン類から或る混合物であも トリフルオロメタンζよ
 臨界温度が低<(25.7℃)、蒸気圧が高いために
 単独では利用温度がO〜50℃の冷凍機・ヒートボン
プ等には使用できなu%本発明においては トリフルオ
ロメタンに 使用実績の高いフロン類であるクロロジフ
ルオロメタンと、RI2よりも蒸気圧が低(ODPの小
さい第3のフロン類を混合することによって、混合物の
蒸気圧をほぼR12と同等となし かつODPの小さい
作動流体を得ることを可能とするものであも 実施例 以下、本発明による作動流体の実施例について、図を用
いて説明すも 第1図ζよ トリフルオ口メタン(R23)、クロロジ
フルオロメタン(R22)、 1,  l,  2.2
−テトラフルオロエタン(R134)の三種のフロン類
の混合物によって構或される作動流体α一定温度・一定
圧力における平衡状態を三角座標を用いて示したもので
あん 本三角座標においてU  三角形の各頂点に 上
側頂点を基点として反時計回りに沸点の低い順に単一物
質を配置しており、座標平面上のある点における各戒分
の組或比(重量比)ζ上 点と三角形の各辺との距離の
比で表されも またこのとき、点と三角形の辺との距離
{上 辺に相対する側にある三角座標の頂点に記された
物質の組成比に対応すん 第1図においてl(よ 温度
O℃・圧力2.  1 1 6 kg/cm2Gにおけ
る混合物の気液平衡線であり、この温度・圧力はR12
の飽和状態に相当すん 気液平衡線(R12  0℃相
当)lの上側の線は飽和気相亀気液平衡線(Rl2  
0℃相当)lの下側の線は飽和液相線を表わし この画
線で挟まれた範囲においては気液平衡状態となも また
2(よ 温度50℃・圧力11.  373kg/cm
gGにおける混合物の気液平衡線であり、この温度・圧
力もRl2の飽和状態に相当す4  R23を単独で使
用すると、 50℃においては臨界温度を超えてしまう
ものQ かかる混合物となすことによって飽和状態が存
在ヒ 利用温度がO〜50℃の冷凍機・ヒートポンプ等
に使用することが可能となるものであん 図からわかる
ように R23、R22及びR134がそれぞれO〜2
5重量% 0〜45重量%,  55〜95重量%とな
るような組或範囲(上0〜50℃の利用温度においてR
12とほぼ同等の蒸気圧を有するため望ましL〜 さら
l’=R23、R22及びRl34がそれぞれO〜15
重量払0〜35重量米 65〜95重量%となるような
組戊′#.囲!.t,  O℃と50℃の間のすべての
利用温度においてR12とほぼ同等の蒸気圧を有するた
め特に望ましし1 特に上述の組合せおよび組或範囲に
おけるODPは0〜0. 02と予想さhRi2の代替
として極めて有望な作動流体となるものであも 第1図中の点A1〜点F1における作動流体の組或及び
ODPを第1表に示す。点A1〜点Ctは気液平衡線(
R12  50℃相当)2の飽和気相線上&ζ 点Fl
は気液平衡線(Rl2  50℃相当)2の飽和液線上
にあると共に 気液平衡線第l表 (R120℃相当)1の飽和気相線及び気液平衡線(R
12  0℃相当)lの飽和液相線の画線で挟まれた範
囲にあることか板 温度0℃・圧力2.  1 1 6
kg/cm”G (Rl 2の飽和状態に相当)におい
ては気液平衡状態となも また 点DI及び点E1は気
液平衡線(R12  0℃相当)1の飽和液線上にある
と共に 気液平衡線(Rl2 50℃相当)2の飽和気
相線及び気液平衡線(Rl2  50℃相当)2の飽和
液相線の画線で挟まれた範囲にあることか保 温度50
℃・圧力11.  373kg/cm”G(R12の飽
和状態に相当)においては気液平衡状態となん 従って
、第1表に示された組或を有する作動流体(上 0℃・
50℃におけるR12の飽和蒸気圧の条件下で飽和状態
あるいは気液平衡状態を実現l−0〜50℃の利用温度
において、同温度におけるR12の飽和蒸気圧で操作す
ることにより、R12とほぼ等しい凝縮温度・蒸発温度
を得ることが可能となるものであも ここでは 気液平衡線(R120℃相当)lあるいは気
液平衡線(R12  50℃相当)2上の点についての
み説明した力支 点A1〜点F1の内側にある成 すな
わ執 温度O℃・圧力2.  116kg/cm”G及
び温度50℃・圧力11.373kg/cm”G(両者
ともR12の飽和状態に相当)において気液平衡状態と
なる組戊を有する作動流体についても同様に操作するこ
とにより、0〜50℃の利用温度においてRl2とほぼ
等しい凝縮温度・蒸発温度を得ることが可能となるもの
である。
In addition, such a mixture becomes a non-azeotropic mixture, and a higher performance coefficient than R12 is expected by constructing a Lorenz cycle in which the temperature difference with the heat extraction source fluid is close to each other with a temperature gradient in the condensation process and evaporation process. Even if it is possible, the present invention is particularly applicable to a mixture of three or more types of fluorocarbons including trifluoromethane. Trifluoromethane ζ has a low critical temperature (25.7°C) and a high vapor pressure, so it cannot be used alone. U% cannot be used in refrigerators, heat pumps, etc. where the temperature ranges from 0 to 50℃. By mixing the third fluorocarbon, it is possible to make the vapor pressure of the mixture almost equivalent to R12 and to obtain a working fluid with a small ODP. An example will be explained using a diagram. Figure 1 ζ Trifluoromethane (R23), chlorodifluoromethane (R22), 1, l, 2.2
- A working fluid composed of a mixture of three types of fluorocarbons, such as tetrafluoroethane (R134) α The equilibrium state at constant temperature and constant pressure is shown using triangular coordinates. In this triangular coordinate, U is each vertex of a triangle. The single substances are arranged counterclockwise from the upper vertex as the base point in descending order of boiling point, and the ratio (weight ratio) of each precept at a certain point on the coordinate plane is given by the point and each side of the triangle. In this case, the distance between the point and the side of the triangle {upper corresponds to the composition ratio of the substance marked at the vertex of the triangular coordinates on the side opposite the side. This is the vapor-liquid equilibrium line of the mixture at a temperature of 0°C and a pressure of 2.1 1 6 kg/cm2G, and this temperature and pressure are R12
The line above the vapor-liquid equilibrium line (R12 corresponds to 0°C) is the saturated vapor phase vapor-liquid equilibrium line (Rl2
The line below 1 (equivalent to 0℃) represents the saturated liquidus line, and the area between these lines is in a state of vapor-liquid equilibrium.
This is the vapor-liquid equilibrium line of the mixture in gG, and this temperature and pressure also correspond to the saturated state of Rl2.4 If R23 is used alone, the critical temperature will be exceeded at 50℃Q.Saturation can be achieved by forming such a mixture. It can be used in refrigerators, heat pumps, etc. whose operating temperature is O to 50℃.As you can see from the figure, R23, R22, and R134 are each O to 2
5% by weight, 0 to 45% by weight, 55 to 95% by weight (upper R at usage temperature of 0 to 50℃)
It is desirable that L~=R23, R22 and Rl34 are each O~15 because they have a vapor pressure almost equal to that of 12.
Weight: 0 to 35 weight % 65 to 95 weight %. Surrounded! .. It is particularly desirable because it has nearly the same vapor pressure as R12 at all operating temperatures between 0°C and 50°C.1 Particularly in the above-mentioned combinations and combinations, ODP in certain ranges is between 0 and 0. Table 1 shows the set of working fluids and ODP at points A1 to F1 in FIG. Points A1 to Ct are the vapor-liquid equilibrium line (
R12 (equivalent to 50℃) 2 on the saturated gas phase line &ζ Point Fl
is on the saturated liquid line of the vapor-liquid equilibrium line (Rl2 equivalent to 50°C) 2, and also on the saturated vapor line and the vapor-liquid equilibrium line (R
12 (equivalent to 0°C) The board must be in the range between the lines of the saturated liquidus line of l. 1 1 6
kg/cm"G (corresponding to the saturated state of Rl 2), there is a vapor-liquid equilibrium state. Also, point DI and point E1 are on the saturated liquid line of the vapor-liquid equilibrium line (R12, equivalent to 0°C) 1, and the gas-liquid Keep the temperature within the range between the saturated vapor line of equilibrium line (Rl2, equivalent to 50°C) 2 and the saturated liquidus line of vapor-liquid equilibrium line (Rl2, equivalent to 50°C) 2.
℃・Pressure 11. At 373 kg/cm''G (corresponding to the saturated state of R12), there is a gas-liquid equilibrium state.
Realizes a saturated state or a vapor-liquid equilibrium state under the condition of R12's saturated vapor pressure at 50°C l- At a usage temperature of 0 to 50°C, by operating at R12's saturated vapor pressure at the same temperature, it is almost equal to R12. Although it is possible to obtain the condensation temperature and evaporation temperature, here we only explain points on the vapor-liquid equilibrium line (R120℃ equivalent) 1 or the vapor-liquid equilibrium line (R12 equivalent to 50℃) 2. The structure inside A1 to point F1 has a temperature of 0°C and a pressure of 2. By performing the same operation for a working fluid that has a composition that is in a vapor-liquid equilibrium state at 116 kg/cm"G and a temperature of 50 ° C. and a pressure of 11.373 kg/cm"G (both correspond to the saturated state of R12), It is possible to obtain condensation and evaporation temperatures that are approximately equal to Rl2 at a usage temperature of 0 to 50°C.

本実施例においては作動流体は三種のフロン類の混合物
によって構戊されている力丈 構造異性体を含めて四種
以上のフロンの混合物によって作動流体を構或すること
も勿論可能であも またかかる混合物は非共沸混合物と
なり、凝縮過程および蒸発過程において温度勾配をもっ
たべ 熱源流体との温度差を近接させたロレンツサイク
ルを構戒することにより、R12よりも高い戒績係数を
期待できるものである。
In this embodiment, the working fluid is composed of a mixture of three types of fluorocarbons.Of course, the working fluid can also be composed of a mixture of four or more types of fluorocarbons, including structural isomers. Such a mixture becomes a non-azeotropic mixture and has a temperature gradient in the condensation process and the evaporation process. By creating a Lorenz cycle in which the temperature difference between the heat source fluid and the heat source fluid is close to each other, a higher performance coefficient than R12 can be expected. It is.

発明の効果 以上の説明から明らかなように 本発明(上トリフルオ
ロメタンを含へ 作動流体を、分子構造中に塩素を含ま
ないフロン類と、分子構造中に塩素・水素を共に含むフ
ロン類の三種以上から威る混合物となし その組戊範囲
を特定したことにより、 (1)戊層圏オゾン層に及ぼす影響をR12よりもはる
かに小さくするためQ 作動流体の選択の幅を拡大する
ことが可能であも (2)トリフルオ口メタン単独では使用できない機器の
利用温度においてR12と同程度の蒸気圧を有L.Rl
2の代替として現行機器で使用可能であも (3)非共沸混合物の温度勾配の性質を利用して、Rl
2よりも高い威績係数を期待できる等の効果を有するも
のであも
Effects of the InventionAs is clear from the above explanation, the present invention (including upper trifluoromethane) uses three types of working fluids: fluorocarbons that do not contain chlorine in their molecular structure, and fluorocarbons that contain both chlorine and hydrogen in their molecular structure. From the above, it is possible to identify which mixtures are effective and by specifying the range of composition. (1) It is possible to expand the range of selection of Q working fluids in order to make the influence on the stratospheric ozone layer much smaller than that of R12. Demo (2) L.Rl has a vapor pressure similar to R12 at the operating temperature of equipment that cannot be used with trifluoromethane alone.
Although it can be used with current equipment as an alternative to (3) Rl
Even if it has an effect such as being able to expect a higher performance coefficient than 2.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図!上 三種のフロン類の混合物によって構威され
る作動流体Q 一定温度・一定圧力における平衡状態を
三角座標を用いて示した図である。 l・・・気液平衡線(Rl20℃相当)、2・・・気液
平衡線(R12  50℃相当)。
Figure 1! Working fluid Q composed of a mixture of three types of fluorocarbons is a diagram showing the equilibrium state at constant temperature and constant pressure using triangular coordinates. 1... Vapor-liquid equilibrium line (R1 equivalent to 20°C), 2... Vapor-liquid equilibrium line (R12 equivalent to 50°C).

Claims (2)

【特許請求の範囲】[Claims] (1)トリフルオロメタン25重量%以下、クロロジフ
ルオロメタン45重量%以下、テトラフルオロエタン5
5〜95重量%以下の少なくとも三種のフロン類を含む
作動流体。
(1) Trifluoromethane 25% by weight or less, chlorodifluoromethane 45% by weight or less, tetrafluoroethane 5
A working fluid containing at least three types of fluorocarbons in an amount of 5 to 95% by weight.
(2)トリフルオロメタン15重量%以下、クロロジフ
ルオロメタン35重量%以下、テトラフルオロエタン6
5〜95重量%以下の少なくとも三種のフロン類を含む
作動流体。
(2) Trifluoromethane 15% by weight or less, chlorodifluoromethane 35% by weight or less, tetrafluoroethane 6
A working fluid containing at least three types of fluorocarbons in an amount of 5 to 95% by weight.
JP1309670A 1989-11-29 1989-11-29 Working fluid Pending JPH03168288A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP1309670A JPH03168288A (en) 1989-11-29 1989-11-29 Working fluid
EP90122527A EP0430130B1 (en) 1989-11-29 1990-11-26 Working fluid
DE69010849T DE69010849T2 (en) 1989-11-29 1990-11-26 Working fluid.
US07/618,962 US5059338A (en) 1989-11-29 1990-11-28 Working fluid
KR1019900019502A KR930009250B1 (en) 1989-11-29 1990-11-29 Working fluid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1309670A JPH03168288A (en) 1989-11-29 1989-11-29 Working fluid

Publications (1)

Publication Number Publication Date
JPH03168288A true JPH03168288A (en) 1991-07-22

Family

ID=17995859

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1309670A Pending JPH03168288A (en) 1989-11-29 1989-11-29 Working fluid

Country Status (1)

Country Link
JP (1) JPH03168288A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995005429A1 (en) * 1993-08-14 1995-02-23 Solvay Fluor Und Derivate Gmbh Cryogenic refrigerant compositions and their use

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995005429A1 (en) * 1993-08-14 1995-02-23 Solvay Fluor Und Derivate Gmbh Cryogenic refrigerant compositions and their use

Similar Documents

Publication Publication Date Title
JPH03170594A (en) Working fluid
JP2548411B2 (en) Working fluid
JPH03170591A (en) Working fluid
JPH03168288A (en) Working fluid
JPH05117645A (en) Working fluid
JPH03170586A (en) Working fluid
JPH03170584A (en) Working fluid
JPH03172386A (en) Working fluid
JPH03172384A (en) Working fluid
JPH03170593A (en) Working fluid
JPH03168284A (en) Working fluid
JPH03168262A (en) Working fluid
JPH03170592A (en) Working fluid
JPH03168283A (en) Working fluid
JPH0517750A (en) Working fluid
JPH0517746A (en) Working fluid
JPH03168278A (en) Working fluid
JPH03168272A (en) Working fluid
JPH0517755A (en) Working fluid
JPH03168287A (en) Working fluid
JPH03168282A (en) Working fluid
JPH03168277A (en) Working fluid
JPH0517753A (en) Working fluid
JPH05117649A (en) Working fluid
JPH03168269A (en) Working fluid