JP2532696B2 - Working fluid - Google Patents

Working fluid

Info

Publication number
JP2532696B2
JP2532696B2 JP1311156A JP31115689A JP2532696B2 JP 2532696 B2 JP2532696 B2 JP 2532696B2 JP 1311156 A JP1311156 A JP 1311156A JP 31115689 A JP31115689 A JP 31115689A JP 2532696 B2 JP2532696 B2 JP 2532696B2
Authority
JP
Japan
Prior art keywords
temperature
pressure
working fluid
liquid equilibrium
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1311156A
Other languages
Japanese (ja)
Other versions
JPH03170587A (en
Inventor
雄二 吉田
正三 船倉
浩二 有田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1311156A priority Critical patent/JP2532696B2/en
Priority to DE69011287T priority patent/DE69011287T2/en
Priority to EP90122653A priority patent/EP0430170B1/en
Priority to KR1019900019594A priority patent/KR930010514B1/en
Publication of JPH03170587A publication Critical patent/JPH03170587A/en
Priority to US07/839,700 priority patent/US5304319A/en
Application granted granted Critical
Publication of JP2532696B2 publication Critical patent/JP2532696B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、エアコン・冷凍機等のヒートポンプ装置に
使用される作動流体に関する。
Description: TECHNICAL FIELD The present invention relates to a working fluid used for a heat pump device such as an air conditioner and a refrigerator.

従来の技術 従来、エアコン・冷凍機等のヒートポンプ装置におい
ては、作動流体としてフロン類(以下R○○またはR○
○○と記す)と呼ばれるハロゲン化炭化水素が知られて
おり、利用温度としては凝縮温度および/または蒸発温
度が略0〜略50℃の範囲において通常使用される。中で
もクロロジフルオロメタン(CHClF2、R22)は家庭用エ
アコン、ビル用エアコンや大型冷凍機等の作動流体とし
て幅広く用いられている。
2. Description of the Related Art Conventionally, in heat pump devices such as air conditioners and refrigerators, fluorocarbons (hereinafter referred to as ROO or ROO) are used as a working fluid.
Halogenated hydrocarbons referred to as ○) are known, and are usually used when the condensing temperature and / or the evaporating temperature are in the range of about 0 to about 50 ° C. Among them, chlorodifluoromethane (CHClF 2 , R22) is widely used as a working fluid for home air conditioners, building air conditioners, large refrigerators and the like.

発明が解決しようとする課題 しかしながら、近年フロンによる成層圏オゾン層破壊
が地球規模の環境問題となっており、成層圏オゾン破壊
能力が大であるフロン類(以下、特定フロンと記す)に
ついては、すでに国際条約によって使用量及び生産量と
規制がなされ、さらに将来的には特定フロンの使用・生
産を廃止しようという動きがある。さて、R22はオゾン
破壊係数(トリルクロロフルオロメタン(CCl3F)の成
層圏オゾン破壊能力を1としたときの成層圏オゾン破壊
能力、以下ODPと記す)が0.05と微少であり、特定フロ
ンではないものの将来的に使用量の増大が予想され、冷
凍・空調機器が広く普及した現在、R22の使用量及び生
産量の増大が人類の生活環境に与える影響も大きくなる
ものと予想されている。従って、成層圏オゾン破壊能力
が小であるものの、若干の破壊能力があるとされるR22
の代替となる作動流体の早期開発も強く要望されてい
る。
Problems to be Solved by the Invention However, in recent years, the depletion of the stratospheric ozone layer by CFCs has become a global environmental problem, and the CFCs that have a large ozone depletion ability in the stratosphere (hereinafter referred to as “specific CFCs”) have already been The treaty regulates the amount used and the amount produced, and there is a movement to abolish the use and production of specified CFCs in the future. By the way, R22 has a very small ozone depletion coefficient (stratospheric ozone depletion capacity when tolylochlorofluoromethane (CCl 3 F) has a stratospheric ozone depletion capacity of 1; hereinafter referred to as ODP), which is as small as 0.05, and is not a specific CFC. It is expected that the amount of use will increase in the future, and now that the refrigeration and air-conditioning equipment has become widespread, the increase in the amount of use and production of R22 will have a great impact on the human living environment. Therefore, although the stratospheric ozone depletion capacity is small, it is said that it has some destructive capacity.
There is also a strong demand for early development of working fluids that can replace the above.

本発明は、上述の問題に鑑みて試されたもので、成層
圏オゾン層に及ぼす影響がほとんどない、R22の代替と
なる作動流体を提供するものである。
The present invention has been made in view of the above-described problems, and provides a working fluid that has almost no influence on the stratospheric ozone layer and is an alternative to R22.

課題を解決するための手段 本発明は上述の課題を解決するため、少なくとも、ジ
フルオロメタン(CH2F2)とテトラフルオロエタン(C2H
2F2)とジフルオロエタン(C2H4F2)の三種のフロン類
を含み、ジフルオロメタン略20〜略60重量%、テトラフ
ルオロエタン0〜略80重量%、ジフルオロエタン0〜略
65重量%の組成範囲であることを特徴とするものであ
り、特に、ジフルオロメタン略25〜略50重量%、テトラ
フルオロエタン0〜略75重量%、ジフルオロエタン0〜
略65重量%の組成範囲が望ましいものである。
Means for Solving the Problems In order to solve the above problems, the present invention provides at least difluoromethane (CH 2 F 2 ) and tetrafluoroethane (C 2 H 2
2 F 2 ) and difluoroethane (C 2 H 4 F 2 ) including three types of CFCs, difluoromethane approximately 20 to approximately 60% by weight, tetrafluoroethane 0 to approximately 80% by weight, difluoroethane 0 to approximately
It is characterized in that the composition range is 65% by weight, and in particular, about 25 to about 50% by weight of difluoromethane, 0 to about 75% by weight of tetrafluoroethane, and 0 to about 50% of difluoroethane.
A composition range of approximately 65% by weight is desirable.

作用 本発明は、上述の組合せによって、作動流体を、オゾ
ン破壊能力のほとんどない、分子構造中に塩素を含まな
いフロン類であるジフルオロメタン(ODP=0)、テト
ラフルオロエタン(ODP=0)およびジフルオロエタン
(ODP=0)の混合物となすことにより、成層圏オゾン
層に及ぼす影響をR22よりもさらに小さく、ほとんどな
くすることを可能とするものである。又、本発明は上述
の組成範囲とすることによって、エアコン・冷凍機等の
ヒートポンプ装置の利用温度である略0〜略50℃におい
てR22と同程度の蒸気圧を有し、R22の代替として現行機
器で使用可能な作動流体を提供することを可能とするも
のである。従って上述の組合せおよび組成範囲における
ODPも0と予想され、R22の代替として極めて有望な作動
流体となるものである。またかかる混合物は非共沸混合
物となり、凝縮過程および蒸発過程において温度勾配を
もつため、熱源流体との温度差を近接させたロレンツサ
イクルを構成することにより、R22よりも高い成績係数
を期待できるものである。
Action The present invention uses the above-mentioned combination to convert the working fluid into difluoromethane (ODP = 0), tetrafluoroethane (ODP = 0), and fluorocarbons having almost no ozone depletion ability, which are fluorocarbons having no chlorine in the molecular structure. By using a mixture of difluoroethane (ODP = 0), the effect on the stratospheric ozone layer is smaller than that of R22 and can be almost eliminated. In addition, the present invention has a vapor pressure similar to that of R22 at about 0 to about 50 ° C., which is the use temperature of a heat pump device such as an air conditioner or a refrigerator, by setting the above composition range, and the present invention is used as a substitute for R22. It is possible to provide a working fluid usable in the device. Therefore, in the above combinations and composition ranges
ODP is also expected to be 0, and it is a very promising working fluid as an alternative to R22. In addition, since such a mixture becomes a non-azeotropic mixture and has a temperature gradient in the condensation process and the evaporation process, a coefficient of performance higher than that of R22 can be expected by configuring a Lorentz cycle with a temperature difference close to that of the heat source fluid. It is.

また一般に、成層圏オゾン破壊能力があるフロン類
は、そのODPの値の大きさにつれて地球温暖化の効果も
大きい傾向があるが、本発明による作動流体はODPが0
であるフロン類のみの三種以上から成る混合物によって
構成されているため、地球温暖化の効果はR22と同程度
あるいはR22未満と推定され、最近世界的問題となって
いる地球温暖化への寄与を小とすることをも可能とする
ものである。
In general, fluorocarbons capable of depleting stratospheric ozone tend to have a greater effect of global warming as the ODP value increases, but the working fluid according to the present invention has an ODP of 0.
It is estimated that the effect of global warming is the same as R22 or less than R22 because it is composed of a mixture of three or more fluorocarbons. It is also possible to make it small.

実施例 以下、本発明による作動流体の実施例について、図を
用いて説明する。
Embodiment An embodiment of a working fluid according to the present invention will be described below with reference to the drawings.

第1図は、ジフルオロメタン(R32)、1,1,1,2−テト
ラフルオロエタン(R134a)、1,1−ジフルオロエタン
(R152a)の三種のフロン類の混合物によって構成され
る作動流体の、一定温度・一定圧力における平衡状態を
三角座標を用いて示したものである。本三角座標におい
ては、三角形の各頂点に、上側頂点を基点として反時計
回りに沸点の低い順に単一物質を配置しており、座標平
面上のある点における各成分の組成比(重量比)は、点
と三角形の各辺との距離の比で表される。またこのと
き、点と三角形の辺との距離は、辺に相対する柄にある
三角座標の頂点に記された物質の組成比に対応する。第
1図において1は、温度0℃・圧力4.044kg/cm2Gにおけ
る混合物の気液平衡線であり、この温度・圧力はR22の
飽和状態に相当する。気液平衡線(R22 0℃相当)1
の上側の線は飽和気相線、気液平衡線(R22 0℃相
当)1の下側の線は飽和液相線を表わし、この両線で挟
まれた範囲においては気液平衡状態となる。また2は、
温度50℃・圧力18.782kg/cm2Gにおける混合物の気液平
衡線であり、この温度・圧力もR22の飽和状態に相当す
る。飽和気相線上の組成物はR22より高い圧力で気化
し、R22と同じ圧力で液化する。飽和液相線上の組成物
はR22と同じ圧力で気化し、R22より低い圧力で液化す
る。これらの2つの線の間のエリアにある組成物は、R2
2より高い圧力で気化し、R22より低い圧力で液化する。
すなわち50℃の気液平衡線2の間のエリアにある組成物
は、50℃においてはR22より低い圧力で気相から液相に
変化し、R22と同じ圧力では50℃より高い気相が凝縮し
て、50℃より低い液相に変化する。また0℃の気液平衡
線1の間のエリアにある組成物は、0℃においてはR22
より高い圧力で液相から気相に変化し、R22と同じ圧力
では0℃より低い液相が蒸発して、0℃より高い気相に
変化する。図からわかるように、R32、R134a及びR152a
がそれぞれ略20〜略60重量%、0〜略80重量%、0〜略
65重量%となるような組成範囲は、略0〜略50℃の利用
温度においてR22とほぼ同等の蒸気圧を有するため望ま
しい。さらに、R32、R134a及びR152aがそれぞれ略25〜
略50重量%、0〜略75重量%、0〜略65重量%となるよ
うな組成範囲は、0℃と50℃の間のすべての利用温度に
おいてR22とほぼ同等の蒸気圧を有するため特に望まし
い。
FIG. 1 shows a constant flow of a working fluid composed of a mixture of three fluorocarbons of difluoromethane (R32), 1,1,1,2-tetrafluoroethane (R134a) and 1,1-difluoroethane (R152a). The equilibrium state at temperature and constant pressure is shown using triangular coordinates. In the triangular coordinates, a single substance is arranged at each vertex of the triangle in the order of lower boiling point in a counterclockwise direction from the upper vertex as a base point, and the composition ratio (weight ratio) of each component at a certain point on the coordinate plane Is represented by the ratio of the distance between the point and each side of the triangle. In addition, at this time, the distance between the point and the side of the triangle corresponds to the composition ratio of the substance described at the apex of the triangular coordinate in the pattern facing the side. In FIG. 1, 1 is a gas-liquid equilibrium line of the mixture at a temperature of 0 ° C. and a pressure of 4.044 kg / cm 2 G, which corresponds to the saturated state of R22. Vapor-liquid equilibrium line (R22 equivalent to 0 ° C) 1
The upper line represents the saturated gas phase line, the lower line represents the gas-liquid equilibrium line (corresponding to R220 of 0 ° C), and the lower line represents the saturated liquid phase line. . 2 is
This is the vapor-liquid equilibrium line for the mixture at a temperature of 50 ° C and a pressure of 18.782 kg / cm 2 G, and this temperature and pressure also correspond to the saturated state of R22. The composition on the saturated vapor line vaporizes at a pressure higher than R22 and liquefies at the same pressure as R22. The composition on the saturated liquidus line vaporizes at the same pressure as R22 and liquefies at a pressure lower than R22. The composition in the area between these two lines is R2
It vaporizes at a pressure higher than 2 and liquefies at a pressure lower than R22.
That is, the composition in the area between the vapor-liquid equilibrium line 2 at 50 ° C changes from the gas phase to the liquid phase at a pressure lower than R22 at 50 ° C, and the gas phase higher than 50 ° C condenses at the same pressure as R22. Then, the liquid phase changes to a temperature lower than 50 ° C. Moreover, the composition in the area between the vapor-liquid equilibrium line 1 at 0 ° C. is R22 at 0 ° C.
At a higher pressure, the liquid phase changes to a gas phase, and at the same pressure as R22, a liquid phase lower than 0 ° C evaporates and changes to a gas phase higher than 0 ° C. As you can see, R32, R134a and R152a
Are about 20 to about 60% by weight, 0 to about 80% by weight, 0 to about
The composition range of 65% by weight is desirable because it has a vapor pressure almost equal to that of R22 at a use temperature of about 0 to about 50 ° C. Further, R32, R134a and R152a are each approximately 25 ~
The composition range of about 50% by weight, 0 to about 75% by weight, and 0 to about 65% by weight has a vapor pressure almost equal to that of R22 at all use temperatures between 0 ° C and 50 ° C. desirable.

第1図中の点A1〜点F1における作動流体の組成を第1
表に示す。点A1〜点C1は気液平衡線(R22 50℃相当)
2の飽和気相線上にあると共に、気液平衡線(R22 0
℃相当)1の飽和気相線及び気液平衡線(R22 0℃相
当)1の飽和液相線の両線で挟まれた範囲にあることか
ら、温度0℃・圧力4.044kg/cm2G(R22の飽和状態に相
当)においては気液平衡状態となる。また、点D1〜点F1
は気液平衡線(R22 0℃相当)1の飽和液相線上にあ
ると共に、気液平衡線(R22 50℃相当)2の飽和気相
線及び気液平衡線(R22 50℃相当)2の飽和液相線の
両線で挟まれた範囲にあることから、温度5 0℃・圧力18.782kg/cm2G(R22の飽和状態に相当)にお
いては気液平衡状態となる。従って、第1表に示された
組成を有する作動流体は、0℃・50℃におけるR22の飽
和蒸気圧の条件下で飽和状態あるいは気液平衡状態を実
現し、略0〜略50℃の利用温度において、同温度におけ
るR22の飽和蒸気圧で操作することにより、R22とほぼ等
しい凝縮温度・蒸発温度を得ることが可能となるもので
ある。
The composition of the working fluid at points A 1 to F 1 in FIG.
Shown in the table. Points A 1 ~ point C 1 is a gas-liquid equilibrium line (R22 50 ° C. equivalent)
It is on the saturated vapor phase line of No. 2 and the vapor-liquid equilibrium line (R220
The temperature is 0 ° C and the pressure is 4.044 kg / cm 2 G because it is in the range sandwiched by both the saturated vapor phase line of 1) and the vapor-liquid equilibrium line of R22 (0 ° C) 1 At (corresponding to the saturated state of R22), there is a vapor-liquid equilibrium state. Also, point D 1 to point F 1
Is on the saturated liquidus line of gas-liquid equilibrium line (R22 0 ° C equivalent) 1, and the saturated vapor phase line of gas-liquid equilibrium line (R22 50 ° C equivalent) 2 and gas-liquid equilibrium line (R22 50 ° C equivalent) 2 Since it is in the range sandwiched by both saturated liquidus lines, the temperature is 5 At 0 ° C and a pressure of 18.782 kg / cm 2 G (equivalent to the saturated state of R22), a gas-liquid equilibrium state is reached. Therefore, the working fluid having the composition shown in Table 1 achieves a saturated state or a gas-liquid equilibrium state under the condition of the saturated vapor pressure of R22 at 0 ° C. and 50 ° C. By operating at the saturated vapor pressure of R22 at the same temperature, it is possible to obtain a condensing temperature and an evaporation temperature substantially equal to R22.

ここでは、気液平衡線(R22 0℃相当)1あるいは
気液平衡線(R22 50℃相当)2上の点についてのみ説
明したが、点A1〜点F1の内側にある点、すなわち、温度
0℃・圧力4.044kg/cm2G及び温度50℃・圧力18.782kg/c
m2G(両者ともR22の飽和状態に相当)において気液平衡
状態となる組成を有する作動流体についても同様に操作
することにより、略0〜略50℃の利用温度においてR22
とほぼ等しい凝縮温度・蒸発温度を得ることが可能とな
るものである。
Here, only the points on the gas-liquid equilibrium line (corresponding to R22 of 0 ° C.) 1 or the gas-liquid equilibrium line (corresponding to R22 of 50 ° C.) 2 have been described, but points inside the points A 1 to F 1 , that is, Temperature 0 ℃, pressure 4.044kg / cm 2 G and temperature 50 ℃, pressure 18.872kg / c
By operating in the same manner for a working fluid having a composition in a gas-liquid equilibrium state at m 2 G (both corresponding to the saturated state of R22), R22 at a use temperature of approximately 0 to approximately 50 ° C.
It is possible to obtain a condensing temperature and an evaporating temperature substantially equal to the above.

第2図は、R32、1,1,1,2−テトラフルオロエタン(R1
34)、R152aの三種のフロン類の混合物によって構成さ
れる作動流体の、一定温度・一定圧力における平衡状態
を三角座標を用いて示したものである。本三角座標にお
いては、大気圧における標準沸点はR152aの方がR134よ
りも低いものの、第1図との関連において、三角形の各
頂点に、上側頂点を基点として反時計回りに、R32、R13
4、R152aの順に単一物質を配置している。第2図におい
て3は、温度0℃・圧力4.044kg/cm2Gにおける混合物の
気液平衡線であり、また4は、温度50℃・圧力18.782kg
/cm2Gにおける混合物の気液平衡線である。この場合に
は、R32、R134及びR15aがそれぞれ略30〜略60重量%、
0〜略70重量%、0〜略65重量%となるような組成範囲
が、R22とほぼ同等の蒸気圧を有するため望ましく、R3
2、R134及びR15aがそれぞれ略35〜略50重量%、0〜略6
5重量%、0〜略65重量%となるような組成範囲が、特
に望ましい。
Figure 2 shows R32,1,1,1,2-tetrafluoroethane (R1
34), the equilibrium state at constant temperature and constant pressure of the working fluid composed of the mixture of three types of R152a R152a is shown by using triangular coordinates. In this triangular coordinate, the standard boiling point at atmospheric pressure is lower in R152a than in R134, but in relation to Fig. 1, at each vertex of the triangle, R32, R13 counterclockwise with the upper vertex as the base point.
4, Single substance is arranged in order of R152a. In Fig. 2, 3 is a vapor-liquid equilibrium line of the mixture at a temperature of 0 ° C and a pressure of 4.044 kg / cm 2 G, and 4 is a temperature of 50 ° C and a pressure of 18.782 kg.
2 is a vapor-liquid equilibrium line of the mixture at / cm 2 G. In this case, R32, R134 and R15a are each approximately 30 to approximately 60% by weight,
A composition range of 0 to about 70% by weight and 0 to about 65% by weight is desirable because it has a vapor pressure almost equal to that of R22.
2, R134 and R15a are each about 35 to about 50% by weight, 0 to about 6
A composition range of 5% by weight to 0 to about 65% by weight is particularly desirable.

第2図中の点A2〜点F2における作動流体の組成を第1
表に示す。点A2〜点C2は気液平衡線(R22 50℃相当)
4の飽和気相線上に、点D2〜点E2は気液平衡線(R22 5
0℃相当)4の飽和気相線上にあり、共に気液平衡線(R
22 0℃相当)3の飽和気相線及び気液平衡線(R22
0℃相当)3の飽和液相線の両線で挟まれた範囲にある
ことから、温度0℃・圧力4.044kg/cm2G(R22の飽和状
態に相当)においては気液平衡状態となる。また、点F2
は気液平衡線(R22 0℃相当)3の飽和液相線上にあ
ると共に、気液平衡線(R22 50℃相当)4の飽和気相
線及び気液平衡線(R22 50℃相当)4の飽和液相線の
両線で挟まれた範囲にあることから、温度50℃・圧力1
8.782kg/cm2G(R22の飽和状態に相当)においては気液
平衡状態となる。従って、第2表に示された組成を有す
る作動流体は、0・50℃におけるR22の飽和蒸気圧の条
件下で飽和状態あるいは気 液平衡状態を実現し、略0〜略50℃の利用温度におい
て、同温度におけるR22の飽和蒸気圧で操作することに
より、R22とほぼ凝縮温度・蒸発温度を得ることが可能
となるものである。
The composition of the working fluid at points A 2 to F 2 in FIG.
Shown in the table. Points A 2 to C 2 are gas-liquid equilibrium lines (equivalent to R22 50 ° C)
On the saturated vapor phase line of 4, points D 2 to E 2 are gas-liquid equilibrium lines (R22 5
It is on the saturated vapor phase line of 0 ° C) 4 and both are vapor-liquid equilibrium lines (R
Saturated vapor phase line and vapor-liquid equilibrium line (R22
(Equivalent to 0 ° C), it is in the range between the two saturated liquidus lines, so that at a temperature of 0 ° C and a pressure of 4.044 kg / cm 2 G (corresponding to the saturated state of R22), a vapor-liquid equilibrium state is established. . Also, point F 2
Is on the saturated liquidus line of gas-liquid equilibrium line (R22 0 ° C equivalent) 3 and saturated gas phase line of gas-liquid equilibrium line (R22 50 ° C equivalent) 4 and gas-liquid equilibrium line (R22 50 ° C equivalent) 4 Since it is in the range between both saturated liquidus lines, the temperature is 50 ° C and the pressure is 1
At 8.782 kg / cm 2 G (equivalent to the saturated state of R22), a gas-liquid equilibrium state is reached. Therefore, the working fluid having the composition shown in Table 2 was saturated or vaporized under the condition of the saturated vapor pressure of R22 at 0.50 ° C. By achieving a liquid equilibrium state and operating at a saturated vapor pressure of R22 at a use temperature of approximately 0 to approximately 50 ° C, it is possible to obtain almost the condensation temperature and evaporation temperature of R22. .

ここでは、気液平衡線(R22 0℃相当)3あるいは
気液平衡線(R22 50℃相当)4上の点についてのみ説
明したが、点A2〜点F2の内側にある点、すなわち、温度
0℃・圧力4.044kg/cm2G及び温度50℃・圧力18.782kg/c
m2G(両者ともR22の飽和状態に相当)において気液平衡
状態となる組成を有する作動流体についても同様に操作
することにより、略0〜略50℃の利用温度においてR22
とほぼ等しい凝縮温度・蒸発温度を得ることが可能とな
るものである。
Here, only the points on the gas-liquid equilibrium line (corresponding to R22 0 ° C.) 3 or the gas-liquid equilibrium line (R22 50 ° C.) 4 are explained, but the points inside the points A 2 to F 2 , that is, Temperature 0 ℃ ・ Pressure 4.044kg / cm 2 G and Temperature 50 ℃ ・ Pressure 18.782kg / c
By operating in the same manner for a working fluid having a composition in a gas-liquid equilibrium state at m 2 G (both corresponding to the saturated state of R22), R22 at a use temperature of approximately 0 to approximately 50 ° C.
It is possible to obtain a condensing temperature and an evaporating temperature substantially equal to the above.

以上の実施例においては作動流体は三種のフロン類の
混合物によって構成されているが、構造異性体を含めて
四種以上のフロンの混合物によって作動流体を構成する
ことも勿論可能であり、この場合、ジフルオロメタン略
20〜略60重量%、テトラフルオロエタン0〜略80重量
%、ジフルオロエタン0〜略65重量%となるような組成
範囲は、略0〜略50℃の利用温度においてR22とほぼ同
等の蒸気圧を有するため望ましい。さらに、ジフルオロ
メタン略25〜略50重量%、テトラフルオロエタン0〜略
78重量%、ジフルオロエタン0〜略65重量%となるよう
な組成範囲は、0℃と50℃の間のすべての利用温度にお
いてR22とほぼ同等の蒸気圧を有するため特に望まし
い。特に上述の組合せおよび組成範囲におけるODPも0
と予想され、R22の代替として極めて有望な作動流体と
なるものである。またかかる混合物は非共沸混合物とな
り、凝縮温度および蒸発過程において温度勾配をもつた
め、熱源流体との温度差を近接させたロレンツサイクル
を構成することにより、R22よりも高い成績係数を期待
できるものである。
In the above examples, the working fluid is composed of a mixture of three types of freons, but it is of course possible to form the working fluid by a mixture of four or more types of freon including structural isomers. , Difluoromethane abbreviation
The composition range of 20 to about 60% by weight, tetrafluoroethane 0 to about 80% by weight, and difluoroethane 0 to about 65% by weight has a vapor pressure almost equal to that of R22 at a use temperature of about 0 to about 50 ° C. Desirable to have. Furthermore, difluoromethane approximately 25 to approximately 50% by weight, tetrafluoroethane 0 to approximately
A composition range of 78% by weight and 0 to about 65% by weight of difluoroethane is particularly desirable because it has a vapor pressure almost equal to that of R22 at all use temperatures between 0 ° C and 50 ° C. In particular, the ODP in the above combination and composition range is also 0.
It is expected to be a very promising working fluid as a substitute for R22. In addition, since such a mixture becomes a non-azeotropic mixture and has a temperature gradient in the condensation temperature and the evaporation process, a coefficient of performance higher than that of R22 can be expected by constructing a Lorentz cycle in which the temperature difference with the heat source fluid is close. Is.

発明の効果 以上の説明から明らかなように、本発明は、作動流体
を、分子構造中に塩素を含まないフロン類のみの三種以
上から成る混合物となし、その組成範囲を特定したこと
により、 (1)成層圏オゾン層に及ぼす影響をR22よりもさらに
小さく、ほとんどなしとする作動流体の選択の幅を拡大
することが可能である (2)機器の利用温度においてR22と同程度の蒸気圧を
有し、R22の代替として現行機器で使用可能である (3)非共沸混合物の温度勾配の性質を利用して、R22
よりも高い成績係数を期待できる 等の効果を有するものである。
EFFECTS OF THE INVENTION As is clear from the above description, the present invention provides a working fluid as a mixture of three or more kinds of only CFCs containing no chlorine in the molecular structure, and by specifying the composition range thereof, 1) The influence on the stratospheric ozone layer is smaller than that of R22, and it is possible to expand the range of selection of working fluid that makes it almost nonexistent. (2) It has the same vapor pressure as R22 at the operating temperature of the equipment. However, it can be used as an alternative to R22 in current equipment. (3) Utilizing the property of the temperature gradient of non-azeotropic mixture, R22
It has the effect that a higher coefficient of performance can be expected.

【図面の簡単な説明】[Brief description of drawings]

第1図〜第2図は、三種のフロン類の混合物によって構
成される作動流体の、一定温度・一定圧力における平衡
状態を三角座標を用いて示した図である。 1、3……気液平衡線(R22 0℃相当)、2、4……
気液平衡線(R22 50℃相当)。
FIG. 1 and FIG. 2 are diagrams showing the equilibrium state of a working fluid composed of a mixture of three types of fluorocarbons at a constant temperature and a constant pressure using triangular coordinates. 1,3 …… Gas-liquid equilibrium line (R22 0 ° C equivalent) 2,4 ……
Vapor-liquid equilibrium line (R22 equivalent to 50 ° C).

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】ジフルオロメタン、テトラフルオロエタン
および1,1−ジフルオロエタンの三種のフロン類からな
り、前記ジフルオロメタンを20〜60重量%、前記テトラ
フルオロエタンを80重量%以下、前記1,1−ジフルオロ
エタンを65重量%以下含むことを特徴とする作動流体。
1. A fluorocarbon comprising three types of fluorocarbons of difluoromethane, tetrafluoroethane and 1,1-difluoroethane, wherein the difluoromethane is 20 to 60% by weight, the tetrafluoroethane is 80% by weight or less, and the 1,1- A working fluid containing 65% by weight or less of difluoroethane.
JP1311156A 1989-11-30 1989-11-30 Working fluid Expired - Fee Related JP2532696B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP1311156A JP2532696B2 (en) 1989-11-30 1989-11-30 Working fluid
DE69011287T DE69011287T2 (en) 1989-11-30 1990-11-27 Work equipment.
EP90122653A EP0430170B1 (en) 1989-11-30 1990-11-27 Working fluid
KR1019900019594A KR930010514B1 (en) 1989-11-30 1990-11-30 Working fluid
US07/839,700 US5304319A (en) 1989-11-30 1992-02-24 Working fluid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1311156A JP2532696B2 (en) 1989-11-30 1989-11-30 Working fluid

Publications (2)

Publication Number Publication Date
JPH03170587A JPH03170587A (en) 1991-07-24
JP2532696B2 true JP2532696B2 (en) 1996-09-11

Family

ID=18013774

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1311156A Expired - Fee Related JP2532696B2 (en) 1989-11-30 1989-11-30 Working fluid

Country Status (1)

Country Link
JP (1) JP2532696B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5290466A (en) * 1991-10-31 1994-03-01 E. I. Du Pont De Nemours And Company Compositions of difluoromethane and tetrafluoroethane

Also Published As

Publication number Publication date
JPH03170587A (en) 1991-07-24

Similar Documents

Publication Publication Date Title
JP2568774B2 (en) Working fluid
JPH08277389A (en) Mixed working fluid and heat pump device using the same
JPH0655942B2 (en) Working fluid
JP2580350B2 (en) Working fluid
JP2548411B2 (en) Working fluid
JP2579002B2 (en) Working fluid
JP2532695B2 (en) Working fluid
JP2579001B2 (en) Working fluid
JP2580349B2 (en) Working fluid
JP2532697B2 (en) Working fluid
JP2548412B2 (en) Working fluid
JP2568775B2 (en) Working fluid
JP2532696B2 (en) Working fluid
JPH0665561A (en) Working fluid
JP2532736B2 (en) Working fluid
JP2579000B2 (en) Working fluid
JPH0655943B2 (en) Working fluid
JPH03170593A (en) Working fluid
JPH0517747A (en) Working fluid
JPH0517755A (en) Working fluid
JPH0517753A (en) Working fluid
JPH0517750A (en) Working fluid
JPH0517746A (en) Working fluid
JPH05117649A (en) Working fluid
JPH0517743A (en) Working fluid

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees