JPH03170590A - Working fluid - Google Patents

Working fluid

Info

Publication number
JPH03170590A
JPH03170590A JP1311160A JP31116089A JPH03170590A JP H03170590 A JPH03170590 A JP H03170590A JP 1311160 A JP1311160 A JP 1311160A JP 31116089 A JP31116089 A JP 31116089A JP H03170590 A JPH03170590 A JP H03170590A
Authority
JP
Japan
Prior art keywords
vapor
temperature
working fluid
weight
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1311160A
Other languages
Japanese (ja)
Other versions
JP2580349B2 (en
Inventor
Yuji Yoshida
雄二 吉田
Shozo Funakura
正三 船倉
Koji Arita
浩二 有田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1311160A priority Critical patent/JP2580349B2/en
Publication of JPH03170590A publication Critical patent/JPH03170590A/en
Priority to US07/839,700 priority patent/US5304319A/en
Application granted granted Critical
Publication of JP2580349B2 publication Critical patent/JP2580349B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a working fluid which does not affect the ozonosphere and has an improved coefficient of performance by mixing pentafluoroethane, tetrafluoroethane, and difluoroethane. CONSTITUTION:55-85wt.% pentafluoroethane is mixed with at most 45wt.% tetrafluoroethane and at most 30wt.% difluoroethane.

Description

【発明の詳細な説明】 産業上の利用分野 本発明ζ飄 エアコン・冷凍機等のヒートボンブ装置に
使用される作動流体に関すん 従来の技術 従来 エアコン・冷凍機等のヒートポンプ装置において
(よ 作動流体としてフロン類(以下R○○またはR○
○○と記す)と呼ばれるハロゲン化炭化水素が知られて
おり、利用温度としては凝縮温度および/または蒸発温
度が略0〜略50℃の範囲において通常使用されも 中
でもクロロジフルオロメタン(CHCIF*、R22)
は家庭用エアコン、ビル用エアコンや大型冷凍機等の作
動流体として幅広く用いられていも 発明が解決しようとする課題 しかしなか板 近年フロンによる戊層圏オゾン層破壊が
地球規模の環境問題となっており、戒層圏オゾン破壊能
力が大であるフロン類(以下、特定フロンと記す)につ
いては すでに国際条約によって使用量及び生産量の規
制がなされ さらに将来的には特定フロンの使用・生産
を廃止しようという動きがあ瓜 さて、R22はオゾン
破壊係数(トリクロロフルオロメタン(CClsF)の
戒層圏オゾン破壊能力を1としたときの成層圏オゾン破
壊能九 以下○DPと記す)が0. 05と微少であり
、特定フロンではないものの将来的に使用量の増大が予
想され 冷凍・空調機器が広く普及した現&  R22
の使用量及び生産量の増大が人類の生活環境に与える影
響も大きくなるものと予想されていも 従って、戒層圏
オゾン破壊能力が小であるものQ 若干の破壊能力があ
るとされるR22の代替となる作動流体の早期開発も強
く要望されている。
[Detailed Description of the Invention] Industrial Application Fields of the Invention Conventional technology related to working fluids used in heat pump devices such as air conditioners and refrigerators Conventional technology related to working fluids used in heat pump devices such as air conditioners and refrigerators as fluorocarbons (hereinafter referred to as R○○ or R○
Halogenated hydrocarbons known as R22)
Although it is widely used as a working fluid in home air conditioners, building air conditioners, and large refrigerators, it is still a problem that the invention attempts to solve.In recent years, the depletion of the stratospheric ozone layer by fluorocarbons has become a global environmental problem. The use and production of fluorocarbons (hereinafter referred to as specified fluorocarbons), which have a large ability to deplete the stratospheric ozone, has already been regulated by international treaties, and the use and production of specified fluorocarbons will be abolished in the future. Now, R22 has an ozone depletion coefficient (stratospheric ozone depletion potential 9 when the stratospheric ozone depletion potential of trichlorofluoromethane (CClsF) is 1, hereinafter written as ○DP) of 0. 05, and although it is not a specified fluorocarbon, its usage is expected to increase in the future.
Although it is expected that the impact on human living environment will increase as the usage and production of There is also a strong need for the early development of alternative working fluids.

本発明は 上述の問題に鑑みて試されたもので、戒層圏
オゾン層に及ぼす影響がほとんどなu%  R22の代
替となる作動流体を提供するものである。
The present invention was attempted in view of the above-mentioned problems, and is intended to provide a working fluid that has little effect on the stratospheric ozone layer and can be used as an alternative to U%R22.

課題を解決するための手段 本発明は上述の課題を解決するたべ 少なくとL ペン
タフルオロエタン(C2HFs)とテトラフルオ口エタ
ン(CaHaF4)とジフルオロエタン(C2H4F2
)の三種のフロン類を含次 ペンタフルオロエタン略5
5〜略85重量勉 テトラフルオロエタン0〜略45重
量勉 ジフルオロエタン0〜略30重量%の組或範囲で
あることを特徴とするものであり、特に ペンタフルオ
ロエタン略55〜略80重量米 テトラフルオ口エタン
O〜略45重量米 ジフルオロエタン0〜略30重量%
の組戊範囲が望ましいものである。
Means for Solving the Problems The present invention solves the above-mentioned problems.
) Contains three types of fluorocarbons Pentafluoroethane (abbreviation 5)
5 to about 85% by weight Tetrafluoroethane 0 to about 45% by weight Difluoroethane 0 to about 30% by weight, especially pentafluoroethane about 55 to about 80% by weight Tetrafluoroethane Ethane O ~ approx. 45% by weight Difluoroethane 0 ~ approx. 30% by weight
It is desirable that the composition range is as follows.

作用 本発明(よ 上述の組合せによって、作動流体を、オゾ
ン破壊能力のほとんどなL\ 分子構造中に塩素を含ま
ないフロン類であるペンタフルオロエタン(ODP=o
)、テトラフルオ口エタン(ODP−0)およびジフル
オロエタン(ODP=0)の混合物となすことにより、
戒層圏オゾン層に及ぼす影響をR22よりもさらに小さ
く、ほとんどなくすることを可能とするものであも 又
 本発明は上述の組或範囲とすることによって、エアコ
ン・冷凍機等のヒートポンプ装置の利用温度である略0
〜略50℃においてR22と同程度の蒸気圧を有L,,
R22の代替として現行機器で使用可能な作動流体を提
供することを可能とするものである。従って上述の組合
せおよび組戊範囲におけるODPも0と予想さit.R
22の代替として極めて有望な作動流体となるものであ
る。またかかる混合物は非共沸混合物となり、凝縮過程
および蒸発過程において温度勾配をもった数 熱源流体
との温度差を近接させたロレンツサイクルを構成するこ
とにより、R22よりも高い戊績係数を期待できるもの
である。
Effect of the present invention (by the above-mentioned combination), the working fluid can be converted into L\ which has almost no ozone depleting ability, and pentafluoroethane (ODP=o
), by forming a mixture of tetrafluoroethane (ODP-0) and difluoroethane (ODP=0),
Although the influence on the stratospheric ozone layer is even smaller than that of R22 and can be almost eliminated, the present invention also has the above-mentioned range, so that it can be used in heat pump devices such as air conditioners and refrigerators. Approximately 0, which is the usage temperature
It has a vapor pressure similar to that of R22 at ~50°C.
This makes it possible to provide a working fluid that can be used in current equipment as an alternative to R22. Therefore, it is expected that the ODP in the above combination and range of combinations is also 0. R
This is a very promising working fluid as an alternative to No. 22. In addition, such a mixture becomes a non-azeotropic mixture, and by configuring a Lorenz cycle with a temperature gradient in the condensation process and evaporation process, with the temperature difference from the heat source fluid being close to each other, a higher performance coefficient than R22 can be expected. It is something.

また一般に 戊層圏オゾン破壊能力があるフロン類ζよ
 その○DPの値の大きさにつれて地球温暖化の効果も
大きい傾向があるカ丈 本発明による作動流体は○DP
がOであるフロン類のみの三種以上から戊る混合物によ
って構威されているたべ地球温暖化の効果はR22と同
程度あるいはR22未lI論と推定され 最近世界的問
題となっている地球温暖化への寄与を小とすることをも
可能とするものであも 実施例 以“五 本発明による作動流体の実施例について、図を
用いて説明すも 第1図(友 ペンタフルオロエタン(R125)、1,
  1,  l,  2−テトラフルオ口エタン(R 
l 34a)、 1.  1−ジフルオロエタン(R 
1 5 2 a)の三種のフロン類の混合物によって構
或される作動流体α 一定温度・一定圧力における平衡
状態を三角座標を用いて示したものであん 本三角座標
においては 三角形の各頂点に 上側頂点を基点として
反時計回りに沸点の低い順に単一物質を配置しており、
座標平面上のある点における各戊分の組戊比(重量比)
(上  点と三角形の各辺との距離の比で表されも ま
たこのとき、点と三角形の辺との距離(よ 辺に相対す
る側にある三角座標の頂点に記された物質の組或比に対
応すも 第1図において1ζ表 温度0℃・圧力4,0
44kg/cm”Gにおける混合物の気液平衡線であり
、この温度・圧力はR22の飽和状態に相当すん 気液
平衡線(R22  0℃相当)lの上側の線は飽和気相
風 気液平衡線(R22  0℃相当)1の下側の線は
飽和液相線を表わし この画線で挟まれた範囲において
は気液平衡状態となも また2(i.温度50℃・圧力
18.  782kg/cm2Gにおける混合物の気液
平衡線であり、この温度・圧力もR22の飽和状態に相
当すん 図からわかるよう+,,R125、R134a
及びRl 52aがそれぞれ略55〜略85重量%0〜
略45重量%. 0〜略30重量%となるような組戊範
囲ぱ略0〜略50℃の利用温度においてR22とほぼ同
等の蒸気圧を有するため望ましL1  さらに R12
5、R134a及びRl52aがそれぞれ略55〜略8
0重量%. O〜略45重量基 0〜略30重量%とな
るような組或範囲(よ 0℃と50℃の問のすべての利
用温度においてR22とほぼ同等の蒸気圧を有するため
特に望ましl,%第1図中の点A1〜点F1における作
動流体の組戊を第1表に示す。点A1〜点C1は気液平
衡線(R22  50℃相当)2の飽和気相線上に 点
D1〜点F1は気液平衡線(R22  50℃相当)2
の飽和液相線上にあり、共に気液平衡線(R220℃相
当)lの飽和気相線及び気液平衡線(R22 0℃相当
)1の飽和液相線の画線で挟まれた範囲にあることから
、温度0℃・圧力4.044 k g/ cm2G (
R 2 2の飽和状態に相当)においては気液平衡状態
となも 従って、第1表に示された組或を有する作動流
体は 0℃・50℃におけるR22の飽和蒸気圧の条件
下で飽和状態あるいは気液平衡状態を実現し 略0〜略
50℃の利用温度において、同温度におけるR22の飽
和蒸気圧で操作することにより、R22とほぼ等しい凝
縮温度・蒸発温度を得ることが可能となるものである。
In addition, in general, fluorocarbons ζ have the ability to destroy stratospheric ozone.As the value of ○DP increases, the effect of global warming tends to increase.The working fluid according to the present invention has ○DP.
It is estimated that the effect of global warming caused by a mixture of three or more types of fluorocarbons, in which O is O, is the same as that of R22, or that it is not R22.Global warming has recently become a worldwide problem. Examples of the working fluid according to the present invention will be explained with reference to the drawings. ,1,
1, l, 2-tetrafluoroethane (R
l 34a), 1. 1-difluoroethane (R
1 5 2 Working fluid α composed of a mixture of three types of fluorocarbons in a) The equilibrium state at constant temperature and constant pressure is shown using triangular coordinates. In this triangular coordinate, at each vertex of the triangle is the upper side Single substances are arranged counterclockwise from the apex in descending order of boiling point.
Combination ratio (weight ratio) of each segment at a certain point on the coordinate plane
(It is expressed as the ratio of the distance between the point and each side of the triangle. Also, in this case, the distance between the point and the side of the triangle (as well as the ratio of the distance between the point and the side of the triangle) The ratio corresponds to the 1ζ table in Figure 1. Temperature 0℃, pressure 4.0
This is the vapor-liquid equilibrium line of the mixture at 44 kg/cm"G, and this temperature and pressure correspond to the saturated state of R22. The line above the vapor-liquid equilibrium line (equivalent to R22 0°C) is the saturated gas phase. Vapor-liquid equilibrium The line below line (R22, equivalent to 0℃) 1 represents the saturated liquidus line, and the area between these lines is in a state of vapor-liquid equilibrium. This is the vapor-liquid equilibrium line of the mixture at /cm2G, and this temperature and pressure also correspond to the saturated state of R22.
and Rl 52a are each about 55 to about 85% by weight 0 to
Approximately 45% by weight. L1 is desirable because it has a vapor pressure almost equal to that of R22 at a usage temperature of about 0 to about 50° C.
5, R134a and Rl52a are each about 55 to about 8
0% by weight. O to approximately 45% by weight (0 to approximately 30% by weight) is particularly desirable since it has a vapor pressure approximately equal to that of R22 at all operating temperatures between 0°C and 50°C. The composition of the working fluid at points A1 to F1 in Fig. 1 is shown in Table 1. Points A1 to C1 are on the saturated vapor phase line of the vapor-liquid equilibrium line (R22, equivalent to 50°C) 2. Points D1 to Points F1 is the vapor-liquid equilibrium line (R22 equivalent to 50℃)2
It is on the saturated liquidus line of , and is in the range sandwiched by the saturated vapor line of vapor-liquid equilibrium line (R220℃ equivalent) 1 and the saturated liquidus line of vapor-liquid equilibrium line (R22 0℃ equivalent) 1. Therefore, the temperature is 0℃ and the pressure is 4.044 kg/cm2G (
Therefore, the working fluid having the composition shown in Table 1 is saturated under the condition of the saturated vapor pressure of R22 at 0°C and 50°C. By realizing the state or vapor-liquid equilibrium state and operating at the saturated vapor pressure of R22 at the operating temperature of approximately 0 to approximately 50 degrees Celsius, it becomes possible to obtain condensation and evaporation temperatures approximately equal to those of R22. It is something.

