JPH03172384A - Working fluid - Google Patents

Working fluid

Info

Publication number
JPH03172384A
JPH03172384A JP1311166A JP31116689A JPH03172384A JP H03172384 A JPH03172384 A JP H03172384A JP 1311166 A JP1311166 A JP 1311166A JP 31116689 A JP31116689 A JP 31116689A JP H03172384 A JPH03172384 A JP H03172384A
Authority
JP
Japan
Prior art keywords
working fluid
approximately
weight
temperature
vapor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1311166A
Other languages
Japanese (ja)
Other versions
JP2532697B2 (en
Inventor
Yuji Yoshida
雄二 吉田
Shozo Funakura
正三 船倉
Koji Arita
浩二 有田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1311166A priority Critical patent/JP2532697B2/en
Priority to DE1990603790 priority patent/DE69003790T2/en
Priority to EP19900122654 priority patent/EP0430171B1/en
Priority to KR1019900019595A priority patent/KR930010515B1/en
Publication of JPH03172384A publication Critical patent/JPH03172384A/en
Priority to US08/125,146 priority patent/US5433879A/en
Application granted granted Critical
Publication of JP2532697B2 publication Critical patent/JP2532697B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a working fluid, containing trifluoromethane, difluoromethane and difluoroethane at a specific ratio with hardly any influence on the stratospheric ozonosphere and substitutive for chlorodifluoromethane (R22). CONSTITUTION:The objective working fluid containing at least three kinds of fluorocarbons of (A) <=50wt.% (preferably <=40wt.%) trifluoromethane (R23), (B) <=60wt.% (preferably <=50wt.%) difluoromethane (R32) and (C) 40-90wt.% (preferably 50-85wt.%) 1,1-difluoroethane (R152a). The aforementioned working fluid is used for heat pump devices of air conditioners, refrigerators, etc.

