JP2532697B2 - Working fluid - Google Patents

Working fluid

Info

Publication number
JP2532697B2
JP2532697B2 JP1311166A JP31116689A JP2532697B2 JP 2532697 B2 JP2532697 B2 JP 2532697B2 JP 1311166 A JP1311166 A JP 1311166A JP 31116689 A JP31116689 A JP 31116689A JP 2532697 B2 JP2532697 B2 JP 2532697B2
Authority
JP
Japan
Prior art keywords
temperature
working fluid
vapor
pressure
mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1311166A
Other languages
Japanese (ja)
Other versions
JPH03172384A (en
Inventor
雄二 吉田
正三 船倉
浩二 有田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1311166A priority Critical patent/JP2532697B2/en
Priority to DE1990603790 priority patent/DE69003790T2/en
Priority to EP19900122654 priority patent/EP0430171B1/en
Priority to KR1019900019595A priority patent/KR930010515B1/en
Publication of JPH03172384A publication Critical patent/JPH03172384A/en
Priority to US08/125,146 priority patent/US5433879A/en
Application granted granted Critical
Publication of JP2532697B2 publication Critical patent/JP2532697B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、エアコン・冷凍機等のヒートポンプ装置に
使用される作動流体に関する。
Description: TECHNICAL FIELD The present invention relates to a working fluid used for a heat pump device such as an air conditioner and a refrigerator.

従来の技術 従来、エアコン・冷凍機等のヒートポンプ装置におい
ては、作動流体としてフロン類(以下R○○またはR○
○○と記す)と呼ばれるハロゲン化炭化水素が知られて
おり、利用温度としては凝縮温度および/または蒸発温
度が略0〜略50℃の範囲において通常使用される。中で
もクロロジフルオロメタン(CHClF2、R22)は家庭用エ
アコン、ビル用エアコンや大型冷凍機等の作動流体とし
て幅広く用いられている。
2. Description of the Related Art Conventionally, in heat pump devices such as air conditioners and refrigerators, fluorocarbons (hereinafter referred to as ROO or ROO) are used as a working fluid.
Halogenated hydrocarbons referred to as ○) are known, and are usually used when the condensing temperature and / or the evaporating temperature are in the range of about 0 to about 50 ° C. Among them, chlorodifluoromethane (CHClF 2 , R22) is widely used as a working fluid for home air conditioners, building air conditioners, large refrigerators and the like.

発明が解決しようとする課題 しかしながら、近年フロンによる成層圏オゾン層破壊
が地球規模の環境問題となっており、成層圏オゾン破壊
能力が大であるフロン類(以下、特定フロンと記す)に
ついては、すでに国際条約によって使用量及び生産量と
規制がなされ、さらに将来的には特定フロンの使用・生
産を廃止しようという動きがある。さて、R22はオゾン
破壊係数(トリルクロロフルオロメタン(CCl3F)の成
層圏オゾン破壊能力を1としたときの成層圏オゾン破壊
能力、以下ODPと記す)が0.05と微少であり、特定フロ
ンではないものの将来的に使用量の増大が予想され、冷
凍・空調機器が広く普及した現在、R22の使用量及び生
産量の増大が人類の生活環境に与える影響も大きくなる
ものと予想されている。従って、成層圏オゾン破壊能力
が小であるものの、若干の破壊能力があるとされるR22
の代替となる作動流体の早期開発も強く要望されてい
る。
Problems to be Solved by the Invention However, in recent years, the depletion of the stratospheric ozone layer by CFCs has become a global environmental problem, and the CFCs that have a large ozone depletion ability in the stratosphere (hereinafter referred to as “specific CFCs”) have already been The treaty regulates the amount used and the amount produced, and there is a movement to abolish the use and production of specified CFCs in the future. Well, R22 is an ozone depletion potential (tolyl chlorofluoromethane (CCl 3 F) stratospheric ozone depletion potential when the set to 1 stratospheric ozone depletion potential of, hereinafter referred to as ODP) is very small and 0.05, but not the specific CFCs It is expected that the amount of use will increase in the future, and now that the refrigeration and air-conditioning equipment has become widespread, the increase in the amount of use and production of R22 will have a great impact on the human living environment. Therefore, although the stratospheric ozone depletion capacity is small, it is said that it has some destructive capacity.
There is also a strong demand for early development of working fluids that can replace the above.

本発明は、上述の問題に鑑みて試されたもので、成層
圏オゾン層に及ぼす影響がほとんどない、R22の代替と
なる作動流体を提供するものである。
The present invention has been made in view of the above-described problems, and provides a working fluid that has almost no influence on the stratospheric ozone layer and is an alternative to R22.

課題を解決するための手段 本発明は上述の課題を解決するため、少なくとも、ト
リフルオロメタン(CHF3)とジフルオロメタン(CH
2F2)とジフルオロエタン(C2H4F2)の三種のフロン類
を含み、トリフルオロメタン0〜略50重量%、ジフルオ
ロメタン0〜略60重量%、ジフルオロエタン略40〜略90
重量%の組成範囲であることを特徴とするものであり、
特に、トリフルオロメタン0〜略40重量%、ジフルオロ
メタン0〜略50重量%、ジフルオロエタン略50〜略85重
量%の組成範囲が望ましいものである。
Means for Solving the Problems In order to solve the above problems, the present invention provides at least trifluoromethane (CHF 3 ) and difluoromethane (CH
2 F 2 ) and difluoroethane (C 2 H 4 F 2 ) including three types of CFCs, trifluoromethane 0 to about 50% by weight, difluoromethane 0 to about 60% by weight, difluoroethane about 40 to about 90%
Characterized in that the composition range of wt%,
In particular, a composition range of 0 to about 40% by weight of trifluoromethane, 0 to about 50% by weight of difluoromethane, and about 50 to about 85% by weight of difluoroethane is desirable.

作用 本発明は、上述の組合せによって、作動流体を、オゾ
ン破壊能力のほとんどない、分子構造中に塩素を含まな
いフロン類であるトリフルオロメタン(ODP=0)、ジ
フルオロメタン(ODP=0)およびジフルオロエタン(O
DP=0)の混合物となすことにより、成層圏オゾン層に
及ぼす影響をR22よりもさらに小さく、ほとんどなくす
ることを可能とするものである。又、本発明は上述の組
成範囲とすることによって、エアコン・冷凍機等のヒー
トポンプ装置の利用温度である略0〜略50℃においてR2
2と同程度の蒸気圧を有し、R22の代替として現行機器で
使用可能な作動流体を提供することを可能とするもので
ある。従って上述の組合せおよび組成範囲におけるODP
も0と予想され、R22の代替として極めて有望な作動流
体となるものである。またかかる混合物は非共沸混合物
となり、凝縮過程および蒸発過程において温度勾配をも
つため、熱源流体との温度差を近接させたロレンツサイ
クルを構成することにより、R22よりも高い成績係数を
期待できるものである。
Effect The present invention uses the above-mentioned combination to convert the working fluid into fluorocarbons (ODP = 0), difluoromethane (ODP = 0) and difluoroethane, which are CFCs having almost no ozone depletion ability and containing no chlorine in the molecular structure. (O
By making a mixture with DP = 0), the effect on the stratospheric ozone layer is even smaller than that of R22, and it is possible to almost eliminate it. In addition, according to the present invention, by setting the composition range as described above, R2 at a use temperature of a heat pump device such as an air conditioner and a refrigerator is about 0 to about 50 ° C.
It has a vapor pressure similar to that of 2, and makes it possible to provide a working fluid that can be used in current equipment as an alternative to R22. Therefore, ODP in the above-mentioned combination and composition range
Is also expected to be 0, which is a very promising working fluid as a substitute for R22. In addition, since such a mixture becomes a non-azeotropic mixture and has a temperature gradient in the condensation process and the evaporation process, a coefficient of performance higher than that of R22 can be expected by configuring a Lorentz cycle with a temperature difference close to that of the heat source fluid. It is.

また一般に、成層圏オゾン破壊能力があるフロン類
は、そのODPの値の大きさにつれて地球温暖化の効果も
大きい傾向があるが、本発明による作動流体はODPが0
であるフロン類のみの三種以上から成る混合物によって
構成されているため、地球温暖化の効果はR22と同程度
あるいはR22未満と推定され、最近世界的問題となって
いる地球温暖化への寄与を小とすることをも可能とする
ものである。
In general, fluorocarbons capable of depleting stratospheric ozone tend to have a greater effect of global warming as the ODP value increases, but the working fluid according to the present invention has an ODP of 0.
It is estimated that the effect of global warming is the same as R22 or less than R22 because it is composed of a mixture of three or more fluorocarbons. It is also possible to make it small.

さて、本発明は特にトリフルオロメタンを含む三種以
上のフロン類から成る混合物である。トリフルオロメタ
ンは、臨界温度が低く(25.7℃)、蒸気圧が高いため
に、単独では略0〜略50℃の利用温度のエアコン・冷凍
機等のヒートポンプ装置には使用できないが、現在でも
市販されており、かかる混合物とすることによって実用
的なR22の代替となる作動流体を構成することが可能と
なるものである 実施例 以下、本発明による作動流体の実施例について、図を
用いて説明する。
Now, the present invention is a mixture composed of three or more fluorocarbons including trifluoromethane. Since trifluoromethane has a low critical temperature (25.7 ° C) and a high vapor pressure, it cannot be used alone in heat pump devices such as air conditioners and refrigerators with operating temperatures of approximately 0 to approximately 50 ° C, but it is still commercially available. By using such a mixture, it becomes possible to construct a working fluid that is a practical substitute for R22.Examples Hereinafter, examples of the working fluid according to the present invention will be described with reference to the drawings. .

図は、トリフルオロメタン(R23)、ジフルオロメタ
ン(R32)、1,1−ジフルオロエタン(R152a)の三種の
フロン類の混合物によって構成される作動流体の、一定
温度・一定圧力における平衡状態を三角座標を用いて示
したものである。本三角座標においては、三角形の各頂
点に、上側頂点を基点として反時計回りに沸点の低い順
に単一物質を配置しており、座標平面上のある点におけ
る各成分の組成比(重量比)は、点と三角形の各辺との
距離の比で表される。またこのとき、点と三角形の辺と
の距離は、辺に相対する柄にある三角座標の頂点に記さ
れた物質の組成比に対応する。図において1は、温度0
℃・圧力4.044kg/cm2Gにおける混合物の気液平衡線であ
り、この温度・圧力はR22の飽和状態に相当する。気液
平衡線(R22 0℃相当)1の上側の線は飽和気相線、
気液平衡線(R22 0℃相当)1の下側の線は飽和液相
線を表わし、この両線で挟まれた範囲においては気液平
衡状態となる。また2は、温度50℃・圧力18.782kg/cm2
Gにおける混合物の気液平衡線であり、この温度・圧力
もR22に飽和状態に相当する。飽和気相線上の組成物はR
22より高い圧力で気化し、R22と同じ圧力で液化する。
飽和液相線上の組成物はR22と同じ圧力で気化し、R22よ
り低い圧力で液化する。これらの2つの線の間のエリア
にある組成物は、R22より高い圧力で気化し、R22より低
い圧力で液化する。すなわち、50℃の気液平衡線2の間
のエリアにある組成物は、50℃においてはR22より低い
圧力で気相から液相に変化し、R22と同じ圧力では50℃
より高い気相が凝縮して、50℃より低い液相に変化す
る。また、0℃の気液平衡線1の間のエリアにある組成
物は、0℃においてはR22より高い圧力で液相から気相
に変化し、R22と同じ圧力では0℃より低い液相が蒸発
して、0℃より高い気相に変化する。R23を単独で使用
すると、50℃においては臨界温度を超えてしまうもの
の、かかる混合物となすことによって飽和状態が存在
し、略0〜略50℃の利用温度のエアコン・冷凍機等のヒ
ートポンプ装置に使用することが可能となるものであ
る。図からわかるように、R23、R32及びR152aがそれぞ
れ0〜略50重量%、0〜略60重量%、略40〜略90重量%
となるような組成範囲は、略0〜略50℃の利用温度にお
いてR22とほぼ同等の蒸気圧を有するため望ましい。さ
らに、R23、R32及びR152aがそれぞれ0〜略40重量%、
0〜略50重量%、略50〜略85重量%となるような組成範
囲は、0℃と50℃の間のすべての利用温度においてR22
とほぼ同等の蒸気圧を有するため特に望ましい。
The figure shows the equilibrium state of a working fluid composed of a mixture of three fluorocarbons, trifluoromethane (R23), difluoromethane (R32), and 1,1-difluoroethane (R152a), at constant temperature and constant pressure in triangular coordinates. It is shown by using. In the triangular coordinates, a single substance is arranged at each vertex of the triangle in the order of lower boiling point in a counterclockwise direction from the upper vertex as a base point, and the composition ratio (weight ratio) of each component at a certain point on the coordinate plane Is represented by the ratio of the distance between the point and each side of the triangle. In addition, at this time, the distance between the point and the side of the triangle corresponds to the composition ratio of the substance described at the apex of the triangular coordinate in the pattern facing the side. In the figure, 1 is temperature 0
It is the vapor-liquid equilibrium line of the mixture at ℃ and pressure of 4.044 kg / cm 2 G, and this temperature and pressure correspond to the saturated state of R22. The upper line of the gas-liquid equilibrium line (corresponding to R220 0 ° C) 1 is the saturated vapor phase line,
The lower line of the gas-liquid equilibrium line (corresponding to R 220 0 ° C.) 1 represents the saturated liquidus line, and the gas-liquid equilibrium state is established in the range sandwiched by these lines. In addition, 2 is temperature 50 ℃, pressure 18.782kg / cm 2
This is the vapor-liquid equilibrium line for the mixture at G, and this temperature / pressure also corresponds to the saturated state at R22. The composition on the saturated vapor line is R
It vaporizes at a pressure higher than 22, and liquefies at the same pressure as R22.
The composition on the saturated liquidus line vaporizes at the same pressure as R22 and liquefies at a pressure lower than R22. The composition in the area between these two lines vaporizes above R22 and liquefies below R22. That is, the composition in the area between the vapor-liquid equilibrium line 2 of 50 ° C changes from the gas phase to the liquid phase at a pressure lower than R22 at 50 ° C, and at the same pressure as R22, it is 50 ° C.
The higher gas phase condenses into a liquid phase below 50 ° C. The composition in the area between the vapor-liquid equilibrium line 1 at 0 ° C changes from the liquid phase to the vapor phase at a pressure higher than R22 at 0 ° C, and the liquid phase lower than 0 ° C at the same pressure as R22. Evaporate to a gas phase above 0 ° C. When R23 is used alone, the temperature exceeds the critical temperature at 50 ° C, but a saturated state exists by forming such a mixture, and it is used in heat pump devices such as air conditioners and refrigerators at operating temperatures of approximately 0 to approximately 50 ° C. It can be used. As can be seen from the figure, R23, R32, and R152a are 0 to about 50% by weight, 0 to about 60% by weight, and about 40 to about 90% by weight, respectively.
Such a composition range is desirable because it has a vapor pressure almost equal to that of R22 at a use temperature of about 0 to about 50 ° C. Further, R23, R32 and R152a are each 0 to approximately 40% by weight,
The composition range of 0 to about 50% by weight, about 50 to about 85% by weight is R22 at all use temperatures between 0 ° C and 50 ° C.
It is particularly desirable because it has a vapor pressure almost equal to.

図中の点A1〜点F1における作動流体の組成を表に示
す。点A1〜点C1は気液平衡線(R22 50℃相当)2の飽
和気相線上に、点D1〜点F1は気液平衡線(R22 50℃相
当)2の飽和液相線上にあると共に、気液平衡線(R22
0℃相当)1の飽和液相線及び気液平衡線(R22 0
℃相当)1の飽和液相線の両線で挟まれた範囲にあるこ
とから、温度0℃・圧力4.044kg/cm2G(R22の飽和状態
に相当)においては気液平衡状態となる。従って、第1
表に示された組成を有する作動流体は、0℃・50℃にお
けるR22の飽和蒸気圧の条件下で飽和状態あるいは気液
平衡状態を実現し、略0〜略50℃の利用温度において、
同温度におけるR22の飽和蒸気圧で操作することによ
り、R22とほぼ等しい凝縮温度・蒸発温度を得ることが
可能となるものである。
The composition of the working fluid at points A 1 to F 1 in the figure is shown in the table. Points A 1 to C 1 are on the saturated vapor line of vapor-liquid equilibrium line (R22 50 ° C) 2 and points D 1 to F 1 are on the saturated liquidus line of vapor-liquid equilibrium line (R22 50 ° C) 2 And the liquid-vapor equilibrium line (R22
Saturated liquidus line and vapor-liquid equilibrium line (R220
Since it is in the range sandwiched by both saturated liquidus lines (corresponding to ° C) 1, a vapor-liquid equilibrium state is obtained at a temperature of 0 ° C and a pressure of 4.044 kg / cm 2 G (corresponding to the saturated state of R22). Therefore, the first
The working fluid having the composition shown in the table achieves a saturated state or a vapor-liquid equilibrium state under the condition of the saturated vapor pressure of R22 at 0 ° C. and 50 ° C., and at an operating temperature of about 0 to about 50 ° C.,
By operating at the saturated vapor pressure of R22 at the same temperature, it becomes possible to obtain the condensation temperature and evaporation temperature that are almost the same as those of R22.

ここで、気液平衡線(R22 50℃相当)2上の点につ
いてのみ説明したが、点A1〜点F1の内側にある点、すな
わち、温度0℃・圧力4. 044kg/cm2G及び温度50℃・圧力18.782kg/cm2G(両者と
もR22の飽和状態に相当)において気液平衡状態となる
組成を有する作動流体についても同様に操作することに
より、略0〜略50℃の利用温度においてR22とほぼ等し
い凝縮温度・蒸発温度を得ることが可能となるものであ
る。
Here, only the points on the vapor-liquid equilibrium line (corresponding to R22 50 ° C.) 2 are explained, but the points inside the points A 1 to F 1 , that is, temperature 0 ° C. and pressure 4. A working fluid having a composition in a gas-liquid equilibrium state at a temperature of 044 kg / cm 2 G, a temperature of 50 ° C., and a pressure of 18.782 kg / cm 2 G (both of which are equivalent to the saturated state of R22) was operated in the same manner to obtain approximately 0. It is possible to obtain a condensation temperature and an evaporation temperature almost equal to R22 at a usage temperature of about 50 ° C.

本実施例においては作動流体は三種のフロン類の混合
物によって構成されているが、構造異性体を含めて四種
以上のフロンの混合物によって作動流体を構成すること
も勿論可能である。特に上述の組合せおよび組成範囲に
おけるODPも0と予想され、R22の代替として極めて有望
な作動流体となるものである。またかかる混合物は非共
沸混合物となり、凝縮温度および蒸発過程において温度
勾配をもつため、熱源流体との温度差を近接させたロレ
ンツサイクルを構成することにより、R22よりも高い成
績係数を期待できるものである。
In the present embodiment, the working fluid is composed of a mixture of three types of freons, but it is of course possible to form the working fluid by a mixture of four or more types of freon including structural isomers. In particular, the ODP in the above-mentioned combination and composition range is also expected to be 0, and is a very promising working fluid as a substitute for R22. In addition, since such a mixture becomes a non-azeotropic mixture and has a temperature gradient in the condensation temperature and the evaporation process, a coefficient of performance higher than that of R22 can be expected by constructing a Lorentz cycle in which the temperature difference with the heat source fluid is close. Is.

発明の効果 以上の説明から明らかなように、本発明は、トリフル
オロメタンを含み、作動流体を、分子構造中に塩素を含
まないフロン類のみの三種以上から成る混合物となし、
その組成範囲を特定したことにより、 (1)成層圏オゾン層に及ぼす影響をR22よりもさらに
小さく、ほとんどなしとする作動流体の選択の幅を拡大
することが可能である。
EFFECT OF THE INVENTION As is clear from the above description, the present invention comprises trifluoromethane and the working fluid as a mixture composed of three or more types of fluorocarbons alone containing no chlorine in the molecular structure,
By specifying the composition range, (1) the influence on the stratospheric ozone layer is even smaller than that of R22, and it is possible to expand the range of selection of working fluids that have almost no effect.

(2)トリフルオロメタ単独では使用できない機器の利
用温度においてR22と同程度の蒸気圧を有し、R22の代替
として現行機器で使用可能である。
(2) It has a vapor pressure similar to that of R22 at the operating temperature of equipment that cannot be used with trifluorometa alone, and can be used with existing equipment as an alternative to R22.

(3)非共沸混合物の温度勾配の性質を利用して、R22
よりも高い成績係数を期待できる 等の効果を有するものである。
(3) By utilizing the nature of the temperature gradient of the non-azeotropic mixture, R22
It has the effect that a higher coefficient of performance can be expected.

【図面の簡単な説明】[Brief description of drawings]

図は、三種のフロン類の混合物によって構成される作動
流体の、一定温度・一定圧力における平衡状態を三角座
標を用いて示した図である。 1……気液平衡線(R22 0℃相当)、2……気液平衡
線(R22 50℃相当)。
The figure is a diagram showing, using triangular coordinates, the equilibrium state of a working fluid composed of a mixture of three types of CFCs at a constant temperature and a constant pressure. 1 …… Gas-liquid equilibrium line (R22 equivalent to 0 ℃), 2 …… Gas-liquid equilibrium line (R22 equivalent to 50 ℃).

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】トリフルオロメタン、ジフルオロメタンお
よび1,1−ジフルオロエタンの三種のフロン類からな
り、前記トリフルオロメタンを50重量%以下、前記ジフ
ルオロメタンを60重量%以下、前記1,1−ジフルオロエ
タンを40〜90重量%含むことを特徴とする作動流体。
1. A trifluoromethane, difluoromethane, and 1,1-difluoroethane, which are three types of CFCs. The trifluoromethane is 50 wt% or less, the difluoromethane is 60 wt% or less, and the 1,1-difluoroethane is 40 wt% or less. Working fluid characterized by containing ~ 90% by weight.
JP1311166A 1989-11-30 1989-11-30 Working fluid Expired - Fee Related JP2532697B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP1311166A JP2532697B2 (en) 1989-11-30 1989-11-30 Working fluid
DE1990603790 DE69003790T2 (en) 1989-11-30 1990-11-27 Work equipment.
EP19900122654 EP0430171B1 (en) 1989-11-30 1990-11-27 Working fluid
KR1019900019595A KR930010515B1 (en) 1989-11-30 1990-11-30 Working fluid
US08/125,146 US5433879A (en) 1989-11-30 1993-09-23 Working fluid containing difluoroethane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1311166A JP2532697B2 (en) 1989-11-30 1989-11-30 Working fluid

Publications (2)

Publication Number Publication Date
JPH03172384A JPH03172384A (en) 1991-07-25
JP2532697B2 true JP2532697B2 (en) 1996-09-11

Family

ID=18013888

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1311166A Expired - Fee Related JP2532697B2 (en) 1989-11-30 1989-11-30 Working fluid

Country Status (1)

Country Link
JP (1) JP2532697B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100405189B1 (en) 2001-02-16 2003-11-12 한국과학기술연구원 A composition of Refrigerant Mixtures
US6841087B2 (en) 2002-04-19 2005-01-11 Korea Institute Of Science And Technology Refrigerant composition comprising difluoromethane, 1,1,1-trifluoroethane and 1,1,1,2-tetrafluoroethane
US6776922B2 (en) 2002-07-24 2004-08-17 Korea Institute Of Science And Technology Refrigerant composition comprising difluoromethane, 1,1,1-trifluoroethane and 1,1-difluoroethane
US6800216B2 (en) 2002-07-24 2004-10-05 Korea Institute Of Science And Technology Refrigerant composition for replacing chlorodifluoromethane

Also Published As

Publication number Publication date
JPH03172384A (en) 1991-07-25

Similar Documents

Publication Publication Date Title
JP2568774B2 (en) Working fluid
JPH0655942B2 (en) Working fluid
JP2580350B2 (en) Working fluid
JP2548411B2 (en) Working fluid
JP2579002B2 (en) Working fluid
JP2532697B2 (en) Working fluid
JP2532695B2 (en) Working fluid
JP2580349B2 (en) Working fluid
JP2579001B2 (en) Working fluid
JP2548412B2 (en) Working fluid
JP2568775B2 (en) Working fluid
JP2532696B2 (en) Working fluid
JPH0665561A (en) Working fluid
JP2532736B2 (en) Working fluid
JP2579000B2 (en) Working fluid
JPH0655943B2 (en) Working fluid
JPH03170593A (en) Working fluid
JPH0517755A (en) Working fluid
JPH0517747A (en) Working fluid
JPH0517753A (en) Working fluid
JPH0517750A (en) Working fluid
JPH05117649A (en) Working fluid
JPH0517746A (en) Working fluid
JPH05117648A (en) Working fluid
JPH05117647A (en) Working fluid

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees