JPH03168285A - Working fluid - Google Patents

Working fluid

Info

Publication number
JPH03168285A
JPH03168285A JP1309667A JP30966789A JPH03168285A JP H03168285 A JPH03168285 A JP H03168285A JP 1309667 A JP1309667 A JP 1309667A JP 30966789 A JP30966789 A JP 30966789A JP H03168285 A JPH03168285 A JP H03168285A
Authority
JP
Japan
Prior art keywords
working fluid
vapor
line
liquid equilibrium
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1309667A
Other languages
Japanese (ja)
Inventor
Koji Arita
浩二 有田
Takeshi Tomizawa
猛 富澤
Yuji Yoshida
雄二 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1309667A priority Critical patent/JPH03168285A/en
Publication of JPH03168285A publication Critical patent/JPH03168285A/en
Pending legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE:To provide a working fluid reduced in the affection thereof on the ozone layer of the stratosphere and capable of being employed as a substitute of dichlorodifluoromethane (R12) by containing chlorodifluoromethane, chlorodifluoroethane and dichlorofluoroethane in a specific ratio. CONSTITUTION:The objective working fluid contains at least three kinds of freons comprising (A) 45-95wt.% (preferably 50-90wt.%) of chlorodifluoromethane (R22), (B) <=55wt.% (preferably <=50wt.%) of 1-chloro-1,1-difluoroethane (R142b) and <=45wt.% of 1,1-dichloro-1-fluoroethane (R141b). The working fluid is employed in freezers, heat pumps, etc.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は 冷凍機・ヒートボンプ等に使用される作動流
体に関すん 従来の技術 従来 冷凍機・ヒートボンプ等において(上 作動流体
としてフロン類(以下ROOまたはROOOと記す)と
呼ばれるハロゲン化炭化水素が知られており、利用温度
としては凝縮温度および/または蒸発温度が略O〜略5
0℃の範囲において通常使用されも 中でもジクロロジ
フルオロメタン(CCl2Fa、Rl2)は冷蔵限 カ
ーエアコンや大型冷凍機等の作動流体として幅広く用い
られていも 発明が解決しようとする課題 しかしなが転 近年フロンによる戒層圏オゾン層破壊が
地球規模の環境問題となっており、戒層圏オゾン破壊能
力が大であるフロン類(以下、特定フロンと記す)につ
いて(上 すでに国際条約によって使用量及び生産量の
規制がなされ さらに将来的には特定フロンの使用・生
産を廃止しようという動きがあも さて、R12はオゾ
ン破壊係数(トリクロロフルオロメタン(CCIIF)
の戒層圏オゾン破壊能力を1としたときの戒、層圏オゾ
ン破壊能九 以下ODPと記す)が1.0の特定フロン
であり、冷凍・空調機器が広く普及した現& R12の
使用量及び生産量の削減が人類の生活環境に与える影響
は甚だ太き(1 従って、或層圏オゾン破壊能力が小で
あり、R12の代替となる作動流体の早期開発が強く要
望されていも本発明は 上述の問題に鑑みて試されたも
の弘戊層圏オゾン層に及ぼす影響が小さI,LR12の
代替となる作動流体を提供するものであん課題を解決す
るための手段 本発明は上述の課題を解決するた取 少なくと鯨 クロ
ロジフルオロメタン(CHCIFg)とクロロジフルオ
ロエタン(C2HSC I Fm)とジクロロフルオロ
エタン(CaHsC1aF)から3種のフロン類を含へ
 クロロジフルオロメタン略45〜略95重量抵 クロ
ロジフルオロエタン0〜略55重量勉 ジクロロフルオ
ロエタン0〜略45重量%の組或範囲であることを特徴
とするものであり、特ニ  クロロジフルオロメタン略
50〜略90重量瓢 クロロジフルオロエタン0〜略5
0重量基 ジクロロフルオロエタンO〜略45重量%の
組戊範囲が望ましいものであも 作用 本発明:友 上述の組合せによって、作動流体を、オゾ
ン破壊能力の極めて低い分子構造中に塩素・水素を共に
含むフロン類であるクロロジフルオロメタン(ODP=
0.  05)、クロロジフルオロエタン(ODP=0
.  06)およびジクロロフルオロエタン(ODP=
0.  1)の混合物となすことにより、戊層圏オゾン
層に及ぼす影響をR12よりもはるかに小さくすること
を可能とするものであも 又 本発明は上述の組成範囲とすることによって、冷凍
機・ヒートボンブ等の利用温度である略O〜略50℃に
おいてR12と同程度の蒸気圧を有L,R12の代替と
して現行機器で使用可能な作動流体を提供することを可
能とするものであも特に上述の組合せおよび組或範囲に
おけるODPは0. 05〜0. 07と予想され R
12の代替として極めて有望な作動流体となるものであ
もまたかかる混合物は非共沸混合物となり、凝縮過程お
よび蒸発過程において温度勾配をもったべ熱源流体との
温度差を近接させたロレンツサイクルを構戊することに
より、R12よりも高い或績係数を期待できるものであ
も 実施例 以下、本発明による作動流体の実施例について、図を用
いて説明すも 第1図Cヨ  クロロジフルオロメタン(R22)、1
−クロロ−1,  l−ジフルオロエタン(R142b
)、 l,  1−ジクロロ−1−フルオロエタン(R
14lb)の3種のフロン類の混合物によって構戊され
る作動流体α 一定温度・一定圧力における平衡状態を
三角座標を用いて示したものであん 本三角座標におい
て(よ 三角形の各頂点に上側頂点を基点として反時計
回りに沸点の低い順に単一物質を配置しており、座標平
面上のある点における各戊分の組戒比(重量比> ti
t..  点と三角形の各辺との距離の比で表されも 
またこのとき、点と三角形の辺との距離it  辺に相
対する側にある三角座標の頂点に記された物質の組或比
に対応すも 第l図において11上 温度0℃・圧力2
.1 1 6 k g/ cm”Gにおける混合物の気
液平衡線であり、この温度・圧力はR12の飽和状態に
相当すも 気液平衡線(R120℃相当)1の上側の線
は飽和気相亀 気液平衡線(R120℃相当)lの下側
の線は飽和液相線を表わし この画線で挟まれた範囲に
おいては気液平衡状態となん また2&上 温度50℃
・圧力11.373kg/cm’Gにおける混合物の気
液平衡線であり、この温度・圧力もR12の飽和状態に
相当すん図からわかるよう+;R22、R142b及び
R14lbがそれぞれ略45〜略95重量%.0〜略5
5重量%O〜略45重量%となるような組戊範囲ILL
  略0〜略50℃の利用温度においてRl2とほぼ同
等の蒸気圧を有するため望1い1さらに R22、Rl
42b及びR14lbがそれぞれ略50〜略90重量K
O〜略50重量賊O〜略45重量%となるような組戒範
囲(友 0℃と50℃の間のすべての利用温度において
R12とほぼ同等の蒸気圧を有するため特に望まし鶏特
に上述の組合せおよび組或範囲における○DPは0. 
05〜0. 07と予想され R12の代替として極め
て有望な作動流体となるものであも第1図中の点A1〜
点F1における作動流体の組或及び○DPを第1表に示
す。点Al〜点C1は気液平衡線(R12  50℃相
当)2の飽和気相線上に 点Flは気液平衡線(R12
  50℃相当)2の飽和液線上にあると共に 気液平
衡線(R120℃相当)1の飽和気相線及び気液平衡線
(R120℃相当)1の飽和液相線の画線で挟まれた範
囲にあることか転 温度0℃・圧力2.  1 16k
g/cm”G (Rl 2の飽和状態に相当)において
は気液平衡状態となん また 点Dl及び点Elは気液
平衡線(R12  0℃相当)lの飽和液線上にあると
共に 気液平衡線(Rl2 50℃相当)2の飽和気相
線及び気液平衡線(R12  50℃相当)2の飽和液
相線の画線で挟まれた範囲にあることか収 温度50℃
・圧力1 1.  3 7 3 kg/cm”G (R
 1 2の飽和状態に第1表 相当)においては気液平衡状態となん 従って、第1表
に示された組或を有する作動流体(上 0℃・50℃に
おけるR12の飽和蒸気圧の条件下で飽和状態あるいは
気液平衡状態を実現し 略0〜略50℃の利用温度にお
いて、同温度におけるR12の飽和蒸気圧で操作するこ
とにより、R12とほぼ等しい凝縮温度・蒸発温度を得
ることが可能となるものであも ここで(上 気液平衡線(R120℃相当)lあるいは
気液平衡線(R12  50℃相当〉2上の点について
のみ説明した力t 点A1〜点Flの内側にある戊 す
なわム 温度0℃・圧力2.  116kg/cm”G
及び温度50℃・圧力11.373kg/cm”G(両
者ともR12の飽和状態に相当)において気液平衡状態
となる組戒を有する作動流体についても同様に操作する
ことにより、略O〜略50℃の利用温度においてR12
とほぼ等しい凝縮温度・蒸発温度を得ることが可能とな
るものであも 本実施例においては作動流体は3種のフロン類の混合物
によって構或されている力t 構造異性体を含めて4種
以上のフロンの混合物によって作動流体を構戊すること
も勿論可能であも またかかる混合物は非共沸混合物と
なり、凝縮過程および蒸発過程において温度勾配をもっ
た数 熱源流体との温度差を近接させたロレンツサイク
ルを構戊することにより、R12よりも高い戊績係数を
期待できるものであも 発明の効果 以上の説明から明らかなように 本発明it  作動流
体を、分子構造中に塩素・水素を共に含むフロン類の3
種以上から或る混合物となし その組戒範囲を特定した
ことにより、 (1)戒層圏オゾン層に及ぼす影響をR12よりもはる
かに小さくするためα 作動流体の選択の幅を拡大する
ことが可能であも (2〉機器の利用温度においてR12と同程度の蒸気圧
を有L,R12の代替として現行機器で使用可能であム (3)非共沸混合物の温度勾配の性質を利用して、R1
2よりも高い或績係数を期待できる等の効果を有するも
のであも
[Detailed Description of the Invention] Industrial Field of Application The present invention relates to working fluids used in refrigerators, heat pumps, etc. A halogenated hydrocarbon called ROOO is known, and its usage temperature ranges from about 0 to about 5.
Among them, dichlorodifluoromethane (CCl2Fa, Rl2) is commonly used in the range of 0°C, but has a refrigeration limit.Although it is widely used as a working fluid for car air conditioners and large refrigerators, the problem that the invention is trying to solve is that fluorocarbons have changed in recent years. The depletion of the stratospheric ozone layer due to fluorocarbons has become a global environmental issue, and international treaties have already established the use and production of fluorocarbons (hereinafter referred to as specified fluorocarbons), which have a large ability to deplete the stratospheric ozone. In addition, there is a movement to abolish the use and production of specified CFCs in the future.Now, R12 is the ozone depletion factor (trichlorofluoromethane (CCIIF)).
It is a specific fluorocarbon with a stratospheric ozone depletion potential (hereinafter referred to as ODP) of 1.0, when the stratospheric ozone depletion potential of 1. The impact of the reduction in R12 production on the human living environment is enormous (1) Therefore, even though the ability to deplete stratospheric ozone is small and there is a strong demand for the early development of a working fluid that can replace R12, the present invention The present invention has been tried in view of the above-mentioned problems.The present invention provides a working fluid that has a small effect on the ozone layer in the Kobo stratosphere and can be used as an alternative to LR12.The present invention solves the problems described above. In order to solve the problem, at least three types of fluorocarbons are included: chlorodifluoromethane (CHCIFg), chlorodifluoroethane (C2HSC I Fm), and dichlorofluoroethane (CaHsC1aF). 0 to about 55% by weight of dichlorodifluoroethane 0 to about 45% by weight, particularly 50 to about 90% by weight of chlorodifluoroethane
The composition range of 0 weight group dichlorofluoroethane O to approximately 45 weight percent is desirable.The above combination allows the working fluid to contain chlorine and hydrogen in its molecular structure, which has an extremely low ozone depletion ability. Chlorodifluoromethane (ODP=
0. 05), chlorodifluoroethane (ODP=0
.. 06) and dichlorofluoroethane (ODP=
0. By forming a mixture of 1), it is possible to make the effect on the stratospheric ozone layer much smaller than that of R12. It has a vapor pressure similar to that of R12 at temperatures ranging from about 0 to about 50 degrees Celsius, which is the operating temperature of heat bombs, etc., and can provide a working fluid that can be used in current equipment as an alternative to L and R12. The ODP in the above combinations and ranges is 0. 05~0. Expected to be 07 R
However, such a mixture is a non-azeotropic mixture and constitutes a Lorenz cycle in which the temperature gradient between the condensation process and the evaporation process is close to that of the heat source fluid. Examples of working fluids according to the present invention will be described below with reference to the drawings. ), 1
-Chloro-1, l-difluoroethane (R142b
), l, 1-dichloro-1-fluoroethane (R
The working fluid α is composed of a mixture of three types of fluorocarbons (14 lb).The equilibrium state at constant temperature and constant pressure is shown using triangular coordinates. The single substances are arranged counterclockwise in descending order of boiling point from the base point, and the group ratio (weight ratio > ti
t. .. It can also be expressed as the ratio of the distance between a point and each side of a triangle.
Also, at this time, the distance it between the point and the side of the triangle corresponds to the composition ratio of the substance written at the vertex of the triangular coordinates on the side opposite the side.
.. This is the vapor-liquid equilibrium line of the mixture at 1 1 6 kg/cm"G, and this temperature and pressure correspond to the saturated state of R12. The upper line of vapor-liquid equilibrium line (equivalent to R120°C) 1 is the saturated vapor phase. The lower line of the vapor-liquid equilibrium line (equivalent to R120°C) represents the saturated liquidus line, and the range between these lines is in a state of vapor-liquid equilibrium.The temperature is 50°C.
・This is the vapor-liquid equilibrium line of the mixture at a pressure of 11.373 kg/cm'G, and this temperature and pressure also correspond to the saturated state of R12. %. 0 to about 5
The assembly range ILL is 5% by weight to approximately 45% by weight.
R22, Rl is desirable because it has almost the same vapor pressure as Rl2 at a usage temperature of about 0 to about 50°C.
42b and R14lb each weigh approximately 50 to approximately 90K
O~approximately 50% by weight O~approximately 45% by weight ○DP in a certain range of combinations and sets is 0.
05~0. 07, which is expected to be a very promising working fluid as an alternative to R12.
The working fluid combination and DP at point F1 are shown in Table 1. Points Al to C1 are on the saturated vapor phase line of the vapor-liquid equilibrium line (R12, equivalent to 50°C) 2. Point Fl is on the vapor-liquid equilibrium line (R12, equivalent to 50°C) 2.
It is on the saturated liquid line of 2 (equivalent to 50°C) and is sandwiched between the saturated vapor line of vapor-liquid equilibrium line (equivalent to R120°C) 1 and the saturated liquidus line of vapor-liquid equilibrium line (equivalent to R120°C) 1. Temperature 0℃・Pressure 2. 1 16k
g/cm"G (corresponding to the saturated state of Rl 2), there is a vapor-liquid equilibrium state. Also, point Dl and point El are on the saturated liquid line of the vapor-liquid equilibrium line (corresponding to R12 0°C) l, and there is vapor-liquid equilibrium. It must be within the range between the saturated vapor line of line (R12 equivalent to 50°C) 2 and the saturated liquidus line of vapor-liquid equilibrium line (R12 equivalent to 50°C) 2.
・Pressure 1 1. 3 7 3 kg/cm”G (R
Therefore, under the conditions of the saturated vapor pressure of R12 at 0°C and 50°C, the working fluid with the composition shown in Table 1 is By realizing a saturated state or a vapor-liquid equilibrium state at a usage temperature of about 0 to about 50°C, and operating at the saturated vapor pressure of R12 at the same temperature, it is possible to obtain a condensation temperature and evaporation temperature almost equal to that of R12. Here, the force t explained only about the points on the vapor-liquid equilibrium line (R120℃ equivalent) l or the vapor-liquid equilibrium line (R12 equivalent to 50℃) 2 is inside the points A1 to Fl. Temperature 0℃・Pressure 2.116kg/cm"G
By performing the same operation on a working fluid that has a gas-liquid equilibrium state at a temperature of 50°C and a pressure of 11.373 kg/cm''G (both correspond to the saturated state of R12), approximately 0 to approximately 50 R12 at the operating temperature of °C
However, in this example, the working fluid is composed of a mixture of three types of fluorocarbons. Although it is of course possible to construct the working fluid by a mixture of the above-mentioned fluorocarbons, such a mixture becomes a non-azeotropic mixture, and has a temperature gradient in the condensation and evaporation processes. Although a higher performance coefficient than R12 can be expected by constructing a Lorenz cycle with 3 of fluorocarbons included together
By specifying the range of combinations of more than one species, it is possible to expand the range of choices of working fluids in order to make the effect on the stratospheric ozone layer much smaller than that of R12. Even if it is possible, (2) L has a vapor pressure similar to that of R12 at the operating temperature of the equipment, and can be used in current equipment as a substitute for R12. (3) Utilizes the temperature gradient properties of non-azeotropic mixtures. te, R1
Even if it has an effect such that a performance coefficient higher than 2 can be expected.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(よ 3種のフロン類の混合物によって構l・・
・気液平衡線(R120℃相当)、・・・気液平衡線(
Rl2  50℃相当)。
Figure 1 (Constructed by a mixture of three types of fluorocarbons...
・Vapor-liquid equilibrium line (equivalent to R120℃), ...vapor-liquid equilibrium line (
Rl2 equivalent to 50°C).

Claims (2)

【特許請求の範囲】[Claims] (1)クロロジフルオロメタン45〜95重量%以下、
クロロジフルオロエタン55重量%以下、ジクロロフル
オロエタン45重量%以下の少なくとも3種のフロン類
を含む作動流体。
(1) 45 to 95% by weight of chlorodifluoromethane,
A working fluid containing at least three types of fluorocarbons, 55% by weight or less of chlorodifluoroethane and 45% by weight or less of dichlorofluoroethane.
(2)クロロジフルオロメタン50〜90重量%以下、
クロロジフルオロエタン50重量%以下、ジクロロフル
オロエタン45重量%以下の少なくとも3種のフロン類
を含む作動流体。
(2) chlorodifluoromethane 50 to 90% by weight or less,
A working fluid containing at least three types of fluorocarbons, 50% by weight or less of chlorodifluoroethane and 45% by weight or less of dichlorofluoroethane.
JP1309667A 1989-11-29 1989-11-29 Working fluid Pending JPH03168285A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1309667A JPH03168285A (en) 1989-11-29 1989-11-29 Working fluid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1309667A JPH03168285A (en) 1989-11-29 1989-11-29 Working fluid

Publications (1)

Publication Number Publication Date
JPH03168285A true JPH03168285A (en) 1991-07-22

Family

ID=17995818

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1309667A Pending JPH03168285A (en) 1989-11-29 1989-11-29 Working fluid

Country Status (1)

Country Link
JP (1) JPH03168285A (en)

Similar Documents

Publication Publication Date Title
JPH03170594A (en) Working fluid
JPH03170591A (en) Working fluid
JPH03168285A (en) Working fluid
JPH03170590A (en) Working fluid
JPH03170586A (en) Working fluid
JPH03170593A (en) Working fluid
JPH03170589A (en) Working fluid
JPH03168262A (en) Working fluid
JPH03168278A (en) Working fluid
JPH03168287A (en) Working fluid
JPH03168284A (en) Working fluid
JPH03168270A (en) Working fluid
JPH03168273A (en) Working fluid
JPH03168288A (en) Working fluid
JPH0517750A (en) Working fluid
JPH03168269A (en) Working fluid
JPH0517753A (en) Working fluid
JPH03170592A (en) Working fluid
JPH0517755A (en) Working fluid
JPH03168283A (en) Working fluid
JPH0517746A (en) Working fluid
JPH03168266A (en) Working fluid
JPH03168268A (en) Working fluid
JPH03168272A (en) Working fluid
JPH03168279A (en) Working fluid