Description

【発明の詳細な説明】 産業上の利用分野 本発明(友 エアコン・冷凍機等のヒートポンプ装置に
使用される作動流体に関すa 従来の技術 従来 エアコン・冷凍機等のヒートポンプ装置において
は 作動流体としてフロン類(以下RO○またはR○○
○と記す)と呼ばれるハロゲン化炭化水素が知られてお
り、利用温度としては凝縮温度および/または蒸発温度
が略O〜略50℃の範囲において通常使用されも 中で
もクロロジフルオロメタン(CHCI F2、R22)
は家庭用エアコン、ビル用エアコンや大型冷凍機等の作
動流体として幅広く用いられていも 発明が解決しようとする課題 しかしなか収 近年フロンによる成層圏オゾン層破壊が
地球規模の環境問題となっており、成層圏オゾン破壊能
力が大であるフロン類(以下、特定フロンと記す)につ
いて番ヨ  すでに国際条約によって使用量及び生産量
の規制がなされ さらに将来的には特定フロンの使用・
生産を廃止しようという動きがあも さて、R22はオ
ゾン破壊係数(トリクロロフルオロメタン(CCIsF
)の成層圏オゾン破壊能力を1としたときの成層圏オゾ
ン破壊能力 以下ODPと記す)が0.05と微少であ
り、特定フロンではないものの将来的に使用量の増大が
予想され 冷凍・空調機器が広く普及した現&R22の
使用量及び生産量の増大が人類の生活環境に与える影響
も大きくなるものと予想されていも 従って、成層圏オ
ゾン破壊能力が小であるものへ 若干の破壊能力がある
とされるR22の代替となる作動流体の早期開発も強く
要望されていも 本発明1よ 上述の問題に鑑みて試されたものて成層圏
オゾン層に及ぼす影響がほとんどな(\ R22の代替
となる作動流体を提供するものであも課題を解決するた
めの手段 本発明は上述の課題を解決するた八 少なくとk“ ト
リフルオロメタン(CHFs)とジフルオロメタン(C
HI!F2)とジフルオロエタン(C2HaF2)の三
種のフロン類を含へ トリフルオロメタン0〜略50重
量賊 ジフルオロメタン0〜略60重量鳳 ジフルオロ
エタン略40〜略90重量%の組成範囲であることを特
徴とするものであり、特に トリフルオロメタン0〜略
40重量販 ジフルオロメタン0〜略50重量鳳 ジフ
ルオロエタン略50〜略85重量%の組成範囲が望まし
いものであa 作用 本発明(よ 上述の組合せによって、作動流体を、゛オ
ゾン破壊能力のほとんどな(\ 分子構造中に塩素を含
まないフロン類であるトリフルオロメタン(OD P 
= O)、 ジフルオロメタン(OD P = 0)お
よびジフルオロエタン(ODP=O)の混合物となすこ
とにより、成層圏オゾン層に及ぼす影響をR22よりも
さらに小さく、はとんどなくすることを可能とするもの
であム 又 本発明は上述の組成範囲とすることによっ
て、エアコン・冷凍機等のヒートポンプ装置の利用温度
である略0〜略50℃においてR22と同程度の蒸気圧
を有しR22の代替として現行機器で使用可能な作動流
体を提供することを可能とするものである。従って上述
の組合せおよび組成範囲におけるODPも0と予想さi
l、R22の代替として極めて有望な作動流体となるも
のであも またかかる混合物は非共沸混合物となり、凝
縮過程および蒸発過程において温度勾配をもった八 熱
源流体との温度差を近接させたロレンツサイクルを構成
することにより、R22よりも高い成績係数を期待でき
るものである。
[Detailed Description of the Invention] Industrial Field of Application The present invention relates to a working fluid used in heat pump devices such as air conditioners and refrigerators. Freon (hereinafter referred to as RO○ or R○○
Among them, halogenated hydrocarbons called chlorodifluoromethane (CHCI F2, R22 )
Although it is widely used as a working fluid in home air conditioners, building air conditioners, and large refrigerators, the problem that the invention is trying to solve is only limited. Regarding fluorocarbons (hereinafter referred to as specified fluorocarbons), which have a large ability to deplete stratospheric ozone, the usage and production amounts have already been regulated by international treaties, and furthermore, in the future, the use and production of specified fluorocarbons will be restricted.
Now, there is a movement to abolish production of R22.
The stratospheric ozone depletion capacity (hereinafter referred to as ODP) is as small as 0.05, assuming that the stratospheric ozone depletion capacity of ) is 1, and although it is not a specified CFC, its usage is expected to increase in the future. Although it is expected that the increase in the use and production of the now widely used &R22 will have a greater impact on the living environment of humankind, it is therefore thought that the stratospheric ozone depleting ability is small, but it is said that it has some depleting ability. Although there is a strong demand for the early development of a working fluid to replace R22, none of the fluids that have been tried in view of the above-mentioned problems have a negligible effect on the stratospheric ozone layer. Means for Solving the Problems The present invention solves the above problems by using at least k" trifluoromethanes (CHFs) and difluoromethanes (C
HI! Contains three types of fluorocarbons: F2) and difluoroethane (C2HaF2), trifluoromethane 0 to approximately 50% by weight, difluoromethane 0 to approximately 60% by weight, and difluoroethane approximately 40 to approximately 90% by weight. In particular, a composition range of trifluoromethane 0 to approximately 40% by weight, difluoromethane 0 to approximately 50% by weight, and difluoroethane approximately 50 to approximately 85% by weight is desirable. ,゛Has almost no ozone depletion ability (\Trifluoromethane (ODP), a fluorocarbon that does not contain chlorine in its molecular structure.
= O), difluoromethane (OD P = 0), and difluoroethane (ODP = O), it is possible to make the effect on the stratospheric ozone layer even smaller than R22 and almost eliminate it. Furthermore, by having the above-mentioned composition range, the present invention has a vapor pressure comparable to that of R22 at approximately 0 to approximately 50 degrees Celsius, which is the usage temperature of heat pump devices such as air conditioners and refrigerators, and is an alternative to R22. This makes it possible to provide a working fluid that can be used in current equipment. Therefore, the ODP in the above combination and composition range is expected to be 0.
This mixture is a non-azeotropic mixture and has a temperature gradient in the condensation and evaporation processes. By configuring the cycle, a higher coefficient of performance than R22 can be expected.

また一般ζ−成層圏オゾン破壊能力があるフロン類番友
  そのODPの値の大きさにつれて地球温暖化の効果
も大きい傾向がある力(本発明による作動流体はODP
がOであるフロン類のみの三種以上から成る混合物によ
って構成されているたべ地球温暖化の効果はR22と同
程度あるいはR22未満と推定され 最近世界的問題と
なっている地球温暖化への寄与を小とすることをも可能
とするものであム さて、本発明は特にトリフルオロメタンを含む三種以上
のフロン類から成る混合物であも トリフルオロメタン
は 臨界温度が低く(25,7℃)、蒸気圧が高いため
へ 単独では略O〜略50℃の利用温度のエアコン・冷
凍機等のヒートポンプ装置には使用できない力曳 現在
でも市販されており、かかる混合物とすることによって
実用的なR22の代替となる作動流体を構成することが
可能となるものであも 実施例 以下、本発明による作動流体の実施例について、図を用
いて説明すも 図(上トリフルオロメタン(R23)、 ジフルオロメ
タン(R32)、 1. 1−ジフルオロエタン(Rl
 52 a)の三種のフロン類の混合物によって構成さ
れる作動流体へ 一定温度・一定圧力における平衡状態
を三角座標を用いて示したものであも 本三角座標にお
いては 三角形の各頂点へ 上側頂点を基点として反時
計回りに沸点の低い順に単一物質を配置しており、座標
平面上のある点における各成分の組成比(重量比)(ヨ
  点と三角形の各辺との距離の比で表されも またこ
のとき、点と三角形の辺との距離法 辺に相対する側に
ある三角座標の頂点に記された物質の組成比に対応する
。図において1ζよ 温度0℃・圧力4゜044 k 
g/cm”Gにおける混合物の気液平衡線であり、この
温度・圧力はR22の飽和状態に相当すム 気液平衡線
(R220℃相当)lの上側の線は飽和気相線 気液平
衡線(R220℃相当)■の下側の線は飽和液相線を表
わL この両線で挟まれた範囲においては気液平衡状態
となも また2C表 温度50℃・圧力18.782k
g7cm2Gにおける混合物の気液平衡線であり、この
温度・圧力もR22の飽和状態に相当する。
In addition, general
It is estimated that the effect of global warming is the same as that of R22 or less than that of R22, which is composed of a mixture of three or more types of fluorocarbons in which O is O. The present invention is particularly applicable to mixtures of three or more types of fluorocarbons, including trifluoromethane. Trifluoromethane has a low critical temperature (25.7°C) and a low vapor pressure. Because of the high Examples Below, examples of working fluids according to the present invention will be explained using figures (trifluoromethane (R23), difluoromethane (R32) , 1. 1-difluoroethane (Rl
For the working fluid composed of a mixture of the three types of fluorocarbons in 52 a), the equilibrium state at a constant temperature and constant pressure is shown using triangular coordinates.In this triangular coordinate, the upper vertex is Single substances are arranged counterclockwise as a base point in descending order of boiling point, and the composition ratio (weight ratio) of each component at a certain point on the coordinate plane (Y) is expressed as the ratio of the distance between the point and each side of the triangle. Also, in this case, the distance method between a point and the side of a triangle corresponds to the composition ratio of the substance written at the vertex of the triangular coordinates on the side opposite the side. k
This is the vapor-liquid equilibrium line of the mixture at g/cm"G, and this temperature and pressure correspond to the saturated state of R22. The line above l is the saturated vapor phase line. Vapor-liquid equilibrium line (equivalent to R220℃). The line below the line (R220℃ equivalent) ■ represents the saturated liquidus line L The range between these two lines is in a state of vapor-liquid equilibrium.Table 2C Temperature 50℃, pressure 18.782k
This is the vapor-liquid equilibrium line of the mixture at g7cm2G, and this temperature and pressure also correspond to the saturated state of R22.

R23を単独で使用すると、 50℃においては臨界温
度を超えてしまうものへ かかる混合物となすことによ
って飽和状態が存在し 略O〜略50℃の利用温度のエ
アコン・冷凍機等のヒートポンプ装置に使用することが
可能となるものである。
If R23 is used alone, the temperature will exceed the critical temperature at 50℃, but by forming such a mixture, a saturated state will exist, and it can be used in heat pump equipment such as air conditioners and refrigerators with operating temperatures of approximately 0 to approximately 50℃. It is possible to do so.

図かられかるように R23、R32及びR152aが
それぞれO〜略50重量%、0〜略60重量翅 略40
〜略90重量%となるような組成範囲(友 略0〜略5
0℃の利用温度においてR22とほぼ同等の蒸気圧を有
するため望ましく〜 さらに R23、R32及びR1
52aがそれぞれ0〜略40重量%、 0〜略50重量
瓢 略50〜略85重量%となるような組成範囲1表θ
℃と50℃の間のすべての利用温度においてR22とほ
ぼ同等の蒸気圧を有するため特に望ましb〜製図中点A
1−点F+における作動流体の組成を表に示す。点A1
−点C1は気液平衡線(R2250℃相当)2の飽和気
相線上く 点D1〜点F+は気液平衡線(R2250℃
相当)2の飽和液相線上にあると共番二 気液平衡線(
R220℃相当)lの飽和気相線及び気液平衡線(R2
20℃相当)1の飽和液相線の画線で挟まれた範囲にあ
ることか仮 温度0℃・圧力4.044kg/cm2G
(R22の飽和状態に相当)においては気液平衡状態と
なム 従って、第1表に示された組成を有する作動流体
(10℃・50℃におけるR22の飽和蒸気圧の条件下
で飽和状態あるいは気液平衡状態を実現し 略0〜略5
0℃の利用温度において、同温度におけるR22の飽和
蒸気圧で操作することにより、R22とほぼ等しい凝縮
温度・蒸発温度を得ることが可能となるものである。
As can be seen from the figure, R23, R32 and R152a are each 0 to approximately 50% by weight, and 0 to approximately 60% by weight, approximately 40% by weight.
~ approximately 90% by weight composition range (approximately 0~approximately 5%
It is desirable because it has almost the same vapor pressure as R22 at the usage temperature of 0°C ~ Furthermore, R23, R32 and R1
Composition range 1 Table θ such that 52a is 0 to approximately 40% by weight, 0 to approximately 50% by weight, and approximately 50 to approximately 85% by weight, respectively.
Particularly desirable since it has a vapor pressure almost equivalent to R22 at all operating temperatures between ℃ and 50℃.
1- The composition of the working fluid at point F+ is shown in the table. Point A1
- Point C1 is above the saturated gas phase line of the vapor-liquid equilibrium line (corresponding to R2250°C) 2 Point D1 to point F+ are above the vapor-liquid equilibrium line (R2250°C equivalent)
If it is on the saturated liquidus line of 2 (equivalent), the same number 2 vapor-liquid equilibrium line (
The saturated gas phase line and vapor-liquid equilibrium line (R2 equivalent to 220°C)
Temperature 0℃, pressure 4.044kg/cm2G
(corresponding to the saturated state of R22). Therefore, the working fluid having the composition shown in Table 1 (corresponding to the saturated state of R22 at 10°C and 50°C) is in a vapor-liquid equilibrium state. Achieves a gas-liquid equilibrium state of about 0 to about 5
At a usage temperature of 0° C., by operating at the saturated vapor pressure of R22 at the same temperature, it is possible to obtain condensation and evaporation temperatures almost equal to those of R22.

ここで(上 気液平衡線(R2250℃相当)2上の点
についてのみ説明した力丈 点A1−点F1の内側にあ
る点、すなわ杖 温度0℃・圧力4゜044 k g/
cm2G及び温度50℃・圧力18゜782kg/cm
”G (両者ともR22の飽和状態に相当)において気
液平衡状態となる組成を有する作動流体についても同様
に操作することにより、略O〜略50℃の利用温度にお
いてR22とほぼ等しい凝縮温度・蒸発温度を得ること
が可能となるものである。
Here, only the points on the vapor-liquid equilibrium line (corresponding to R2250°C) 2 are explained.The point inside point A1-point F1, that is, the cane Temperature 0°C, pressure 4°044 kg/
cm2G and temperature 50℃, pressure 18゜782kg/cm
By performing the same operation on a working fluid having a composition that reaches a vapor-liquid equilibrium state at "G" (both correspond to the saturated state of R22), the condensation temperature and This makes it possible to obtain the evaporation temperature.

本実施例においては作動流体は三種のフロン類の混合物
によって構成されている力丈 構造異性体を含めて四種
以上のフロンの混合物によって作動流体を構成すること
も勿論可能であム 特に上述の組合せおよび組成範囲に
おけるODPも0と予想さ札 R22の代替として極め
て有望な作動流体となるものであム またかかる混合物
は非共沸混合物となり、凝縮過程および蒸発過程におい
て温度勾配をもったべ 熱源流体との温度差を近接させ
たロレンツサイクルを構成することにより、R22より
も高い成績係数を期待できるものであム 発明の効果 以上の説明から明らかなように 本発明(上トリフルオ
ロメタンを含へ 作動流体を、分子構造中に塩素を含ま
ないフロン類のみの三種以上から成る混合物となし そ
の組成範囲を特定したことにより、 (1)成層圏オゾン層に及ぼす影響をR22よりもさら
に小さく、はとんどなしとする作動流体の選択の幅を拡
大することが可能であも (2)トリフルオロメタン単独では使用できない機器の
利用温度においてR22と同程度の蒸気圧を有り、R2
2の代替として現行機器で使用可能であ翫 (3)非共沸混合物の温度勾配の性質を利用して、R2
2よりも高い成績係数を期待できる等の効果を有するも
のであa
In this embodiment, the working fluid is composed of a mixture of three types of fluorocarbons.Of course, the working fluid can also be composed of a mixture of four or more types of fluorocarbons, including structural isomers. The ODP is also expected to be 0 in the combination and composition range.It is a very promising working fluid as an alternative to R22.In addition, such a mixture will be a non-azeotropic mixture and will have a temperature gradient in the condensation and evaporation processes.Heat source fluid By configuring a Lorenz cycle with a temperature difference close to that of R22, a higher coefficient of performance than R22 can be expected. By making the fluid a mixture of three or more types of fluorocarbons that do not contain chlorine in their molecular structure, and by specifying the composition range, (1) the impact on the stratospheric ozone layer is even smaller than that of R22; Although it is possible to expand the range of selection of working fluids, (2) trifluoromethane alone cannot be used because it has a vapor pressure comparable to that of R22 at the operating temperature of the equipment;
(3) Utilizing the temperature gradient properties of non-azeotropic mixtures, R2 can be used as an alternative to R2.
It has the effect of being able to expect a higher coefficient of performance than 2.a

【図面の簡単な説明】[Brief explanation of the drawing]

図(友 三種のフロン類の混合物によって構成さ1・・
・気液平衡線(R220℃相当)、 2・・・気液平衡
線(R2250℃相当)。
Figure (Friend) Composed of a mixture of three types of fluorocarbons 1...
- Vapor-liquid equilibrium line (equivalent to R220°C), 2... Vapor-liquid equilibrium line (equivalent to R2250°C).

Claims (2)

【特許請求の範囲】[Claims] (1)トリフルオロメタン50重量%以下、ジフルオロ
メタン60重量%以下、ジフルオロエタン40〜90重
量%以下の少なくとも三種のフロン類を含む作動流体。
(1) A working fluid containing at least three types of fluorocarbons: 50% by weight or less of trifluoromethane, 60% by weight or less of difluoromethane, and 40 to 90% by weight of difluoroethane.
(2)トリフルオロメタン40重量%以下、ジフルオロ
メタン50重量%以下、ジフルオロエタン50〜85重
量%以下であることを特徴とする作動流体。
(2) A working fluid characterized by containing 40% by weight or less of trifluoromethane, 50% by weight or less of difluoromethane, and 50 to 85% by weight of difluoroethane.
JP1311166A 1989-11-30 1989-11-30 Working fluid Expired - Fee Related JP2532697B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP1311166A JP2532697B2 (en) 1989-11-30 1989-11-30 Working fluid
DE1990603790 DE69003790T2 (en) 1989-11-30 1990-11-27 Work equipment.
EP19900122654 EP0430171B1 (en) 1989-11-30 1990-11-27 Working fluid
KR1019900019595A KR930010515B1 (en) 1989-11-30 1990-11-30 Working fluid
US08/125,146 US5433879A (en) 1989-11-30 1993-09-23 Working fluid containing difluoroethane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1311166A JP2532697B2 (en) 1989-11-30 1989-11-30 Working fluid

Publications (2)

Publication Number Publication Date
JPH03172384A true JPH03172384A (en) 1991-07-25
JP2532697B2 JP2532697B2 (en) 1996-09-11

Family

ID=18013888

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1311166A Expired - Fee Related JP2532697B2 (en) 1989-11-30 1989-11-30 Working fluid

Country Status (1)

Country Link
JP (1) JP2532697B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6692653B2 (en) 2001-02-16 2004-02-17 Korea Institute Of Science And Technology Refrigerant composition
US6776922B2 (en) 2002-07-24 2004-08-17 Korea Institute Of Science And Technology Refrigerant composition comprising difluoromethane, 1,1,1-trifluoroethane and 1,1-difluoroethane
US6800216B2 (en) 2002-07-24 2004-10-05 Korea Institute Of Science And Technology Refrigerant composition for replacing chlorodifluoromethane
US6841087B2 (en) 2002-04-19 2005-01-11 Korea Institute Of Science And Technology Refrigerant composition comprising difluoromethane, 1,1,1-trifluoroethane and 1,1,1,2-tetrafluoroethane

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6692653B2 (en) 2001-02-16 2004-02-17 Korea Institute Of Science And Technology Refrigerant composition
US6841087B2 (en) 2002-04-19 2005-01-11 Korea Institute Of Science And Technology Refrigerant composition comprising difluoromethane, 1,1,1-trifluoroethane and 1,1,1,2-tetrafluoroethane
US6776922B2 (en) 2002-07-24 2004-08-17 Korea Institute Of Science And Technology Refrigerant composition comprising difluoromethane, 1,1,1-trifluoroethane and 1,1-difluoroethane
US6800216B2 (en) 2002-07-24 2004-10-05 Korea Institute Of Science And Technology Refrigerant composition for replacing chlorodifluoromethane

Also Published As

Publication number Publication date
JP2532697B2 (en) 1996-09-11

Similar Documents

Publication Publication Date Title
JPH0655942B2 (en) Working fluid
JPH03170594A (en) Working fluid
JPH03170588A (en) Working fluid
JPH03172384A (en) Working fluid
JPH03170591A (en) Working fluid
JPH03172386A (en) Working fluid
JPH03170589A (en) Working fluid
JPH03170586A (en) Working fluid
JPH03170593A (en) Working fluid
JPH03170590A (en) Working fluid
JPH05117645A (en) Working fluid
JPH03170584A (en) Working fluid
JPH03172385A (en) Working fluid
JPH03170592A (en) Working fluid
JPH0517750A (en) Working fluid
JPH0517746A (en) Working fluid
JPH03168278A (en) Working fluid
JPH0517755A (en) Working fluid
JPH03168288A (en) Working fluid
JPH03220285A (en) Working fluid
JPH03168265A (en) Working fluid
JPH05117649A (en) Working fluid
JPH05117647A (en) Working fluid
JPH0517759A (en) Working fluid
JPH03168284A (en) Working fluid

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees