JPH03167820A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH03167820A
JPH03167820A JP30854889A JP30854889A JPH03167820A JP H03167820 A JPH03167820 A JP H03167820A JP 30854889 A JP30854889 A JP 30854889A JP 30854889 A JP30854889 A JP 30854889A JP H03167820 A JPH03167820 A JP H03167820A
Authority
JP
Japan
Prior art keywords
electron beam
resist film
alignment mark
mark
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30854889A
Other languages
Japanese (ja)
Inventor
Hisao Kawasaki
久夫 川崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP30854889A priority Critical patent/JPH03167820A/en
Publication of JPH03167820A publication Critical patent/JPH03167820A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Electron Beam Exposure (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To enable steady lift-off through electron beam exposure by removing a developed and exposed alignment mark to expose the substrate and using an etched step as a spacer for lift-off. CONSTITUTION:An active layer 12, a source electrode 13, a drain electrode 14 and alignment mark 15 are formed on a GaAs substrate 11. The substrate is coated with resist film 16, and irradiated with an electron beam 17 between electrodes 13 and 14 to form openings 18a and 18b. Etchant is applied through the opening 18b to remove the mark 15 selectively. The active layer and the substrate 11 are etched through the openings 18a and 18b to form recesses. Metal film 19 for the gate electrode is deposited, and it is removed from the resist film 16. The metal film of the mark 15 is removed in the area of the opening 18b in this structure. Therefore, the substrate 11 is etched, and it is easy to the lift-off of the film 19 using the etched step as a spacer.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は半導体装置の製造方法に関する.(従来の技術
) 半導体装置の製造工程で要求される最少加工寸法は著し
く微細化されており、特に砒化ガリウム(GaAS)等
の化合物半導体を用いたマイクロ波半導体装置のゲート
電極寸法は既に0,25.以下に達している.この様な
微細パターンの加工法としては、電子ビームを用いた電
子ビーム露光技術が広く採用されている. 電子ビーム露光で半導体基板にパターンを形成するため
には、既存パターンと電子ビームとの位置合わせを正確
に行う必要がある.このため、半導体基板上に平面形状
が十字形あるいはL字形の電子ビーム露光用位置合わせ
マーク(以下、位置合わせマークと略称する)を形威し
ておき,その位置合わせマークを電子ビームで走査しマ
ーク検出を行った後,既存パターンと電子ビームとの位
置関係を求め、補正を加えることによって高精度な位置
合わせを行う.一般に、この位置合わせマークは検出信
号の信号対ノイズ比(S/N比)が太きい金属膜が多く
用いられる. 第2図は、GaAsを用いたショットキ障壁型電界効果
トランジスタ(MESFET)のゲート電極パターンを
電子ビーム露光で形或する工程図を示すものである.第
2図(a)に示されるように、半絶縁性GaAs基板1
01上に活性層102が積層され、活性層102上にソ
ース電極103,ドレイン電極104、半絶縁性GaA
s基板■上に金(Au)で形成された位置合わせマーク
105がそれぞれ形威され,全面にポジタイプのレジス
ト膜106を塗布した後、位置合わせマーク105を含
む領域を電子ビーム107で走査しマーク検出を行い、
ソース電極103とドレイン電極104との間に電子ビ
ーム7を照射しレジスト膜106をゲート電極パターン
形状に従って露光する。次に,レジスト膜106を現像
すると,電子ビーム107が照射された部分のレジスト
膜106に第2図(b)で示すような開孔108a. 
108bが形成される.第2図(C)は、第2図(b)
の様子を示した上面図である.L字形の位置合わせマー
ク105には、X方向,Y方向のマーク検出で生じた開
孔108x、108yが形或される。例えば、ウェーハ
1枚当たりの露光時間と、高精度で安定したマーク検出
を考慮して、電子ビーム露光の条件を、ビーム電流=0
.2nA、マーク検出時のビームショット時間=10μ
sec、ビーム間隔=0.1.、ビームの走査回数=I
O回とした場合、位置合わせマーク上のレジスト膜に照
射される電子の量(ドーズ量)は、 ((ビーム電流・ビームショット時間)/ビーム間隔)
・走査回数=20C/amとなる。この値は、電子ビー
ム用レジスト例えばPMMA (ポリメチルメタアクリ
レート)の最適ドーズ量とほぼ同じであることと、位置
合わせマーク105上のレジスト膜106の膜厚が他の
部分よりも位置合わせマーク105の膜厚分だけ薄いた
め、現像後位置合わせマーク105上のレジスト膜10
6が除去されてしまう。なお、第2図(b)は、第2図
(c)のA−Aで示した一点鎖線に沿う断面図である。
[Detailed Description of the Invention] [Object of the Invention] (Field of Industrial Application) The present invention relates to a method for manufacturing a semiconductor device. (Prior Art) The minimum processing dimensions required in the manufacturing process of semiconductor devices have become significantly finer. In particular, the gate electrode dimensions of microwave semiconductor devices using compound semiconductors such as gallium arsenide (GaAS) have already reached 0. 25. The following has been achieved. Electron beam exposure technology using an electron beam is widely used as a method for processing such fine patterns. In order to form a pattern on a semiconductor substrate using electron beam exposure, it is necessary to accurately align the existing pattern with the electron beam. For this purpose, alignment marks for electron beam exposure (hereinafter referred to as alignment marks) with a cross-shaped or L-shaped planar shape are formed on the semiconductor substrate, and the alignment marks are scanned with an electron beam. After detecting marks, the positional relationship between the existing pattern and the electron beam is determined, and corrections are made to achieve highly accurate positioning. Generally, a metal film with a large signal-to-noise ratio (S/N ratio) of a detection signal is often used for this alignment mark. FIG. 2 shows a process diagram for forming a gate electrode pattern of a Schottky barrier field effect transistor (MESFET) using GaAs by electron beam exposure. As shown in FIG. 2(a), a semi-insulating GaAs substrate 1
An active layer 102 is stacked on 01, and a source electrode 103, a drain electrode 104, and a semi-insulating GaA layer are stacked on the active layer 102.
Alignment marks 105 made of gold (Au) are formed on the s substrate, and after coating the entire surface with a positive resist film 106, the area including the alignment marks 105 is scanned with an electron beam 107 to mark the marks. perform the detection,
An electron beam 7 is irradiated between the source electrode 103 and the drain electrode 104 to expose the resist film 106 according to the shape of the gate electrode pattern. Next, when the resist film 106 is developed, the portions of the resist film 106 irradiated with the electron beam 107 have openings 108a as shown in FIG. 2(b).
108b is formed. Figure 2 (C) is Figure 2 (b)
FIG. The L-shaped alignment mark 105 has openings 108x and 108y formed by mark detection in the X and Y directions. For example, taking into account the exposure time per wafer and highly accurate and stable mark detection, set the electron beam exposure conditions to beam current = 0.
.. 2nA, beam shot time during mark detection = 10μ
sec, beam spacing=0.1. , number of beam scans = I
In the case of O times, the amount of electrons (dose) irradiated to the resist film on the alignment mark is ((beam current/beam shot time)/beam interval)
- Number of scans = 20C/am. This value is approximately the same as the optimum dose of an electron beam resist such as PMMA (polymethyl methacrylate), and the thickness of the resist film 106 on the alignment mark 105 is thicker than on other parts. The resist film 10 on the alignment mark 105 after development is thinner by the film thickness of .
6 will be removed. Note that FIG. 2(b) is a sectional view taken along the dashed line AA in FIG. 2(c).

続いて、第2図(d)で示すように開孔108を通して
活性層102を所定の深さにリセスエッチングし、ゲー
ト電極用金属膜109を被着する.リセスエッチングは
、MESFETの飽和ドレイン電流の制御、ソース抵抗
の低減、更にゲート電極形成時のりフトオフ用スベーサ
層の形成を目的としている.第2図(d)において、位
置合わせマーク5はリセスエッチング時のGaAsエッ
チャントにより侵されないため,ゲート電極用金属膜1
09を被着した後、レジスト膜6上の金属膜109と位
置合わせマーク105上の金属膜109とが繋がってし
まいりフトオフによるレジスト膜106上の金属膜10
9の除去が出来なくなり、MESFETのゲート電極の
形成が困難になってしまうという問題があった。
Subsequently, as shown in FIG. 2(d), the active layer 102 is recess-etched to a predetermined depth through the opening 108, and a gate electrode metal film 109 is deposited. The purpose of recess etching is to control the saturated drain current of the MESFET, reduce the source resistance, and form a lift-off spacing layer when forming the gate electrode. In FIG. 2(d), since the alignment mark 5 is not attacked by the GaAs etchant during recess etching, the gate electrode metal film 1
09, the metal film 109 on the resist film 6 and the metal film 109 on the alignment mark 105 are connected, and the metal film 10 on the resist film 106 due to the lift-off.
There was a problem in that it became impossible to remove 9, making it difficult to form the gate electrode of the MESFET.

上記問題を解決する方法として、ビーム電流、ビームシ
ョット時間、ビーム間隔、走査回数のマーク検出条件を
変えて、位置合わせマーク105上のレジスト膜106
のドーズ量をレジスト膜106の最適ドーズ量以下に抑
え、現像後位置合わせマークlO5が露出しないように
する方法が考えられるもののスループット、マーク検出
等に、以下に記す問題が生ずる。
As a method to solve the above problem, the resist film 105 on the alignment mark 105 is changed by changing the mark detection conditions such as beam current, beam shot time, beam interval, and number of scans.
Although it is possible to consider a method of suppressing the dose of resist film 106 below the optimum dose of the resist film 106 so that the alignment mark 105 is not exposed after development, the following problems occur in throughput, mark detection, etc.

(1)電子ビーム露光に要する時間は、ビーム電流にほ
ぼ比例する。このためビーム電流を少なくすることは、
露光に要する時間がそれだけ長くなりスループットの低
下を招く. (2)ビームショット時間を短くする方法は、検出する
信号強度が弱くなるためS/N比が低下し安定したマー
ク検出が困難になる。
(1) The time required for electron beam exposure is approximately proportional to the beam current. Therefore, reducing the beam current is
The time required for exposure increases accordingly, resulting in a decrease in throughput. (2) In the method of shortening the beam shot time, the signal strength to be detected becomes weaker, the S/N ratio decreases, and stable mark detection becomes difficult.

(3)ビーム間隔を広くする方法は、マーク検出の位置
精度を低下させるためパターンの重ね合わせ誤差が大き
くなる. (4)走査回数を減らす方法は、マーク検出信号の平均
化処理に必要なデータ数が少なくなるため、パターンの
重ね合わせ精度が低下する.したがって、ウェーハ1枚
当たりの露光時間を増大せずに、しかも高精度で安定し
たマーク検出を行うためには,位置合わせマーク上のレ
ジスト膜に電極パターン部と同程度の電子ビームを照射
する必要がある。さらに、レジスト膜として前記PMM
Aよりも高感度なレジスト膜を使用する場合、位置合わ
せマーク105上のレジスト膜に106には最適ドーズ
量よりも過大な電子ビームが照射されるため、現像処理
後位置合わせマーク5が露出されることはまぬがれ得な
い. (発明が解決しようとする課題) 以上述べたように従来の位置合わせマークでは,ウェー
ハー枚当たりの露光時間を増大せずに、しかも高精度で
安定したマーク検出を行おうとすると、マーク検出時の
電子ビーム照射で位置合わせマークが露出するため、リ
フトオフ法で電極パターンを形或するのが困難になると
いう問題があった・ 本発明は、このような欠点を排除し、リフトオフ法を用
いて電極パターンを形成する際,ウェーハー枚当たりの
露光時間を増大させずに、しかも高精度で安定したマー
ク検出が行える半導体装置の製造方法を提供することを
目的とする.〔発明の構成〕 (課題を解決するための手段) 本発明にかかる半導体装置の製造方法は、半導体基板上
に,電子ビーム露光用位置合わせマークを形或する工程
と,前記半導体基板上にレジスト膜を塗布した後,前記
電子ビーム露光用位置合わせマークを含む領域の前記レ
ジスト膜に電子ビームを照射する工程と,前記半導体基
板上の前記レジスト膜に所定のパターンにしたがって電
子ビームを照射する工程と,前記レジスト膜に現像処理
を施し該レジスト膜に開孔を形成する工程と,該開孔を
通して前記電子ビーム露光用位置合わせマークの少なく
とも一部をエッチング除去した後、前記半導体基板を前
記開孔を通して所定の深さにエッチング除去する工程と
を含むことを特徴とする. (作 用) 本発明の半導体装置の製造方法では、現像処理後露出し
た位置合わせマークをエッチング除去し半導体基板を露
出させ、この後に行われる半導体基板のエッチングで生
じた段差をリフトオフ用のスペーサ層とすることによっ
て電子ビーム露光でも安定したリフトオフが可能となる
.(実施例) 本発明の一実施例について図面を参照して説明する。
(3) The method of widening the beam spacing reduces the positional accuracy of mark detection and increases the pattern overlay error. (4) The method of reducing the number of scans reduces the amount of data required for averaging processing of mark detection signals, resulting in a decrease in pattern overlay accuracy. Therefore, in order to perform highly accurate and stable mark detection without increasing the exposure time per wafer, it is necessary to irradiate the resist film on the alignment mark with the same amount of electron beam as the electrode pattern area. There is. Furthermore, the PMM is used as a resist film.
When using a resist film with higher sensitivity than A, the resist film 106 on the alignment mark 105 is irradiated with an electron beam that is larger than the optimum dose, so the alignment mark 5 is exposed after the development process. It is impossible to avoid this. (Problems to be Solved by the Invention) As described above, with conventional alignment marks, when attempting to perform highly accurate and stable mark detection without increasing the exposure time per wafer, it is difficult to There was a problem in that it was difficult to shape the electrode pattern using the lift-off method because the alignment marks were exposed by electron beam irradiation.The present invention eliminates this drawback and forms the electrode pattern using the lift-off method. The purpose of this invention is to provide a method for manufacturing semiconductor devices that can perform highly accurate and stable mark detection without increasing the exposure time per wafer when forming a pattern. [Structure of the Invention] (Means for Solving the Problems) A method for manufacturing a semiconductor device according to the present invention includes a step of forming alignment marks for electron beam exposure on a semiconductor substrate, and a step of forming a resist on the semiconductor substrate. After applying the film, a step of irradiating the resist film in a region including the alignment mark for electron beam exposure with an electron beam, and a step of irradiating the resist film on the semiconductor substrate with an electron beam according to a predetermined pattern. a step of developing the resist film to form an opening in the resist film; etching away at least a portion of the alignment mark for electron beam exposure through the opening, and then removing the semiconductor substrate from the opening. The method is characterized in that it includes a step of etching away through the hole to a predetermined depth. (Function) In the method for manufacturing a semiconductor device of the present invention, the alignment mark exposed after the development process is etched away to expose the semiconductor substrate, and the step created by the subsequent etching of the semiconductor substrate is replaced with a spacer layer for lift-off. By doing so, stable lift-off is possible even with electron beam exposure. (Example) An example of the present invention will be described with reference to the drawings.

第l図(a)に示すように,半絶縁性GaAs基板11
上に活性層12が積層され,活性層l2上にソース電極
13、ドレイン電極l4、および半絶縁性GaAs基板
11上に金属膜例えば金(Au)で構成された位置合わ
せマーク15がそれぞれ形成され、全面にポジタイプの
レジスト膜l6を塗布した後、位置合わせマークl5を
含む領域を電子ビームl7で走査しマーク検出を行い,
ソース電極l3とドレイン電極l4との間に電子ビーム
17を照射しレジスト膜16をゲート電極パターン形状
に従って露光する.次に、レジスト膜16を現像すると
、電子ビームl7が照射された部分のレジスト膜l7に
第1図(b)で示すような開孔18a, 18bが形成
される.#!いて,第1図(C)で示されるように開孔
18bを通して例えばエンストリップAU−78(製品
名:ジャパンメタルフィニツシングカンバニ製)水溶液
で位置合わせマークl5をエッチング除去した後、開孔
18aを通して活性層12、および開孔18bを通して
半絶縁性GaAs基板1lを所定の深さにリセスエッチ
ングを施す.ここで、GaAsで構成される活性層12
はエンストリップAIJ−78水溶液に対してエッチン
グされないため,位置合わせマークのみが選択的にエッ
チングされる.次に、第l図(d)で示す如くゲート電
極用金属膜l9を被着した後、レジスト膜16上のゲー
ト電極用金属膜l9をリフトオフ法で除去することによ
って、第1図(e)で示すMESFETが形威される.
第1図(d)において、レジスト膜17が開孔された部
分に位置合わせマーク15の金属膜はなく,リセスエッ
チング時にGaAs基板l1がエッチング除去され、こ
のエッチングで生じた段差をリフトオフ用のスペーサ層
とすることで、第■図(e)で示す如くゲート電極用金
属膜l9のリフトオフは何等問題なく容易に行える. 上記実施例では、位置合わせマークとしてAuの場合を
例示したが,ソース電極・ドレイン電極と同時に、かつ
同一金属で形成したNi−AuGe、Au−AuGeで
あっても良い。また,本発明はゲート電極の形或工程に
限られるものではなく、ソース電極・ドレイン電極ある
いはリフトオフ法を用いて形成する他のパターン形戒に
ついても広く適用されることは勿論である。さらに、イ
オンビーム等他の荷電ビームを用いた半導体装置の製造
についても本発明は有効である。さらに、レジスト膜へ
の露光方法についても電子ビームに限らず,イオンビー
ム等他の荷電ビームを用いても有効である。
As shown in FIG. 1(a), a semi-insulating GaAs substrate 11
An active layer 12 is laminated thereon, a source electrode 13 and a drain electrode l4 are formed on the active layer l2, and alignment marks 15 made of a metal film such as gold (Au) are formed on the semi-insulating GaAs substrate 11. After applying a positive type resist film l6 to the entire surface, the area including the alignment mark l5 is scanned with an electron beam l7 to detect the mark.
An electron beam 17 is irradiated between the source electrode 13 and the drain electrode 14 to expose the resist film 16 according to the shape of the gate electrode pattern. Next, when the resist film 16 is developed, openings 18a and 18b as shown in FIG. 1(b) are formed in the resist film 17 at the portions irradiated with the electron beam 17. #! Then, as shown in FIG. 1(C), the alignment mark 15 is removed by etching with an aqueous solution of Enstrip AU-78 (product name: manufactured by Japan Metal Finishing Kanbani) through the hole 18b, and then the hole is opened. The active layer 12 is recessed through the opening 18a, and the semi-insulating GaAs substrate 1l is recessed to a predetermined depth through the opening 18b. Here, the active layer 12 made of GaAs
Since the marks are not etched by the Enstrip AIJ-78 aqueous solution, only the alignment marks are selectively etched. Next, as shown in FIG. 1(d), after depositing the gate electrode metal film 19, the gate electrode metal film 19 on the resist film 16 is removed by a lift-off method, as shown in FIG. 1(e). The MESFET shown in is demonstrated.
In FIG. 1(d), there is no metal film of the alignment mark 15 in the part where the resist film 17 is opened, and the GaAs substrate l1 is etched away during recess etching, and the step created by this etching is used as a spacer for lift-off. By forming a layer, lift-off of the gate electrode metal film 19 can be easily performed without any problem, as shown in FIG. In the above embodiment, Au is used as the alignment mark, but Ni-AuGe or Au-AuGe formed simultaneously with the source electrode and the drain electrode and of the same metal may also be used. Furthermore, the present invention is not limited to the shape or process of the gate electrode, but can of course be widely applied to source electrodes, drain electrodes, and other pattern shapes formed using the lift-off method. Furthermore, the present invention is also effective for manufacturing semiconductor devices using other charged beams such as ion beams. Furthermore, the method of exposing the resist film is not limited to electron beams, but it is also effective to use other charged beams such as ion beams.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明による半導体装置の製造方法
は、マーク検出時の電子ビーム照射で露出した位置合わ
せマークをエッチング除去するため、リフトオフ法で電
極パターンを容易に形成することができる6したがって
,ウェーハ1枚当たりの露光時間を増大させずに、しか
もマーク検出を高精度で安定して行なえるので、マスク
合わせのずれのない半導体装置の製造方法を提供できる
顕著な効果がある.
As described above, in the method for manufacturing a semiconductor device according to the present invention, the alignment mark exposed by electron beam irradiation during mark detection is etched away, so that the electrode pattern can be easily formed by the lift-off method6. Since mark detection can be performed stably with high precision without increasing the exposure time per wafer, it has the remarkable effect of providing a method for manufacturing semiconductor devices without mask alignment misalignment.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)ないし(e)は本発明にかかる位置合わせ
マークの一実施例を説明するためのいずれも断面図、第
2図(a)ないし(d)は従来の位置合わせマークを説
明するための図で、(a) (b) (d)はいずれも
断面図、(C)は上面図である。 11・・・半導体基板. 12・・・活性層、l3・・
・ソース電極、14・・・ドレイン電極、15・・・位
置合わせマーク,16・・・レジスト膜. 17・・・
電子ビーム、18a, 18b−開孔、18x, 18
y−開孔、19・・・ゲート電極用金属膜。
Figures 1 (a) to (e) are cross-sectional views for explaining one embodiment of the alignment mark according to the present invention, and Figures 2 (a) to (d) illustrate conventional alignment marks. (a), (b), and (d) are all cross-sectional views, and (C) is a top view. 11...Semiconductor substrate. 12...active layer, l3...
- Source electrode, 14... Drain electrode, 15... Alignment mark, 16... Resist film. 17...
Electron beam, 18a, 18b - aperture, 18x, 18
y-opening, 19...metal film for gate electrode.

Claims (1)

【特許請求の範囲】[Claims]  半導体基板上に、電子ビーム露光用位置合わせマーク
を形成する工程と、前記半導体基板上にレジスト膜を塗
布した後、前記電子ビーム露光用位置合わせマークを含
む領域の前記レジスト膜に電子ビームを照射する工程と
、前記半導体基板上の前記レジスト膜に所定のパターン
にしたがって電子ビームを照射する工程と、前記レジス
ト膜に現像処理を施し該レジスト膜に開孔を形成する工
程と、該開孔を通して前記電子ビーム露光用位置合わせ
マークの少なくとも一部をエッチング除去した後、前記
半導体基板を前記開孔を通して所定の深さにエッチング
除去する工程とを含むことを特徴とする半導体装置の製
造方法。
A step of forming an alignment mark for electron beam exposure on a semiconductor substrate, and after applying a resist film on the semiconductor substrate, irradiating the resist film in a region including the alignment mark for electron beam exposure with an electron beam. irradiating the resist film on the semiconductor substrate with an electron beam according to a predetermined pattern; performing a development process on the resist film to form an opening in the resist film; A method for manufacturing a semiconductor device, comprising the steps of etching away at least a portion of the alignment mark for electron beam exposure, and then etching away the semiconductor substrate to a predetermined depth through the opening.
JP30854889A 1989-11-28 1989-11-28 Manufacture of semiconductor device Pending JPH03167820A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30854889A JPH03167820A (en) 1989-11-28 1989-11-28 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30854889A JPH03167820A (en) 1989-11-28 1989-11-28 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH03167820A true JPH03167820A (en) 1991-07-19

Family

ID=17982355

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30854889A Pending JPH03167820A (en) 1989-11-28 1989-11-28 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH03167820A (en)

Similar Documents

Publication Publication Date Title
US4959326A (en) Fabricating T-gate MESFETS employing double exposure, double develop techniques
KR950000507B1 (en) Fabrication method for semiconductor device
US4145459A (en) Method of making a short gate field effect transistor
JPH03167820A (en) Manufacture of semiconductor device
JPH03167822A (en) Manufacture of semiconductor device
JPH03167821A (en) Positioning mark forming method for electron beam exposure
EP0332680B1 (en) Process of forming a t-gate metal structure on a substrate
JP2714026B2 (en) Method for forming electrode for semiconductor device
JPH07130611A (en) Manufacture of semiconductor device
JPH0414212A (en) Resist pattern formation
KR100226861B1 (en) Method of manufacturing t-type gate
JPH11162810A (en) Alignment mark for electron beam exposure
JP2868771B2 (en) Method of forming alignment mark for electron beam exposure
JPH03145140A (en) Manufacture of compound semiconductor device
JPH07107906B2 (en) Method for manufacturing semiconductor device
JPS61245581A (en) Manufacture of semiconductor device
JPH04291733A (en) Gaas device and forming method for t-shaped gate electorode
JPH0334416A (en) Resist pattern forming method
JPH07240425A (en) Manufacture of semiconductor device
JPH0745639A (en) Method for manufacture of t-gate of 0.1 micrometer or lower for field-effect transistor
JPS63187629A (en) Forming method for alignment mark for electron beam exposure
JPH07111230A (en) Method of forming alignment mark for electron beam exposure
JPS6237973A (en) Metal-electrode forming method
JPH02103054A (en) Pattern forming method
JPH0575146A (en) Manufacture of filed-effect semiconductor devices