ここでζ友 気液平衡線(R22  50℃相当)2上
の点についてのみ説明した力丈 点A1〜点F1の内側
にある点、すなわ板 温度0℃・圧力4.044kg/
cm2G及び温度50℃・圧力1 8.7 8 2 k
 g/cm2G (両者ともR22の飽和状態に相当)
において気液平衡状態となる組戒を有する作動流体につ
いても同様に操作することにより、略0〜略50℃の利
用温度においてR22とほぼ等しい凝縮温度・蒸発温度
を得ることが可能となるものである。
Here, only the points on the vapor-liquid equilibrium line (R22 equivalent to 50°C) 2 are explained. Points inside points A1 to F1, that is, the plate Temperature 0°C, pressure 4.044 kg/
cm2G and temperature 50℃・pressure 1 8.7 8 2 k
g/cm2G (both correspond to the saturated state of R22)
By performing the same operation on a working fluid that has a gas-liquid equilibrium state in be.

第2図(よ R125、 1,  l,  2.  2
−テトラフルオロエタン(R134)、 R152a(
7)三種のフロン類の混合物によって構或される作動流
体Q 一定温度・一定圧力における平衡状態を三角座標
を用いて示したものである。本三角座標において(よ 
大気圧における標準沸点はR152aの方がRl34よ
りも低いものQ 第l図との関連において、三角形の各
頂点に 上側頂点を基点として反時計回りに R125
、R134、R152aの順に単一物質を配置している
。第2図において3(よ 温度O℃・圧力4.  04
4kg/cm2Gにおける混合物の気液平衡線であり、
また4 j&温度50℃・圧力18.  782kg/
cm”Gにおける混合物の気液平衡線である。この場合
に(よRl25、R134及びRl 52aがそれぞれ
略65〜略85重量%. O〜略35重量9/o.0〜
略30重量%となるような組戊範囲力<.R22とほぼ
同等の蒸気圧を有するため望ましく、R125、R13
4及びR152aがそれぞれ略70〜略80重量%. 
0〜略30重量勉 0〜略30重量%となるような組戒
範囲力曳 特に望ましし1第2図中の点A2〜点F2に
おける作動流体の組戒を第2表に示す。点A2〜点C2
は気液平衡線(R22  50℃相当)4の飽和気相線
上に 点D2〜点F2は気液平衡線(R22  50℃
相当)4の飽和液相線上にあると共に 気液平衡線(R
22 0℃相当)3の飽和気相線及び気液平衡線(R2
2 0℃相当)3の飽和液相線の画線で挟まれた範囲に
あることか板 温度0℃・圧力4.  04 4 kg
/cm”G (R 2 2の飽和状態に相当〉において
は気液平衡状態となん 従って、第2表に示された組戒
を有する作動流体GEL  o℃・50℃におけるR2
2の飽和蒸気圧の条件下で飽和状態あるいは気液平衡状
態を実現し 略0〜略50℃の利用温度において、同温
度におけるR22の飽和蒸気圧で操作することにより、
R22とほぼ等しい凝縮温度・蒸発温度を得ることが可
能となるものであも ここで(よ 気液平衡線(R22  50℃相当)4上
の点についてのみ説明した力t 点A2〜点F2の内側
にある森 すなわ杖 温度0℃・圧力4.0 4 4 
k g/cm2G及び温度50℃・圧力1 8.7 8
 2 k g/cm”G (両者ともR22の飽和状態
に相当)において気液平衡状態となる組或を有する作動
流体についても同様に操作することにより、略0〜略5
0℃の利用温度においてR22とほぼ等しい凝縮温度・
蒸発温度を得ることが可能となるものであも 以上の実施例においては作動流体は三種のフロン類の混
合物によって構戒されている爪 構造異性体を含めて四
種以上のフロンの混合物によって作動流体を構戒するこ
とも勿論可能であり、この場合、ペンタフルオロエタン
略55〜略85重量% テトラフルオロエタンO〜略4
5重量勉 ジフルオロエタンO〜略30重量%となるよ
うな組成範囲は 略0〜略50℃の利用温度においてR
22とほぼ同等の蒸気圧を有するため望まし(tさらに
 ペンタフルオロエタン略55〜略80重ffi%. 
 テトラフルオロエタンO〜略45重量κジフルオロエ
タンO〜略30重量%となるような組戊範囲(よ 0℃
と50℃の間のすべての利用温度においてR22とほぼ
同等の蒸気圧を有するため特に望まししも 特に上述の
組合せおよび組戒範囲におけるODPも0と予想さtb
  R22の代替として極めて有望な作動流体となるも
のであんまたかかる混合物は非共沸混合物となり、凝縮
過程および蒸発過程において温度勾配をもった幽熱源流
体との温度差を近接させたロレンツサイクルを構或する
ことにより、R22よりも高い或績係数を期待できるも
のである。
Figure 2 (Yo R125, 1, l, 2. 2
-tetrafluoroethane (R134), R152a (
7) Working fluid Q composed of a mixture of three types of fluorocarbons The equilibrium state at constant temperature and constant pressure is shown using triangular coordinates. In this triangular coordinate (
The standard boiling point of R152a at atmospheric pressure is lower than that of R134.
, R134, and R152a are arranged in this order. In Figure 2, 3(yo) Temperature 0℃・Pressure 4.04
is the vapor-liquid equilibrium line of the mixture at 4 kg/cm2G,
Also 4 j & temperature 50℃/pressure 18. 782kg/
This is the vapor-liquid equilibrium line of the mixture at cm''G.
The assembly range force is approximately 30% by weight<. R125, R13 is desirable because it has almost the same vapor pressure as R22.
4 and R152a each in an amount of about 70 to about 80% by weight.
Particularly desirable is a range of force that is 0 to approximately 30% by weight.Table 2 shows the working fluid requirements at points A2 to F2 in FIG. Point A2 to point C2
is on the vapor-liquid equilibrium line (equivalent to R22 50°C) 4. Point D2 to point F2 are on the vapor-liquid equilibrium line (R22 50°C)
It is on the saturated liquidus line of 4 (equivalent) and is on the vapor-liquid equilibrium line (R
22 0℃ equivalent) 3 saturated gas phase line and vapor liquid equilibrium line (R2
2. Temperature: 0°C, Pressure: 4. 04 4 kg
/cm"G (corresponding to the saturated state of R 2 2) is a gas-liquid equilibrium state. Therefore, the working fluid GEL having the composition shown in Table 2 is
By realizing a saturated state or a vapor-liquid equilibrium state under the condition of saturated vapor pressure of R22, and operating at the saturated vapor pressure of R22 at the same temperature at a usage temperature of approximately 0 to approximately 50°C,
It is possible to obtain a condensation temperature and evaporation temperature that are almost equal to R22.The force t explained only at the point on the vapor-liquid equilibrium line (R22, equivalent to 50℃) 4.The force t from point A2 to point F2 The forest inside Sunawa Cane Temperature 0℃・Pressure 4.0 4 4
kg/cm2G and temperature 50℃/pressure 1 8.7 8
2 kg/cm"G (both correspond to the saturated state of R22)
At a usage temperature of 0℃, the condensation temperature is almost equal to R22.
In the above embodiments, the working fluid is a mixture of three types of fluorocarbons, which makes it possible to obtain the evaporation temperature. Of course, it is also possible to control the fluid; in this case, about 55 to about 85% by weight of pentafluoroethane and about 4 to about 4% by weight of tetrafluoroethane
The composition range in which the concentration of difluoroethane O to approximately 30% by weight is R at a usage temperature of approximately 0 to approximately 50°C.
Pentafluoroethane is desirable because it has a vapor pressure almost equivalent to that of 22 (t).
Tetrafluoroethane O to approximately 45% by weight κ difluoroethane O to approximately 30% by weight (at 0℃)
It is particularly desirable because it has a vapor pressure almost equivalent to that of R22 at all operating temperatures between
It is a very promising working fluid as an alternative to R22, and most of these mixtures become non-azeotropic mixtures, forming a Lorenz cycle in which the temperature difference between the heat source fluid and the heat source fluid, which has a temperature gradient in the condensation process and the evaporation process, is made close to each other. By doing so, a higher performance coefficient than R22 can be expected.

発明の効果 以上の説明から明らかなように 本発明ζよ 作動流体
を、分子構造中に塩素を含まないフロン類のみの三種以
上から或る混合物となし その組或範囲を特定したこと
により、 (1)戊層圏オゾン層に及ぼす影響をR22よりもさら
に小さく、ほとんどなしとする作動流体の選択の幅を拡
大することが可能であも (2)機器の利用温度においてR22と同程度の蒸気圧
を有L  R22の代替として現行機器で使用可能であ
も (3)非共沸混合物の温度勾配の性質を利用して、R2
2よりも高い戊績係数を期待できる等の効果を有するも
のであも
Effects of the Invention As is clear from the above explanation, the present invention ζ has the following advantages: By making the working fluid a mixture of three or more types of fluorocarbons that do not contain chlorine in their molecular structure, and specifying the range of the composition, 1) Although it is possible to expand the range of selection of working fluids that have an even smaller effect on the stratospheric ozone layer than R22, and almost no effect, (2) Steam that has the same level of influence as R22 at the operating temperature of the equipment. Although it can be used with current equipment as an alternative to L R22 with a high pressure, (3) R2
Even if it has the effect that a performance coefficient higher than 2 can be expected.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第2図は 三種のフロン類の混合物によって構
或される作動流体α 一定温度・一定圧 1、 3 ・気液平衡線 (R2 2 0℃相当)、 2、 4 気液平衡線 (R2 2 5 0℃相当)。
Figures 1 and 2 show a working fluid α composed of a mixture of three types of fluorocarbons, constant temperature and constant pressure, 1, 3, vapor-liquid equilibrium line (R2, equivalent to 20°C), 2, 4, vapor-liquid equilibrium line. (Equivalent to R2250°C).

Claims (2)

【特許請求の範囲】[Claims] (1)ペンタフルオロエタン55〜85重量%以下、テ
トラフルオロエタン45重量%以下、ジフルオロエタン
30重量%以下の少なくとも三種のフロン類を含む作動
流体。
(1) A working fluid containing at least three types of fluorocarbons: 55 to 85% by weight of pentafluoroethane, 45% by weight or less of tetrafluoroethane, and 30% by weight or less of difluoroethane.
(2)ペンタフルオロエタン55〜80重量%以下、テ
トラフルオロエタン45重量%以下、ジフルオロエタン
30重量%以下であることを特徴とする作動流体。
(2) A working fluid characterized by containing 55 to 80% by weight of pentafluoroethane, 45% by weight or less of tetrafluoroethane, and 30% by weight or less of difluoroethane.
JP1311160A 1989-11-30 1989-11-30 Working fluid Expired - Fee Related JP2580349B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP1311160A JP2580349B2 (en) 1989-11-30 1989-11-30 Working fluid
US07/839,700 US5304319A (en) 1989-11-30 1992-02-24 Working fluid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1311160A JP2580349B2 (en) 1989-11-30 1989-11-30 Working fluid

Publications (2)

Publication Number Publication Date
JPH03170590A true JPH03170590A (en) 1991-07-24
JP2580349B2 JP2580349B2 (en) 1997-02-12

Family

ID=18013820

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1311160A Expired - Fee Related JP2580349B2 (en) 1989-11-30 1989-11-30 Working fluid

Country Status (1)

Country Link
JP (1) JP2580349B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6508950B1 (en) 1999-11-02 2003-01-21 Korea Institute Of Science And Technology Refrigerant mixtures containing difluoromethane (HFC-32), pentafluoroethane (HFC-125) and 1,1,1,2-Tetrafluoroethane (HFC-134a)
US6692653B2 (en) 2001-02-16 2004-02-17 Korea Institute Of Science And Technology Refrigerant composition
US6776922B2 (en) 2002-07-24 2004-08-17 Korea Institute Of Science And Technology Refrigerant composition comprising difluoromethane, 1,1,1-trifluoroethane and 1,1-difluoroethane
US6800216B2 (en) 2002-07-24 2004-10-05 Korea Institute Of Science And Technology Refrigerant composition for replacing chlorodifluoromethane
US6841087B2 (en) 2002-04-19 2005-01-11 Korea Institute Of Science And Technology Refrigerant composition comprising difluoromethane, 1,1,1-trifluoroethane and 1,1,1,2-tetrafluoroethane

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6508950B1 (en) 1999-11-02 2003-01-21 Korea Institute Of Science And Technology Refrigerant mixtures containing difluoromethane (HFC-32), pentafluoroethane (HFC-125) and 1,1,1,2-Tetrafluoroethane (HFC-134a)
US6692653B2 (en) 2001-02-16 2004-02-17 Korea Institute Of Science And Technology Refrigerant composition
US6841087B2 (en) 2002-04-19 2005-01-11 Korea Institute Of Science And Technology Refrigerant composition comprising difluoromethane, 1,1,1-trifluoroethane and 1,1,1,2-tetrafluoroethane
US6776922B2 (en) 2002-07-24 2004-08-17 Korea Institute Of Science And Technology Refrigerant composition comprising difluoromethane, 1,1,1-trifluoroethane and 1,1-difluoroethane
US6800216B2 (en) 2002-07-24 2004-10-05 Korea Institute Of Science And Technology Refrigerant composition for replacing chlorodifluoromethane

Also Published As

Publication number Publication date
JP2580349B2 (en) 1997-02-12

Similar Documents

Publication Publication Date Title
JPH03170585A (en) Working fluid
JPH03170594A (en) Working fluid
JPH03170590A (en) Working fluid
JPH03170588A (en) Working fluid
JPH03170591A (en) Working fluid
JPH0665561A (en) Working fluid
JPH03170586A (en) Working fluid
JPH03170584A (en) Working fluid
JPH03170593A (en) Working fluid
JPH03170589A (en) Working fluid
JPH03172384A (en) Working fluid
JPH03170592A (en) Working fluid
JPH03168265A (en) Working fluid
JPH03168273A (en) Working fluid
JPH0517746A (en) Working fluid
JPH0517750A (en) Working fluid
JPH03220285A (en) Working fluid
JPH0517755A (en) Working fluid
JPH03170587A (en) Working fluid
JPH0517753A (en) Working fluid
JPH03168287A (en) Working fluid
JPH03168277A (en) Working fluid
JPH03168268A (en) Working fluid
JPH03168282A (en) Working fluid
JPH03168278A (en) Working fluid

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees